JPH0860611A - Repairing method for asphalt pavement - Google Patents

Repairing method for asphalt pavement

Info

Publication number
JPH0860611A
JPH0860611A JP22107394A JP22107394A JPH0860611A JP H0860611 A JPH0860611 A JP H0860611A JP 22107394 A JP22107394 A JP 22107394A JP 22107394 A JP22107394 A JP 22107394A JP H0860611 A JPH0860611 A JP H0860611A
Authority
JP
Japan
Prior art keywords
tao
roadbed
asphalt mixture
temperature
deflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22107394A
Other languages
Japanese (ja)
Inventor
Masanori Hayashi
正則 林
Yoshio Saiga
義夫 雑賀
Nagato Abe
長門 阿部
Teruhiko Maruyama
暉彦 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toa Doro Kogyo Co Ltd
Original Assignee
Toa Doro Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toa Doro Kogyo Co Ltd filed Critical Toa Doro Kogyo Co Ltd
Priority to JP22107394A priority Critical patent/JPH0860611A/en
Publication of JPH0860611A publication Critical patent/JPH0860611A/en
Pending legal-status Critical Current

Links

Landscapes

  • Road Paving Machines (AREA)
  • Road Repair (AREA)

Abstract

PURPOSE: To quickly determine the extend of repairing and to perform the work of repairing an asphalt pavement most suitably, by respectively finding rediual strength and an elastic modulus of a subgrade through a deflection remainder and a deflection value of an asphalt mixture layer. CONSTITUTION: Rediual strength TAO is found through a deflection remainder of an asphalt mixture layer according to the following formula. TAO=-28.5log (Do-Dx)+11.1 where TAO is the product of the distance from the loading point to the measurement point by the residual strength at the measurement point, Do is the deflection value at the loading point, and Dx is the product of the distance from the loading point to the measurement point by the deflection value at the measurement point. After that, the elastic modules Ex of the subgrade is found through the deflection value of the asphalt mixture layer according the following formula. Ex=10/Dx where Ex is the product of the distance from the loading point to the measurement point by the elastic modulus of the subgrade of the measurement point. After that, the improving of the subgrade, the replacing of the asphalt mixture layer, the overlaying thereof, or the partial repairing thereof is selected on the basis of the position shown in a diagram whose axes are measured values of the residal strength TAO and the elastic modulus Ex.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、アスファルト混合物層
を有する舗装体の補修方法に関する。より詳しくは、ア
スファルト舗装体、典型的にはアスファルト舗装道路に
ついて、アスファルト混合物層の残存強度TAOと路床弾
性係数Ex に基づいて補修の程度(工法)を迅速に判定
し、最適な補修工事を可能にする補修方法に関する。
FIELD OF THE INVENTION The present invention relates to a method of repairing a pavement having an asphalt mixture layer. More specifically, for an asphalt pavement, typically an asphalt pavement, the degree of repair (construction method) is quickly determined based on the residual strength TAO of the asphalt mixture layer and the roadbed elastic modulus Ex, and the optimum repair work is performed. Regarding the repair method that enables it.

【0002】[0002]

【従来の技術】従来、アスファルト舗装道路の補修は、
多くの場合、路面の亀裂や磨耗の程度を目視観察や計測
により調査し、経験に基づいて補修箇所および補修工法
を決定しており、判断基準が観察者の主観に基づくため
に不正確であり、最適な補修工事が施されているとは限
らない。また、必要に応じて部分的に舗装面をサンプリ
ングしてその劣化の程度を調べることも行なわれている
が、サンプリングとその解析に人手と時間がかかるため
に迅速に補修工事を実施できず、しかも調査範囲が部分
的に限られるために適切な補修工法を選択するのが難し
い場合も少なくない。
2. Description of the Related Art Conventionally, repair of asphalt paved roads has been
In many cases, the degree of cracks and wear on the road surface is investigated by visual observation and measurement, and the repair location and repair method are determined based on experience. , The best repair work is not always done. In addition, it is also possible to partially sample the pavement surface to check the degree of deterioration, but it is not possible to carry out repair work quickly because sampling and analysis take time and labor. Moreover, it is often difficult to select an appropriate repair method because the survey area is partially limited.

【0003】[0003]

【発明の解決課題】本発明は、従来のアスファルト舗装
体の補修方法における従来の上記課題を解決したもので
あって、アスファルト舗装体の補修工法の判定が容易で
あり、最適な補修工事を迅速に実施できる補修方法を提
供することを目的とする。
DISCLOSURE OF THE INVENTION The present invention is to solve the above-mentioned conventional problems in the conventional method for repairing asphalt pavement, wherein the method for repairing the asphalt pavement can be easily determined, and the optimum repair work can be performed quickly. The purpose is to provide a repair method that can be carried out.

【0004】[0004]

【課題の解決手段】本発明によれば、以下の構成からな
るアスファルト舗装体の補修方法が提供される。 (1)(イ)次式(1)に従いアスファルト混合物層の撓み差
から残存度TAOを求め、 TAO=−28.5 log(Do−Dx)+11.1 (1) ここで、TAO は載荷点から距離x離れた位置の残存強
度、Do は載荷点の撓み量、Dx は載荷点から距離x離
れた位置の撓み量、(ロ)次式(2)に従いアスファルト混合
物層の撓み量から路床弾性係数Exを求め、 Ex=10/Dx (2) ここで、Ex は載荷点から距離x離れた位置の路床弾性
係数、Dx は上記のとおり、(ハ)アスファルト混合物層
の残存強度TAOと路床弾性係数Exを座標軸とする平面
座標において、残存強度TAOと路床弾性係数Ex の実測
値が占める位置に基づき、路床改良、アスファルト混合
物層の打換え、オーバーレイまたは部分補修の選定を行
なうことを特徴とするアスファルト舗装体の補修方法。
According to the present invention, there is provided a method for repairing an asphalt pavement having the following structure. (1) (b) The residual degree TAO is calculated from the difference in deflection of the asphalt mixture layer according to the following equation (1), and TAO = −28.5 log (Do−Dx) +11.1 (1) where TAO is the distance from the loading point. Residual strength at a distance of x, Do is the amount of deflection at the loading point, Dx is the amount of deflection at a distance x from the loading point, and (b) the amount of deflection of the asphalt mixture layer according to the following equation (2) Ex is calculated as: Ex = 10 / Dx (2) where Ex is the roadbed elastic modulus at a distance x from the loading point, and Dx is as described above, (c) the residual strength TAO of the asphalt mixture layer and the roadbed. Based on the position occupied by the measured values of the residual strength TAO and the roadbed elastic modulus Ex in the plane coordinate system with the elastic modulus Ex as the coordinate axis, it is necessary to select the roadbed improvement, asphalt mixture layer replacement, overlay or partial repair. A characteristic method for repairing asphalt pavements.

【0005】また、本発明によれば、上記補修方法を具
体化した以下の補修方法が提供される。 (2)アスファルト混合物層の残存強度TAOと路床弾性
係数Ex を座標軸とする平面座標が、路床弾性係数の下
限値(L)、 該下限値における上記残存強度TAOの目標基
準値(L1)と設定基準値(L2)、 路床弾性係数の設定値(S)
における上記残存強度TAOの目標基準値(S1)と設定基準
値(S2)によって領域(〓)(〓)(〓)(〓)に区画されてお
り、領域(〓)は上記下限値(L)未満の範囲、領域(〓)は
残存強度TAOの設定基準値(L2)と(S2)を結ぶ座標軸側の
範囲および目標基準値(S2)未満の上記設定値(S)を越え
た範囲、領域(〓)は領域(〓)より外側の範囲であって、
残存強度TAOの目標基準値(L1)と(S1)を結ぶ座標軸側の
範囲および 目標基準値(S1)未満の上記設定値(S)を越え
えた範囲、領域(〓)は領域(〓)より外側の範囲であり、
領域(〓)が路床改良、領域(〓)がアスファルト混合物層
の打換え、領域(〓)がオーバーレイまたは部分補修、領
域(〓)が舗装強度充足の各範囲であり、残存強度TAOと
路床弾性係数Ex の実測値が占める領域の区分に従って
補修工法が選定される上記(1)の補修方法。
Further, according to the present invention, there is provided the following repair method embodying the above repair method. (2) The residual strength TAO of the asphalt mixture layer and the plane coordinates with the roadbed elastic coefficient Ex as coordinate axes are the lower limit value (L) of the roadbed elastic coefficient, and the target reference value (L1) of the remaining strength TAO at the lower limit value. And setting reference value (L2), setting value of roadbed elastic modulus (S)
It is divided into the area (〓) (〓) (〓) (〓) by the target standard value (S1) and the setting standard value (S2) of the remaining strength TAO in, and the area (〓) is the above lower limit (L). The range and area (〓) below is the range on the coordinate axis connecting the set reference value (L2) and (S2) of the residual strength TAO and the range and area above the set value (S) below the target reference value (S2). (〓) is the range outside the area (〓),
The range of the residual strength TAO on the coordinate axis connecting the target reference value (L1) and (S1) and the range below the target reference value (S1) above the set value (S), the area (〓) is from the area (〓) The outer range,
Area (〓) is roadbed improvement, area (〓) is asphalt mixture layer replacement, area (〓) is overlay or partial repair, area (〓) is pavement strength fulfillment range, remaining strength TAO and road The repair method according to (1) above, in which the repair method is selected according to the division of the area occupied by the measured value of the floor elastic modulus Ex.

【0006】さらに、本発明によれば、上記補修方法の
精度を高めた以下の補修方法が提供される。 (3)次式(3)に従いアスファルト混合物層の平均温度
Taveを求め、 Tave=(aTsu+bTair+c)αZβ (3) ここで、Taveは任意の層厚の平均温度、Tsuは路面温
度、Tairは気温、a,b,c,α,βは補正係数、上
記平均温度Taveに基づき次式(4)に従って標準温度にお
けるアスファルト混合物層の弾性係数の温度補正を行
い、 Est=Eave×10[-0.0184x(20-Tave)] (4) ここで、Estは標準温度における弾性係数、Eaveは平
均温度における弾性係数、Taveは上記のとおり、上記
温度補正された弾性係数に基づいて求めたアスファルト
混合物層の撓み差を用いる上記(1)の補修方法。
Further, according to the present invention, there is provided the following repair method in which the accuracy of the above repair method is improved. (3) The average temperature Tave of the asphalt mixture layer is calculated according to the following equation (3), and Tave = (aTsu + bTair + c) αZβ (3) where Tave is the average temperature of an arbitrary layer thickness, Tsu is the road surface temperature, Tair is the temperature, a, b, c, α, β are correction factors, and based on the average temperature Tave, temperature correction of the elastic coefficient of the asphalt mixture layer at the standard temperature is performed according to the following equation (4), and Est = Eave × 10 [-0.0184x ( 20-Tave)] (4) where Est is the elastic coefficient at standard temperature, Eave is the elastic coefficient at average temperature, and Tave is the deflection of the asphalt mixture layer obtained based on the temperature-corrected elastic coefficient as described above. The repair method of the above (1) using the difference.

【0007】[0007]

【具体的な説明】本発明の補修方法の実施手順を図1の
フローチャートに示す。本発明の補修方法は、アスファ
ルト混合物層(以下、アスコン層と略す)の撓み量の差
(撓み差)から導かれる残存強度TAO と、撓み量から
導かれる路床弾性係数Exに基づいて補修の程度を判定
し、最適な補修工事を選定する。
[Detailed Description] The flow chart of FIG. 1 shows the procedure for carrying out the repair method of the present invention. The repair method of the present invention is based on the residual strength TAO derived from the difference in the amount of flexure of the asphalt mixture layer (hereinafter abbreviated as the ascon layer) (bending difference) and the roadbed elastic coefficient Ex derived from the amount of flexure. Judge the degree and select the most suitable repair work.

【0008】(1)撓み量の測定方法 アスコン層の撓み量の測定方法としては、舗装面に衝撃
荷重を与え、この時に発生する撓み量を測定するフォー
リング・ウエイト・デフレクトメータ(Falling Weight
Deflectometer:以下、FWDと略称する。)による非
破壊測定方法が知られている。このFWDによる測定方
法の概要を図2に示す。図示するように、本測定方法
は、路面10に設置した載荷板11に重錘12を落下させ、載
荷板に設けた圧力ゲージ13および路面の複数の地点に設
置した撓みセンサー14によって衝撃荷重と撓み量を測定
する。この方法によれば、短時間に多量のデータが容易
に得られる利点を有し、舗装の構造評価を的確に行なう
ことにより、 (1)舗装構造の同一な区間の推定、(2)舗
装構成層の弾性係数の推定、(3)破壊原因の推定、 (4)
舗装寿命の推定が可能である。本発明の補修方法は、舗
装の的確な構造評価を行い、最適な補修工法の選定を短
時間に行なうことができる方法であり、FWD測定装置
を用いることにより容易に実施することができる。
(1) Method of Measuring Deflection A method for measuring the amount of deflection of the Ascon layer is to apply an impact load to the pavement surface and measure the amount of deflection generated at this time by using a falling weight deflectometer (Falling Weight).
Deflectometer: Hereinafter abbreviated as FWD. The non-destructive measurement method by () is known. The outline of the measuring method by this FWD is shown in FIG. As shown in the figure, the measuring method is to drop the weight 12 on the loading plate 11 installed on the road surface 10, and to measure the impact load by the pressure gauge 13 provided on the loading plate and the deflection sensors 14 installed at a plurality of points on the road surface. Measure the amount of deflection. According to this method, a large amount of data can be easily obtained in a short time, and by accurately evaluating the structure of the pavement, (1) estimation of the same section of the pavement structure, (2) pavement composition Estimating elastic modulus of layer, (3) Estimating cause of failure, (4)
It is possible to estimate the pavement life. The repair method of the present invention is a method that allows accurate structure evaluation of pavement and selection of an optimum repair construction method in a short time, and can be easily performed by using an FWD measuring device.

【0009】(2)アスコン層の平均温度 アスコン層の撓み量は温度によって大きな影響を受ける
ので、実測値の温度補正を行うことは望ましい。従来、
撓み測定時の路面温度を用いて撓みの温度補正を行って
いるが、厳密に標準温度で撓みやアスコン層の弾性係数
を比較及び評価するためには、アスコン層の平均温度を
求め、温度補正を行うことが望ましい。本発明者等延研
究によれば、次式(5) に従い、アスコン層の一定深さの
平均温度を求めることができる。 Tave=aTsu+bTair+c (5) ここで、Taveは任意の層厚の平均温度(℃)、Tsuは路
面温度(℃)、Tairは気温(℃)、a,b,c,は補正係
数、
(2) Average Temperature of Ascon Layer Since the amount of deflection of the Ascon layer is greatly influenced by temperature, it is desirable to correct the temperature of the measured value. Conventionally,
Although the temperature of the deflection is corrected using the road surface temperature at the time of deflection measurement, in order to strictly compare and evaluate the deflection and the elastic coefficient of the Ascon layer at the standard temperature, the average temperature of the Ascon layer is calculated and the temperature is corrected. It is desirable to do. According to the study by the present inventors, the average temperature at a constant depth of the ascon layer can be calculated according to the following equation (5). Tave = aTsu + bTair + c (5) where Tave is the average temperature (° C) of any layer thickness, Tsu is the road surface temperature (° C), Tair is the temperature (° C), and a, b, c are correction factors,

【0010】上記温度式(5)は以下のように導かれる。
図3(A)(B) に示すように、温度測定用に構築した舗装
体31に、アスコン層の内部温度を測定するための熱電対
32を、アスコン層の層厚13cm中に4本埋設した。気温は
地上2mの百葉箱内の熱電対により測定し、路面温度は
接触式温度計を用いて測定した。実測値によれば、路面
温度と舗装体の深さ0.5 mmの熱電対の温度はほぼ等し
い。また、各埋設深さの熱電対の温度データを用いて、
積分平均により平均温度を求めると、深さ7cm の温度と
算出した平均温度はぼ一致する。これより、深さ7cmの
温度を平均温度とみなすことができる。
The above temperature equation (5) is derived as follows.
As shown in FIGS. 3 (A) and 3 (B), a thermocouple for measuring the internal temperature of the Ascon layer is provided on the pavement 31 constructed for temperature measurement.
4 of 32 were embedded in the layer thickness of the ascon layer 13 cm. The air temperature was measured by a thermocouple in a hundred-leaf box located 2 m above the ground, and the road surface temperature was measured by using a contact thermometer. According to the measured values, the road surface temperature and the temperature of the thermocouple at a pavement depth of 0.5 mm are almost the same. In addition, using the temperature data of the thermocouple at each buried depth,
When the average temperature is calculated by integral averaging, the temperature at a depth of 7 cm and the calculated average temperature are almost the same. From this, the temperature at a depth of 7 cm can be regarded as the average temperature.

【0011】次に、1日間のアスコン層内の温度分布の
一例を図4に示す。また、1日の温度分布は時刻ごとに
異なっているので、同じ時刻の月別の温度分布を図5に
示した。同じ時刻の温度分布では、分布形状が類似して
いる月がいくつか存在する。この結果、年間の温度グル
ープを3の類型に分類できることが分かる。深さ7cmの
温度を目的変数、気温と路面温度を説明変数とし、年間
を3つのグループに分割し、1日を6時から18時まで
1時間おきのグループとして重回帰式を求めると上記温
度式(5)が得られる。
Next, an example of the temperature distribution in the Ascon layer for one day is shown in FIG. Further, since the temperature distribution of one day differs depending on the time, the temperature distribution of each month at the same time is shown in FIG. In the temperature distribution at the same time, there are some months with similar distribution shapes. As a result, it can be seen that the annual temperature group can be classified into three types. Using the temperature of 7 cm depth as the objective variable and the temperature and the road surface temperature as explanatory variables, divide the year into three groups, and calculate the multiple regression equation as one hour group from 6:00 to 18:00. Equation (5) is obtained.

【0012】1日のアスコン層について、路面温度の実
測データと温度式(5) に基づいて算出した平均温度を図
6に示す。図示するように温度式より算出した結果と深
さ7cmの平均温度はよく一致している。なお、この温度
式(5) は、アスコン層の厚さが13cmの舗装に対しての
式であり、任意厚さのアスコン層の平均温度を求めるに
は補正項を加える。アスコン層の厚さが異なってもアス
ファルト混合物中の温度分布形状は変わらないので、熱
拡散率を一定と見なして温度を算出できることが知られ
ている。そこで、これに基づき、次式に示す温度の補正
項を有する温度式(3)が得られる。 Tave=(aTsu+bTair+c)αZβ (3) ここで、Taveは任意の層厚の平均温度、Tsuは路面温
度、Tairは気温、a,b,c,α,βは補正係数、こ
の平均温度式(5)によって算出した温度と平均温度の実
測値を比較した結果を図7に示した。このグラフはアス
コン層の層厚20cmの例であるが、この平均平方誤差は
1.5℃であり良く一致した結果が得られる。
FIG. 6 shows the average temperature calculated based on the actual measurement data of the road surface temperature and the temperature equation (5) for the Ascon layer for one day. As shown in the figure, the result calculated by the temperature equation and the average temperature at the depth of 7 cm are in good agreement. This temperature equation (5) is for a pavement with an Ascon layer having a thickness of 13 cm, and a correction term is added to obtain the average temperature of the Ascon layer having an arbitrary thickness. It is known that the temperature distribution shape in the asphalt mixture does not change even if the thickness of the ascon layer is different, so that the temperature can be calculated by regarding the thermal diffusivity as constant. Then, based on this, the temperature equation (3) having the temperature correction term shown in the following equation is obtained. Tave = (aTsu + bTair + c) αZβ (3) Here, Tave is the average temperature of an arbitrary layer thickness, Tsu is the road surface temperature, Tair is the temperature, and a, b, c, α, β are correction coefficients, and this average temperature equation (5 FIG. 7 shows the result of comparison between the temperature calculated by) and the measured value of the average temperature. This graph is an example where the layer thickness of the ascon layer is 20 cm, but the average square error is 1.5 ° C, and the results are in good agreement.

【0013】(3)アスファルト混合物層の弾性係数の
温度補正 以上のようにして求めたアスコン層の平均温度Tave に
基づいてアスコン層の弾性係数の温度補正を行うことが
できる。図8にアスコン層の平均温度Tave とFWD測
定結果から逆解析を用いて求めたアスコン層の弾性係数
の関係を示す。一般に室内試験で得られるアスコン層の
平均温度と弾性係数の関係は、高温側で弾性係数が極端
に低下するので高次曲線で近似されているが、図8によ
れば、FWDから求めたアスコン層の弾性係数は、高温
時に極端な低下が見られず、両者の関係は一次直線で近
似できることが分かる。
(3) Temperature correction of elastic coefficient of asphalt mixture layer Temperature correction of elastic coefficient of the ascon layer can be performed based on the average temperature Tave of the ascon layer obtained as described above. FIG. 8 shows the relationship between the average temperature Tave of the ascon layer and the elastic coefficient of the ascon layer obtained by the inverse analysis from the FWD measurement results. Generally, the relationship between the average temperature of the ascon layer obtained in the indoor test and the elastic coefficient is approximated by a higher-order curve because the elastic coefficient significantly decreases on the high temperature side. It can be seen that the elastic modulus of the layer does not decrease extremely at high temperature, and the relationship between the two can be approximated by a linear line.

【0014】図8に示すアスコン層の平均温度と弾性係
数の回帰直線の傾きを用いて、平均温度Taveのアスコ
ン層の弾性係数Eaveを標準温度20℃のアスコン層の
弾性係数Estを求めると、次式に示す弾性係数の算定式
(4)が得られる。 Est=Eave×10[-0.0184x(20-Tave)] (4) ここで、Estは標準温度における弾性係数、Eaveは平
均温度における弾性係数、Taveは上記のとおり。この
温度補正により求めた標準温度(通常は20℃)におけ
るアスコン層の弾性係数に基づいてアスコン層の撓み量
および撓み差を求めることにより精度の高い判定ができ
る。
Using the slope of the regression line of the average temperature and elastic coefficient of the Ascon layer shown in FIG. 8, the elastic coefficient Eave of the Ascon layer at the average temperature Tave is calculated to obtain the elastic coefficient Est of the Ascon layer at the standard temperature of 20 ° C. Calculation formula of elastic modulus shown in the following formula
(4) is obtained. Est = Eave × 10 [-0.0184x (20-Tave)] (4) Here, Est is the elastic coefficient at the standard temperature, Eave is the elastic coefficient at the average temperature, and Tave is as described above. Highly accurate determination can be performed by obtaining the deflection amount and the deflection difference of the Ascon layer based on the elastic coefficient of the Ascon layer at the standard temperature (usually 20 ° C.) obtained by this temperature correction.

【0015】(4)アスコン層の撓み差の測定 本発明の補修方法においては、次式(1) に従い、アスフ
ァルト混合物層の撓み差から求めた残存強度TAOを補修
工法の判定基準度の一つとする。 TAO=−28.5 log(Do−Dx)+11.1 (1) ここで、TAO は載荷点から距離x離れた位置の残存強
度、Do は載荷点の撓み量、Dx は載荷点から距離x離
れた位置の撓み量である。
(4) Measurement of deflection difference of ascon layer In the repairing method of the present invention, the residual strength TAO obtained from the deflection difference of the asphalt mixture layer is used as one of the criteria for judging the repairing method according to the following equation (1). To do. TAO = −28.5 log (Do−Dx) +11.1 (1) Where, TAO is the residual strength at the position x distance from the loading point, Do is the amount of deflection of the loading point, and Dx is the distance x from the loading point. It is the amount of deflection of the position.

【0016】実際の道路に荷重を加えた時の荷重分散と
撓み曲線を模式図9に示す。舗装に荷重が加わると、荷
重の載荷点を中心に垂直応力が円錐状に分散する。ここ
で、図中の撓み曲線の形状は、舗装各層の弾性圧縮量の
総和によって定まると見做すことができる。また荷重影
響線は、その外側では垂直圧縮歪みが殆ど発生しない境
界線であり、載荷点から距離x離れた位置における撓み
量Dx に関係するのは荷重影響線の内側にある一定深さ
以上の層の圧縮量だけである。他方、載荷点直下は全て
の層が荷重影響線の内側にあるので、全ての層の弾性圧
縮量の合計が載荷点直下の撓み量Do となって表れる。
また、隣接する撓み量の差は中間に位置する層の弾性圧
縮量を表していると見做すことができる。
FIG. 9 schematically shows a load distribution and a bending curve when a load is applied to an actual road. When a load is applied to the pavement, the vertical stress is dispersed conically around the loading point of the load. Here, it can be considered that the shape of the bending curve in the figure is determined by the total amount of elastic compression of each pavement layer. Further, the load influence line is a boundary line where vertical compression strain hardly occurs outside the load influence line, and the amount of deflection Dx at a position away from the loading point by distance x is related to a certain depth or more inside the load influence line. Only the amount of compression of the layers. On the other hand, immediately below the loading point, all layers are inside the load-influence line, so the sum of the elastic compression amounts of all layers appears as the deflection amount Do immediately below the loading point.
In addition, it can be considered that the difference between the adjacent bending amounts represents the elastic compression amount of the layer located in the middle.

【0017】舗装は、交通荷重の繰り返しや季節変動等
により劣化が進行し破壊に及ぶ。破壊に至るまでの標準
輪荷重の回数を許容載荷輪数と呼び、荷重が一定ならば
舗装の構造強度の違いにより発生する応力・歪みが異な
る。これより、路床を含めた舗装体の強度特性を示す載
荷点直下の撓み量と許容載荷輪数の関係から交通量レベ
ルごとに撓みの限界値を定めることができる。載荷点直
下の撓み量Doと49kN(5tf)換算許容載荷輪数の関係を両
対数グラフにプロットしたものを図10に示した。この
グラフによれば、路面性状が良好なものと線状クラック
が発生しているものが各々直線状に分散している。ここ
で、良好路面における載荷点直下の撓みDoと49kN(5tf)
換算許容載荷輪数の相関係数は-0.89 であり、両者には
直線状に比例する相関関係がある。この実線は全データ
の回帰直線である。ここで、Do の85%タイル値(D
85=回帰直線+1.04σ)を求めると、図中に示す点線が
得られる。この点線はほぼ路面が良好か線状クラックが
発生している撓みの境界であると判断する事ができる。
この結果、図中の点線を載荷点直下の撓みDo の限界線
(線状クラックの発生)とみなすことができる。この限
界線の式を次式(6)に示す。 log(Domax)=−0.23 log(N5) (6) ここで、Domax は限界撓み(mm)であり、N5はアスコン
層下面の引張り歪より求めた49kN(5tf)換算許容載荷輪
数(回)である。
The pavement deteriorates due to repeated traffic loads, seasonal fluctuations, etc., leading to destruction. The number of standard wheel loads up to the point of failure is called the allowable number of loaded wheels, and if the load is constant, the stress / strain that occurs will differ due to the difference in the structural strength of the pavement. From this, it is possible to determine the bending limit value for each traffic volume level from the relationship between the bending amount just below the loading point indicating the strength characteristics of the pavement including the roadbed and the allowable number of loaded wheels. FIG. 10 shows a plot of the relationship between the deflection amount Do immediately below the loading point and the allowable loading wheel number converted to 49 kN (5 tf) in a log-log graph. According to this graph, those with good road surface properties and those with linear cracks are linearly dispersed. Here, deflection Do and 49kN (5tf) just below the loading point on a good road surface
The correlation coefficient of the converted allowable number of loaded wheels is -0.89, and both have a linearly proportional correlation. This solid line is the regression line for all data. Here, the 85% tile value of Do (D
85 = regression line + 1.04σ), the dotted line shown in the figure is obtained. It can be judged that this dotted line is the boundary of the deflection where the road surface is good or linear cracks occur.
As a result, the dotted line in the figure can be regarded as the limit line of flexure Do immediately below the loading point (generation of linear crack). The formula of this limit line is shown in the following formula (6). log (Domax) = − 0.23 log (N5) (6) Where, Domax is the critical deflection (mm), N5 is the allowable load number (times) converted to 49kN (5tf) obtained from the tensile strain of the bottom surface of the Ascon layer. Is.

【0018】アスコン層の構造特性を表す評価指標とし
て、アスコン層の弾性係数E1 と層厚h1の積(以下、
アスコン層の層係数と云う)と撓み差Do-Dxが注目さ
れる。この関係を図11に示す。図中のプロットは、ア
スファルト混合物層の層厚が5とアスコン層の層係数の
間には一意的な関係がある。すなわち、アスコン層の層
厚が既知ならば、撓み差Do-Dx よりアスコン層の弾性
係数を算出することができる。この関係を次式(7),(8)
に示す。 log(E1×h1)=−0.91 log(Do−Dx)+1.80 (7) または、 E1=63×(Do−Dx)-0.91/h1 (8) ここで、E1はアスコン層の弾性係数(MPa)、h1はアス
コン層の層厚(cm)、Do-Dxは載荷点の撓み量と距離x
離れた位置の撓み量の差(mm)である。
As an evaluation index showing the structural characteristics of the Ascon layer, the product of the elastic coefficient E1 of the Ascon layer and the layer thickness h1 (hereinafter,
Attention is paid to the layer coefficient of the Ascon layer) and the deflection difference Do-Dx. This relationship is shown in FIG. The plot in the figure has a unique relationship between the layer thickness of the asphalt mixture layer of 5 and the layer coefficient of the ascon layer. That is, if the layer thickness of the ascon layer is known, the elastic coefficient of the ascon layer can be calculated from the deflection difference Do-Dx. This relationship is expressed by the following equations (7), (8)
Shown in log (E1 × h1) = − 0.91 log (Do−Dx) +1.80 (7) or E1 = 63 × (Do−Dx) −0.91 / h1 (8) where E1 is the elastic coefficient of the Ascon layer ( MPa), h1 is the layer thickness of the ascon layer (cm), Do-Dx is the amount of deflection at the loading point and the distance x
This is the difference (mm) in the amount of bending at distant positions.

【0019】撓み差Do-Dx は舗装体の変形量であり、
舗装体の強度を表していると考えられるため、供用開始
後3年未満の調査路線の設計時の等値換算厚TAと撓み差
Do-Dx の関係を求めると図12の結果が得られる。両
者の関係は、片対数グラフ上でほぼ直線となり、その相
関係数は−0.91の強い相関関係にある。なお、図12の
プロットは殆どが供用開始後1年未満のものであるが、
一部に供用開始後3年未満で路面が良好な舗装のデータ
が含まれている。信頼度90%の信頼区間は図中の点線
の範囲となり、平均TA±1.9cmの幅である。以上の結果
から、撓み差Do-DxとTAの回帰式は次式(9)で表され
る。 TA=−28.5 log(Do−Dx)+11.1 (9) ここで、TAは等値換算厚、Do は載荷点の撓み量、Dx
は載荷点から距離x離れた位置の撓み量である。上記
等値換算厚TAは舗装体が現在有している残存強度TAO
に相当する。
The deflection difference Do-Dx is the amount of deformation of the pavement,
Since it is considered to represent the strength of the pavement, the relationship between the equivalent conversion thickness TA and the deflection difference Do-Dx at the time of the design of the survey route less than 3 years after the start of service is obtained, and the result of FIG. 12 is obtained. The relationship between the two is almost linear on the semi-logarithmic graph, and the correlation coefficient thereof has a strong correlation of -0.91. In addition, most of the plots in FIG. 12 are less than one year after starting operation,
Part of the data includes pavement with good road surface less than 3 years after starting operation. The confidence interval with a reliability of 90% is in the range of the dotted line in the figure, and has a width of TA ± 1.9 cm on average. From the above results, the regression equation of the deflection difference Do-Dx and TA is expressed by the following equation (9). TA = −28.5 log (Do−Dx) +11.1 (9) Where, TA is the equivalent thickness, Do is the deflection of the loading point, Dx
Is the amount of flexure at a distance x from the loading point. The above equivalent thickness TA is the residual strength TAO that the pavement currently has.
Equivalent to.

【0020】(5)炉床弾性係数の算定 次に、舗装にかかる荷重の応力分散により、載荷点から
離れた位置の撓みは舗装厚の影響を殆ど受けず、路床の
支持力のみに依存していると考えられる(図9参照)。
そこで、路床の弾性係数ExとDxの撓み量の関係を求め
ると、図13の結果が得られる。図13のグラフは、ア
スファルト舗装の標準設計基準に示される交通量の区分
A,B,C,Dに従い、設計CBR試験値3、4、6、
8、12の舗装構成(合計20種類)で、路床弾性係数を
100〜4000kgf/c〓に変動させたときのD1500(載荷点か
ら1500mm 離れた地点の撓み量)について調べ、荷重5tf
の時の路床弾性係数と撓み量の関係を示したグラフであ
る。両者の関係は直線状に変化し、その傾きはほぼ−1
である。このことから、撓み量に基づいて路床の弾性係
数を算定することができる。この算定式を次式(10)に示
す。 Ex=10/Dx (10) ここで、Ex は載荷点から距離x離れた位置の路床弾性
係数、Dx は上記のとおりである。
(5) Calculation of hearth elastic modulus Next, due to the stress distribution of the load applied to the pavement, the flexure at the position away from the loading point is hardly affected by the pavement thickness and depends only on the bearing capacity of the roadbed. (See FIG. 9).
Therefore, when the relationship between the flexure amounts of the elastic coefficient Ex and Dx of the roadbed is obtained, the result of FIG. 13 is obtained. The graph of FIG. 13 shows the design CBR test values 3, 4, 6, according to the traffic volume classifications A, B, C, and D shown in the standard design criteria for asphalt pavement.
With 8 and 12 pavement configurations (20 types in total),
Examine D1500 (deflection amount at a point 1500mm away from the loading point) when varying from 100 to 4000kgf / c〓, and load 5tf
7 is a graph showing the relationship between the roadbed elastic modulus and the amount of flexure at the time. The relationship between the two changes linearly, and the slope is almost -1.
Is. From this, the elastic coefficient of the roadbed can be calculated based on the amount of deflection. This calculation formula is shown in the following formula (10). Ex = 10 / Dx (10) where Ex is the roadbed elastic coefficient at a position separated by a distance x from the loading point, and Dx is as described above.

【0021】(6)補修工法の選定 補修工法の選定は、現状の舗装構造の力学特性を表す残
存強度TA0と路床弾性係数Ex に基づいて行うが、これ
に交通量を加味して選定することが好ましい。具体的な
一例として補修工法選定チャートの概念図を図14に示
す。本チャートは、アスファルト混合物層の残存強度T
AOと路床弾性係数Ex を座標軸とする平面座標から成
り、路床弾性係数の下限値(L)、 該下限値における上記
残存強度TAOの目標基準値(L1)と設定基準値(L2)、 路
床弾性係数の設定値(S)における上記残存強度TAOの目
標基準値(S1)と設定基準値(S2)によって領域(〓)(〓)
(〓)(〓)に区画されている。ここで、領域(〓)は上記下
限値(L)未満の範囲であり、領域(〓)は残存強度TAOの
設定基準値(L2)と(S2)を結ぶ座標軸側の範囲および目標
基準値(S2)未満の上記設定値(S) を越えた範囲である。
また、領域(〓)は領域(〓)より外側の範囲であって、残
存強度TAOの目標基準値(L1)と(S1)を結ぶ座標軸側の範
囲および 目標基準値(S1)未満の上記設定値(S)を越ええ
た範囲であり、領域(〓)は領域(〓)より外側の範囲であ
る。ここで、領域(〓)は路床改良が必要な範囲、領域
(〓)はアスコン層の打換えが必要な範囲、領域(〓)はオ
ーバーレイまたは部分補修が必要な範囲、領域(〓)は舗
装強度を充足しており、破損に応じた個別的な処理で足
りる範囲である。この平面座標において、残存強度TAO
と路床弾性係数Ex の実測値が占める領域の区分に従っ
て補修工法が選定される。
(6) Selection of repair method The repair method is selected based on the residual strength TA0 and the roadbed elastic coefficient Ex which represent the mechanical characteristics of the current pavement structure, and the traffic volume is added to the selection. It is preferable. As a specific example, a conceptual diagram of a repair method selection chart is shown in FIG. This chart shows the residual strength T of the asphalt mixture layer.
It consists of AO and plane coordinates with the roadbed elastic coefficient Ex as coordinate axes, and the lower limit value (L) of the roadbed elastic coefficient, the target reference value (L1) and the set reference value (L2) of the remaining strength TAO at the lower limit value, Area (〓) (〓) according to the target reference value (S1) and the setting reference value (S2) of the remaining strength TAO at the set value (S) of the roadbed elastic modulus
It is divided into (〓) and (〓). Here, the area (〓) is a range less than the lower limit (L) above, and the area (〓) is the range on the coordinate axis connecting the set reference value (L2) and (S2) of the residual strength TAO and the target reference value ( It is a range that is less than S2) and exceeds the set value (S) above.
The area (〓) is the area outside the area (〓), the range on the coordinate axis connecting the target reference value (L1) and (S1) of the residual strength TAO, and the above setting below the target reference value (S1). The range exceeds the value (S), and the area (〓) is the area outside the area (〓). Here, the area (〓) is the range and area where roadbed improvement is required.
(〓) is the range that requires replacement of the Ascon layer, the area (〓) is the range that requires overlay or partial repair, and the area (〓) is sufficient for the pavement strength, and can be treated individually according to damage. This is a sufficient range. In this plane coordinate, residual strength TAO
The repair method is selected according to the division of the area occupied by the measured value of the roadbed elastic modulus Ex.

【0022】上記座標において、路床弾性係数の下限値
(L)における上記残存強度TAO の目強度TAOの目標基準
値(S1)と設定基準値(S2)は交通量に応じて設定すること
が好ましい。この具体例を図15〜図18に示した。各
図はアスファルト舗装の設計基準として公知な設計交通
量区分ごとに上記値を示したものであり、図15は交通
量A、図16は交通量B、図17は交通量C、および図
18は交通量Dの場合である。
At the above coordinates, the lower limit value of the roadbed elastic modulus
The target reference value (S1) and setting reference value (S2) of the eye strength TAO of the remaining strength TAO in (L) are preferably set according to the traffic volume. Specific examples of this are shown in FIGS. Each figure shows the above value for each design traffic volume category known as a design standard for asphalt pavement. FIG. 15 is a traffic volume A, FIG. 16 is a traffic volume B, FIG. 17 is a traffic volume C, and FIG. Is the case of traffic volume D.

【0023】なお、路床弾性係数と路床支持力に関する
CBR試験値との関係は、既往の研究より粘性土や砂質
土でEx(kgf/c〓)=100〜200CBR{Ex(MPa)=10〜
20CBR}、礫混じり土等はEx(kgf/c〓)=50〜100C
BR{Ex(MPa)=5〜10CBR}であることが知られ
ている。図示する補修工法選定座標は、粘性土や砂質土
の中間値であるEx(kgf/c〓)=150CBR{Ex(MPa)=
15CBR} の関係式に基づくものである。
Incidentally, the relationship between the roadbed elastic modulus and the CBR test value relating to the roadbed supporting force is that Ex (kgf / c〓) = 100 to 200CBR {Ex (MPa) for cohesive soil or sandy soil according to previous studies. = 10 ~
20CBR}, gravel mixed soil, etc. Ex (kgf / c〓) = 50-100C
It is known that BR {Ex (MPa) = 5 to 10 CBR}. The repair method selection coordinates shown in the figure are the median values of cohesive soil and sandy soil, Ex (kgf / c〓) = 150 CBR {Ex (MPa) =
It is based on the relational expression of 15CBR}.

【0024】本発明の補修方法の適用例を図19に示
す。本例において、FWD装置で求めた路床弾性係数E
は40MPaであり、目標TAは27cm、温度補正後のDo−
D1500から定められる残存強度TAOは14cmである。こ
の座標に、補修前の実測値(○印)をプロットすると、
実測値は図示するように領域(〓)に位置し、打ち換え工
法程度の補修が必要であることが分かる。そこで、同程
度の補修工法である再生CAE路盤を設ける工法によっ
て補修を施した。補修後、1月経過後に補修部分の撓み
量を測定し、残存強度TAOと路床弾性係数Ex を求めて
座標にプロットしたところ(□印)、残存強度TAO は
27cmに回復しており、路床弾性係数Exも補修前より
は大きく、その実測値は領域(〓)の範囲に位置し、舗装
強度を満足していることが確認された。本発明の適用例
を表4に纏めて示した。何れの施工例においても、補修
前と補修後では上記適用例と同様の結果が確認された。
FIG. 19 shows an application example of the repair method of the present invention. In this example, the roadbed elastic modulus E determined by the FWD device
Is 40MPa, target TA is 27cm, Do-after temperature correction
The residual strength TAO determined from D1500 is 14 cm. If you plot the measured value (○) before repair on this coordinate,
The measured values are located in the area (〓) as shown in the figure, and it can be seen that repairs of the replacement method are necessary. Therefore, repair was carried out by a method of providing a recycled CAE roadbed, which is a similar repair method. After one month from the repair, the amount of flexure of the repaired part was measured, and the residual strength TAO and the roadbed elastic modulus Ex were calculated and plotted on the coordinates (marked by □), the residual strength TAO was recovered to 27 cm, and the road was recovered. It was confirmed that the floor elastic modulus Ex was also larger than that before the repair, and the measured value was located in the area (〓), which satisfied the pavement strength. The application examples of the present invention are summarized in Table 4. In each of the construction examples, the same results as in the above application example were confirmed before and after the repair.

【0025】[0025]

【表4】 [Table 4]

【0026】以上のように、本発明の方法によれば、ア
スコン層の撓み量および撓み差に基づいて補修の程度が
容易に判別でき、最適な補修工事を迅速に実施すること
ができる。なお、本発明の補修方法とは別にこれに関連
する方法として、舗装の健全度、舗装各層の弾性係数を
求め、舗装の構造評価を行なうことができる。以下にこ
の方法を説明する。
As described above, according to the method of the present invention, the degree of repair can be easily discriminated based on the flexure amount and flexure difference of the Ascon layer, and the optimum repair work can be carried out promptly. In addition to the repair method of the present invention, as a method related thereto, the soundness of the pavement, the elastic modulus of each layer of the pavement can be obtained, and the structure of the pavement can be evaluated. Hereinafter, this method will be described.

【0027】(舗装の健全度)上記撓み量と撓み差を指
標とし、各設計交通量A〜Dごとに舗装の良否が分かれ
る境界値を表1に示した。この値は 交通量A、交通量
B、交通量C、交通量Dの各交通区分の設計期間10年に
対応する5tf(49kN)換算輪数をそれぞれ15万,100万,700
万,3500万回と見なし、それぞれの撓み評価指標の5tf
(49kN)換算輪数における撓みの平均値(Dave)を good
(良い)とnormal(普通)の境界値とし、撓み平均値+標準
偏差(Dave +σ)をpoor(悪い)とnormal(普通)の境界値
としたものである。表1の結果より、標準温度20℃の撓
みより舗装の健全度を3つのランクに分類して判別でき
ることが分かる。
(Soundness of pavement) Table 1 shows the boundary values at which the quality of pavement is classified according to the design traffic volumes A to D, using the above-mentioned deflection amount and deflection difference as indexes. This value is 5tf (49kN) equivalent number of wheels corresponding to 10 years of design period for each traffic segment of traffic volume A, traffic volume B, traffic volume C, and traffic volume D.
Assuming 35 million times, 5 tf of each flexure evaluation index
(49kN) The average value of the deflection (Dave) in the converted number of wheels is good.
The boundary value is (good) and normal (normal), and the deflection average value + standard deviation (Dave + σ) is used as the boundary value between poor (normal) and normal (normal). From the results in Table 1, it can be seen that the soundness of the pavement can be classified into three ranks based on the deflection at the standard temperature of 20 ° C.

【0028】[0028]

【表1】 [Table 1]

【0029】(舗装各層の弾性係数)舗装の構造解析は
一般に多層弾性理論を用いて行われている。この多層弾
性理論を用いて層数がnである場合、以下の4種類の値
が既知であれば地盤内の任意の位置における応力や歪み
を求めることが可能となる。なおについては、これら
3つの値のうちいずれか2つが既知であれば良い。 各層を構成する材料の弾性係数(E1〜En) 各層を構成する材料のポアソン比(ν1〜νn) 各層の厚さ(h1〜hn) 荷重の大きさ,接地半径,接地圧(P,a) 上記の値を定めることにより深さ(z)、半径方向の距離
(r)の任意の点における垂直応力(σz)、半径方向応力
(σr)、接線方向応力(σt)、せん断応力(τrz)、垂直変位
(ω)、半径方向変位(υ)が計算される。
(Elastic Modulus of Each Layer of Pavement) Structural analysis of pavement is generally carried out by using the multilayer elasticity theory. When the number of layers is n using this multilayer elasticity theory, it is possible to obtain the stress and strain at any position in the ground if the following four types of values are known. As for, it suffices if any two of these three values are known. Elastic modulus of material forming each layer (E1 to En) Poisson's ratio of material forming each layer (ν1 to νn) Thickness of each layer (h1 to hn) Magnitude of load, contact radius, contact pressure (P, a) Depth (z) and radial distance by setting the above values
Normal stress (σz) at any point in (r), radial stress
(σr), tangential stress (σt), shear stress (τrz), vertical displacement
(ω), radial displacement (υ) are calculated.

【0030】多層構造における各層の弾性係数を推定す
る方法として、測定撓みと多層弾性計算により得られた
計算撓みの差を最小にする方法が知られている。この方
法は、まず、各層の弾性係数,ポアソン比等を設定し、
撓みを計算する。計算した撓みと測定撓みを比較し、両
者の差が定められた誤差範囲より大きいか、あるいは収
束の判断のため設定した評価関数の値が設定値より大き
な場合に、両者の撓み差が縮まるように弾性係数を修正
し、撓みの計算を繰り返す方法である。また、最小二乗
法を用いた最適化手法に修正 Gauss−Newton法を使用し
た弾性係数の逆解析プログラムLMBSが発表されてお
り、これに、更にセンサの感度を重みとした係数を取り
入れた評価関数を次式(11)に示す。
As a method of estimating the elastic coefficient of each layer in a multilayer structure, a method is known in which the difference between the measured bending and the calculated bending obtained by the multilayer elastic calculation is minimized. This method first sets the elastic coefficient, Poisson's ratio, etc. of each layer,
Calculate the deflection. Compare the calculated deflection and the measured deflection, and if the difference between the two is larger than the specified error range, or if the value of the evaluation function set for the judgment of convergence is larger than the set value, the difference between the two is reduced. This is a method in which the elastic coefficient is modified and the calculation of deflection is repeated. In addition, an elastic coefficient inverse analysis program LMBS, which uses the modified Gauss-Newton method for the optimization method using the least squares method, has been announced. Is shown in the following equation (11).

【0031】[0031]

【式11】 [Formula 11]

【0032】舗装各層の弾性係数の逆解析は、現在まで
ノモグラフによる方法やパターンサーチ法、最小二乗法
等により行われている。最小二乗法による解析の場合、
入力する弾性係数の初期値によっては解が収束するまで
の計算回数が多かったり、場合によっては解が発散する
こともある。そこで、図20に示す舗装構造を基準に
し、逆解析プログラムの初期値として入力する弾性係数
を次のように求めることができる。即ち、逆解析プログ
ラムの初期値として入力する弾性係数の値は、全く未知
な値をランダムに選んで与えるのではなく、妥当と考え
られる範囲の値を選定しなければならない。そこで、撓
み評価指標を用いて、弾性係数の初期値をさらに絞り込
むことにより上記弾性係数を導くことができる。弾性係
数の一致度を表す撓みの残差を式(11)で評価すると良好
な結果が得られる。
Inverse analysis of the elastic modulus of each pavement layer has been performed up to now by a method using a nomograph, a pattern search method, a least squares method, or the like. In case of least squares analysis,
Depending on the initial value of the elastic coefficient to be input, the number of calculations until the solution converges may be large, or the solution may diverge in some cases. Therefore, with the pavement structure shown in FIG. 20 as a reference, the elastic coefficient input as the initial value of the inverse analysis program can be obtained as follows. That is, as the value of the elastic coefficient input as the initial value of the inverse analysis program, a completely unknown value should not be randomly selected, but a value within a range considered to be appropriate must be selected. Therefore, the elastic coefficient can be derived by further narrowing down the initial value of the elastic coefficient using the bending evaluation index. A good result is obtained by evaluating the flexural residual, which represents the degree of coincidence of the elastic coefficients, using equation (11).

【0033】前述の撓み差Do-D200 より、アスファル
ト混合物の層厚h1 が既知ならば、アスファルト混合物
層の弾性係数E1 を求めることができ、D1500より路床
弾性係数E4を求めることができるので、ここでは路盤
層の弾性係数E2、E3を求めれば舗装各層の弾性係数を
求めることができる。そこで、約 300地点のFWD測定
値に対して、路盤層の弾性係数E2、E3をそれぞれ目的
変数とし、路盤層以外の弾性係数E・層厚h・各センサ
の撓みD・各センサ間の撓み差を従属変数として重回帰
分析を行うことにより次式の重回帰式(12)が得られる。
なお、この場合、アスコン層の厚さにより路盤層に発生
するひずみレベルが異なるため、路盤層の弾性係数E
2、E3は、アスコン層の層厚h1 ごとに重回帰式を検討
し、上層路盤に粒状路盤を用いている場合とアスファル
ト安定処理を行っている場合のそれぞれについて検討し
た。 Ei=f(E1,E4,hi,Di,Di−Dj) (12) ここで、Eiは路盤層の弾性係数(i=2,3)(MPa)、E1はア
スファルト混合物層の弾性係数(MPa)、E4は路床の弾性
係数(MPa)、hiは各層の層厚(i=1〜3)(m)、Diは各位置
の撓み(μm)、Di−Djは撓み差(μm)である。
If the layer thickness h1 of the asphalt mixture is known from the above-mentioned deflection difference Do-D200, the elastic modulus E1 of the asphalt mixture layer can be obtained, and the roadbed elastic modulus E4 can be obtained from D1500. Here, if the elastic coefficients E2 and E3 of the roadbed layer are calculated, the elastic coefficient of each pavement layer can be calculated. Therefore, with respect to the FWD measurement values at about 300 points, the elastic coefficients E2 and E3 of the roadbed layer are used as the target variables, and the elastic modulus E other than the roadbed layer, layer thickness h, deflection of each sensor D, deflection between each sensor By performing multiple regression analysis using the difference as the dependent variable, the following multiple regression equation (12) is obtained.
In this case, since the strain level generated in the roadbed layer varies depending on the thickness of the ascon layer, the elastic modulus E of the roadbed layer E
For 2 and E3, the multiple regression equation was examined for each layer thickness h1 of the ascon layer, and the case of using the granular roadbed for the upper layer and the case of performing the asphalt stabilization treatment were examined. Ei = f (E1, E4, hi, Di, Di-Dj) (12) where Ei is the elastic modulus (i = 2,3) (MPa) of the roadbed layer, and E1 is the elastic modulus (MPa of the asphalt mixture layer. ), E4 is the elastic modulus of the roadbed (MPa), hi is the layer thickness of each layer (i = 1 to 3) (m), Di is the deflection at each position (μm), and Di-Dj is the deflection difference (μm). is there.

【0034】上層路盤が粒状砕石(Unbound Base)の場合
の重回帰係数を表2に示し、上層路盤がアスファルト安
定処理(Bound Base)の場合の重回帰係数を表3に示す。
表中の数値は、各従属変数の値を平均値で除算して正規
化した偏回帰係数を示す。表よりE2、E3の算定におい
て、アスファルト混合物の厚さによって偏回帰係数が大
きい変数が異なり、混合物層が厚いほど載荷点から離れ
た位置の撓みや撓み差が重要であることが分かる。
Table 2 shows the multiple regression coefficients when the upper roadbed is granular crushed stone (Unbound Base), and Table 3 shows the multiple regression coefficients when the upper roadbed is asphalt stabilization (Bound Base).
Numerical values in the table indicate partial regression coefficients obtained by dividing the values of each dependent variable by the average value and normalizing. From the table, it can be seen that in the calculation of E2 and E3, the variable having a large partial regression coefficient differs depending on the thickness of the asphalt mixture, and the thicker the mixture layer, the more important the deflection and the difference in deflection at the position away from the loading point.

【0035】[0035]

【表2】 [Table 2]

【0036】[0036]

【表3】 [Table 3]

【0037】アスファルト混合物の弾性係数を6000(MP
a)、再生CAE路盤の弾性係数を2000(MPa)、切込砕石の
弾性係数を150(MPa)とし、これを弾性係数の初期値に
した場合と上記回帰式(12)で求めた値を初期値にした場
合の比較を図21に示す。この図より、撓みに基づく回
帰推定値を弾性係数の初期値に用いた方が初期値の残差
平方和(RMS)が小さく収束にいたる回数が少なく、従
って、上記回帰式(12)によれば短時間に舗装各層の弾性
係数を算定できることが分かる。
The asphalt mixture has a modulus of elasticity of 6000 (MP
a), the elastic coefficient of recycled CAE roadbed is 2000 (MPa), the elastic coefficient of cut crushed stone is 150 (MPa), and the initial value of elastic coefficient and the value obtained by the above regression equation (12) FIG. 21 shows a comparison when the initial values are set. From this figure, when the regression estimated value based on the deflection is used as the initial value of the elastic coefficient, the residual sum of squares (RMS) of the initial value is small and the number of times of convergence is small. Therefore, according to the above regression equation (12), It can be seen that the elastic modulus of each pavement layer can be calculated in a short time.

【0038】[0038]

【発明の効果】本発明の補修方法によれば、アスコン層
の撓み量と撓み差に基づく残存強度と路床弾性係数によ
って補修の程度を容易に判別でき、最適な補修工事を迅
速に実施することができる。また、アスコン層の弾性係
数を温度補正することにより一層精度よく補修工法を選
定することができる。
According to the repair method of the present invention, the extent of repair can be easily determined by the residual strength and the roadbed elastic coefficient based on the flexure amount and flexure difference of the Ascon layer, and the optimum repair work can be carried out quickly. be able to. Further, the repairing method can be selected with higher accuracy by correcting the elastic coefficient of the ascon layer with temperature.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の補修方法の実施手順を示すフローチャ
ート
FIG. 1 is a flowchart showing a procedure for carrying out a repair method of the present invention.

【図2】FWD装置による測定系の概念図FIG. 2 is a conceptual diagram of a measurement system using an FWD device.

【図3】(A)は温度測定用舗装体の模式断面図、
(B)は熱電対の配置図
FIG. 3A is a schematic cross-sectional view of a pavement for temperature measurement,
(B) Layout of thermocouple

【図4】1日のアスコン層内の温度分布図[Figure 4] Temperature distribution map in the Ascon layer for 1 day

【図5】月別のアスコン層内の温度分布図[Figure 5] Monthly temperature distribution map in the Ascon layer

【図6】1日のアスコン層内の温度変化図[Fig.6] Temperature change diagram in the Ascon layer for 1 day

【図7】アスコン層内の算定温度と平均温度の比較グラ
[Figure 7] Comparison graph of calculated temperature and average temperature in Ascon layer

【図8】アスコン層の平均温度と弾性係数の関係を示す
グラフ
FIG. 8 is a graph showing the relationship between the average temperature of the ascon layer and the elastic modulus.

【図9】舗装内部の荷重分散と撓み曲線を示す模式説明
FIG. 9 is a schematic explanatory view showing a load distribution and a bending curve inside the pavement.

【図10】載荷点直下の撓み量Doと49kN(5tf)許容載荷
輪数との関係を示すグラフ
FIG. 10 is a graph showing the relationship between the deflection amount Do immediately below the loading point and the 49kN (5tf) allowable loading wheel number.

【図11】撓み差とアスコン層の層厚と弾性係数の積と
の関係を示すグラフ
FIG. 11 is a graph showing the relationship between the difference in deflection, the thickness of the Ascon layer, and the product of the elastic modulus.

【図12】撓み差と等値換算厚の関係を示すグラフFIG. 12 is a graph showing the relationship between the deflection difference and the equivalent thickness.

【図13】D1500の撓み量と路床弾性係数Exの関係を
示すグラフ
FIG. 13 is a graph showing the relationship between the amount of flexure of D1500 and the roadbed elastic modulus Ex.

【図14】補修工法選定座標[Fig. 14] Repair method selection coordinates

【図15】交通量Aの補修工法選定座標[Fig.15] Repair method selection coordinates for traffic A

【図16】交通量Bの補修工法選定座標[Fig. 16] Repair method selection coordinates for traffic volume B

【図17】交通量Cの補修工法選定座標Fig. 17 Coordinates for selecting repair method for traffic volume C

【図18】交通量Dの補修工法選定座標[Fig. 18] Repair method selection coordinates for traffic volume D

【図19】補修工法選定の実測座標FIG. 19: Actual measurement coordinates for repair method selection

【図20】舗装の4層構造を示す模式図FIG. 20 is a schematic diagram showing a four-layer structure of pavement.

【図21】算定式に基づく弾性係数の初期値と基準値を
用いたときの収束回数の比較グラフ
FIG. 21 is a comparison graph of the number of convergences when the initial value of the elastic coefficient based on the calculation formula and the reference value are used.

【符号の説明】 10−路面 11−載荷板 12−錘重 13−圧力ゲージ 14−撓みセンサー 31−舗装体 32−熱電対[Explanation of Codes] 10-Road Surface 11-Loading Plate 12-Weight 13-Pressure Gauge 14-Bend Sensor 31-Pavement 32-Thermocouple

───────────────────────────────────────────────────── フロントページの続き (72)発明者 丸山 暉彦 新潟県長岡市上富岡町1603−1 長岡技術 科学大学内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Akihiko Maruyama 1603-1 Kamitomioka-cho, Nagaoka-shi, Niigata Nagaoka University of Technology

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 (イ)次式(1)に従いアスファルト混合物層
の撓み差から残存強度TAOを求め、 TAO=−28.5 log(Do−Dx)+11.1 (1) ここで、TAO は載荷点から距離x離れた位置の残存強
度、 Do は載荷点の撓み量、 Dx は載荷点から距離x離れた位置の撓み量、 (ロ)次式(2)に従いアスファルト混合物層の撓み量から路
床弾性係数Exを求め、 Ex=10/Dx (2) ここで、Ex は載荷点から距離x離れた位置の路床弾性
係数、 Dx は上記のとおり、 (ハ)アスファルト混合物層の残存強度TAOと路床弾性係
数Exを座標軸とする平面座標において、残存強度TAO
と路床弾性係数Ex の実測値が占める位置に基づいて、
路床改良、アスファルト混合物層の打換え、オーバーレ
イまたは部分補修の選定を行なうことを特徴とするアス
ファルト舗装体の補修方法。
(A) The residual strength TAO is calculated from the deflection difference of the asphalt mixture layer according to the following formula (1), and TAO = -28.5 log (Do-Dx) +11.1 (1) where TAO is the loading point. Residual strength at a distance x from, Do is the deflection at the loading point, Dx is the deflection at a distance x from the loading point, (b) From the deflection of the asphalt mixture layer according to the following equation (2), The elastic modulus Ex is calculated as follows: Ex = 10 / Dx (2) where Ex is the roadbed elastic modulus at a distance x from the loading point, and Dx is, as described above, (c) the residual strength TAO of the asphalt mixture layer and Residual strength TAO in plane coordinates with the roadbed elastic modulus Ex as the coordinate axis
And the position occupied by the measured value of the roadbed elastic modulus Ex,
A method of repairing an asphalt pavement, which comprises improving a roadbed, replacing an asphalt mixture layer, and selecting overlay or partial repair.
【請求項2】 アスファルト混合物層の残存強度TAOと
路床弾性係数Ex を座標軸とする平面座標が、路床弾性
係数の下限値(L)、 該下限値における上記残存強度TAO
の目標基準値(L1)と設定基準値(L2)、 路床弾性係数の
設定値(S)における上記残存強度TAOの目標基準値(S1)
と設定基準値(S2)によって領域(〓)(〓)(〓)(〓)に区画
されており、 領域(〓)は上記下限値(L)未満の範囲、 領域(〓)は残存強度TAOの設定基準値(L2)と(S2)を結ぶ
座標軸側の範囲および目標基準値(S2)未満の上記設定値
(S)を越えた範囲、 領域(〓)は領域(〓)より外側の範囲であって、残存強度
TAOの目標基準値(L1)と(S1)を結ぶ座標軸側の範囲およ
び 目標基準値(S1)未満の上記設定値(S)を越ええた範
囲、 領域(〓)は領域(〓)より外側の範囲であり、 領域(〓)が路床改良、領域(〓)がアスファルト混合物層
の打換え、領域(〓)がオーバーレイまたは部分補修、領
域(〓)が舗装強度充足の各範囲であり、残存強度TAOと
路床弾性係数Ex の実測値が占める領域の区分に従って
補修工法が選定される請求項1の補修方法。
2. The residual strength TAO of the asphalt mixture layer and the plane coordinates with the roadbed elastic modulus Ex as coordinate axes are the lower limit value (L) of the roadbed elastic coefficient, and the residual strength TAO at the lower limit value.
Target reference value (L1) and setting reference value (L2), target reference value (S1) of the remaining strength TAO at the set value (S) of the roadbed elastic coefficient
It is divided into areas (〓) (〓) (〓) (〓) by the setting reference value (S2), the area (〓) is the range below the lower limit (L) above, and the area (〓) is the residual strength TAO. Range of the coordinate axis connecting the set reference value (L2) and (S2) and the set value above the target reference value (S2)
The range beyond (S), the range (〓) is outside the range (〓), the range on the coordinate axis connecting the target reference value (L1) of residual strength TAO and (S1), and the target reference value ( Area (〓) is outside of area (〓), area (〓) is road improvement, area (〓) is asphalt mixture layer strike Instead, the area (〓) is each area of overlay or partial repair, and the area (〓) is each area of pavement strength fulfillment, and the repair method is selected according to the division of the area occupied by the measured values of the residual strength TAO and the roadbed elastic coefficient Ex. The repair method according to claim 1.
【請求項3】次式(3)に従いアスファルト混合物層の平
均温度Taveを求め、 Tave=(aTsu+bTair+c)αZβ (3) ここで、Taveは任意の層厚の平均温度、 Tsuは路面温度、Tairは気温、 a,b,c,α,βは補正係数、 上記平均温度Taveに基づき次式(4)に従って標準温度に
おけるアスファルト混合物層の弾性係数の温度補正を行
い、 Est=Eave×10[-0.0184x(20-Tave)] (4) ここで、Estは標準温度における弾性係数、 Eaveは平均温度における弾性係数、Taveは上記のとお
り、 上記温度補正された弾性係数に基づいて求めたアスファ
ルト混合物層の撓み差を用いる請求項1の補修方法。
3. An average temperature Tave of the asphalt mixture layer is calculated according to the following equation (3), and Tave = (aTsu + bTair + c) αZβ (3) where Tave is an average temperature of an arbitrary layer thickness, Tsu is a road surface temperature, and Tair is Temperature, a, b, c, α, β are correction coefficients, and the elastic coefficient of the asphalt mixture layer at the standard temperature is temperature-corrected according to the following equation (4) based on the above-mentioned average temperature Tave, and Est = Eave × 10 [-0.0184 x (20-Tave)] (4) Here, Est is the elastic coefficient at the standard temperature, Eave is the elastic coefficient at the average temperature, and Tave is the asphalt mixture layer obtained based on the temperature-corrected elastic coefficient as described above. The repair method according to claim 1, wherein the flexure difference is used.
【請求項4】 アスファルト混合物層の残存強度TAOと
路床弾性係数Exを座標軸とする平面座標において、路
床弾性係数の下限値(L)、 該下限値における上記残存強
度TAOの目標基準値(L1)と設定基準値(L2)、路床弾性係
数の設定値(S)における上記残存強度TAOの目標基準値
(S1)と設定基準値(S2)が交通量に応じて定められる請求
項1の補修方法。
4. The lower limit (L) of the roadbed elastic modulus in a plane coordinate system having the residual strength TAO of the asphalt mixture layer and the roadbed elastic coefficient Ex as coordinate axes, and a target reference value of the remaining strength TAO at the lower limit (L). L1) and the set reference value (L2), the target reference value of the above remaining strength TAO at the set value (S) of the roadbed elastic coefficient
The repair method according to claim 1, wherein (S1) and the set reference value (S2) are determined according to the traffic volume.
JP22107394A 1994-08-22 1994-08-22 Repairing method for asphalt pavement Pending JPH0860611A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22107394A JPH0860611A (en) 1994-08-22 1994-08-22 Repairing method for asphalt pavement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22107394A JPH0860611A (en) 1994-08-22 1994-08-22 Repairing method for asphalt pavement

Publications (1)

Publication Number Publication Date
JPH0860611A true JPH0860611A (en) 1996-03-05

Family

ID=16761069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22107394A Pending JPH0860611A (en) 1994-08-22 1994-08-22 Repairing method for asphalt pavement

Country Status (1)

Country Link
JP (1) JPH0860611A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015176534A (en) * 2014-03-18 2015-10-05 富士通株式会社 Extraction method, recommendation method, information processor and road repair method determination support method
CN110348153A (en) * 2019-07-17 2019-10-18 上海市城市建设设计研究总院(集团)有限公司 A kind of composite pavement damage method of discrimination
CN110362930A (en) * 2019-07-17 2019-10-22 上海市城市建设设计研究总院(集团)有限公司 A kind of Asphalt Pavement Base damage method of discrimination based on deflection basin parameter
JP2019207135A (en) * 2018-05-29 2019-12-05 日本電気株式会社 Elastic modulus estimation device, elastic modulus estimation method, and program
FR3100550A1 (en) * 2019-09-11 2021-03-12 Eurovia Maintenance process for a road equipped with a measuring system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015176534A (en) * 2014-03-18 2015-10-05 富士通株式会社 Extraction method, recommendation method, information processor and road repair method determination support method
JP2019207135A (en) * 2018-05-29 2019-12-05 日本電気株式会社 Elastic modulus estimation device, elastic modulus estimation method, and program
CN110348153A (en) * 2019-07-17 2019-10-18 上海市城市建设设计研究总院(集团)有限公司 A kind of composite pavement damage method of discrimination
CN110362930A (en) * 2019-07-17 2019-10-22 上海市城市建设设计研究总院(集团)有限公司 A kind of Asphalt Pavement Base damage method of discrimination based on deflection basin parameter
CN110348153B (en) * 2019-07-17 2023-10-17 上海市城市建设设计研究总院(集团)有限公司 Composite pavement damage judging method
FR3100550A1 (en) * 2019-09-11 2021-03-12 Eurovia Maintenance process for a road equipped with a measuring system

Similar Documents

Publication Publication Date Title
US8892367B2 (en) Determination of subgrade modulus and stiffness of pavement layers for measurement of bearing capacity under fast moving wheel load
Xu et al. New relationships between falling weight deflectometer deflections and asphalt pavement layer condition indicators
Sebaaly et al. Nevada's approach to pavement management
Kim et al. Use of falling weight deflectometer multi-load data for pavement strength estimation
Zhang et al. Development of a new methodology for characterizing pavement structural condition for network-level applications
Garg et al. Accelerated pavement testing of perpetual pavement test sections under heavy aircraft loading at FAA’s national airport pavement test facility
Harvey et al. CAL/APT Program: Test Results from Accelerated Pavement Test on Pavement Structure Containing Asphalt Treated Permeable Base (ATPB) Section 500RF
JPH0860611A (en) Repairing method for asphalt pavement
Xu et al. New condition assessment procedure for asphalt pavement layers, using falling weight deflectometer deflections
Loganathan et al. Development of comprehensive deflection parameters to evaluate the structural capacity of flexible pavements at the network level
Bemanian et al. Cost-effective rehabilitation of portland cement concrete pavement in Nevada
Jones et al. Reflective cracking study: Summary report
Harvey et al. CAL/APT PROGRAM: TEST RESULTS FROM ACCELERATED PAVEMENT TEST ON PAVEMENT STRUCTURE CONTAINING UNTREATED AGGREGATE BASE (AB)—SECTION 501RF
Sargand et al. Incorporating chemical stabilization of the subgrade in pavement design and construction practices
Shahid Maintenance management of pavements for expressways in Malaysia
Souliman et al. Simplified approach for structural evaluation of flexible pavements at the network level
Gopalakrishnan et al. Non‐destructive evaluation of in‐place rehabilitated concrete pavements
Harvey et al. CAL/APT Program: Test Results from Accelerated Pavement Test on Pavement Structure Containing Aggregate Base (AB)--Section 501RF
Pierce et al. Asphalt concrete overlay design case studies
Sebaaly et al. Evaluating structural damage of flexible pavements using cracking and falling weight deflectometer data
Wu et al. Research implementation of AASHTOWare pavement ME design in louisiana
Hall¹ et al. Improved methods for asphalt-overlaid concrete pavement backcalculation and evaluation
Titi et al. Influence of aggregate base layer variability on pavement performance
ahoney et al. Examination of Washington state department of transportation transfer functions for mechanistic-empirical asphalt concrete overlay design
Jones et al. First-Level Analysis of Heavy Vehicle Simulator Testing on Three RHMA-G Mixes to Investigate Performance with Reclaimed Asphalt Pavement Aggregate Replacement

Legal Events

Date Code Title Description
A02 Decision of refusal

Effective date: 20040817

Free format text: JAPANESE INTERMEDIATE CODE: A02

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041018

A521 Written amendment

Effective date: 20050307

Free format text: JAPANESE INTERMEDIATE CODE: A523

A521 Written amendment

Effective date: 20050307

Free format text: JAPANESE INTERMEDIATE CODE: A523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050412

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Effective date: 20050422

Free format text: JAPANESE INTERMEDIATE CODE: A911

A912 Removal of reconsideration by examiner before appeal (zenchi)

Effective date: 20050930

Free format text: JAPANESE INTERMEDIATE CODE: A912