JPH0851240A - Multilayer piezoelectric element - Google Patents

Multilayer piezoelectric element

Info

Publication number
JPH0851240A
JPH0851240A JP6185907A JP18590794A JPH0851240A JP H0851240 A JPH0851240 A JP H0851240A JP 6185907 A JP6185907 A JP 6185907A JP 18590794 A JP18590794 A JP 18590794A JP H0851240 A JPH0851240 A JP H0851240A
Authority
JP
Japan
Prior art keywords
conductive
piezoelectric element
insulating layer
internal electrodes
laminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6185907A
Other languages
Japanese (ja)
Inventor
Yasuisa Kobayashi
靖功 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brother Industries Ltd
Original Assignee
Brother Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brother Industries Ltd filed Critical Brother Industries Ltd
Priority to JP6185907A priority Critical patent/JPH0851240A/en
Publication of JPH0851240A publication Critical patent/JPH0851240A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • H10N30/872Interconnections, e.g. connection electrodes of multilayer piezoelectric or electrostrictive devices

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PURPOSE:To provide a multilayer piezoelectric element wherein its internal electrodes are connected surely every two layers with its external electrode, and defective conduction and defective insulation can be prevented. CONSTITUTION:A conductive protrusive part 16 is formed in the end part of an internal electrode 12 exposed every two layers to the side surface of a multilayer piezoelectric element wherein piezoelectric materials and the internal electrodes are superimposed on each other alternately. Further, an insulation layer 18 made of a thermosetting resin or ultraviolet-rays-setting resin is so formed as to be applied to all the piezoelectric materials in the stacking direction of the piezoelectric element. This insulation layer 18 comprises a set part present in the part opposed to the conductive protrusive part 16 and an unhardened part present in the part sandwiched between the conductive protrusive parts 16. Then, a conductive film 13 is thermo-compression-bonded to the insulation layer 18. Thereby, conductive particles 17 included in the conductive film 13 are contacted with a copper foil 15 to be changed into the external electrode of the piezoelectric element. Concurrently, the conductive particles 17 break through the unhardened part, and as a result, the internal electrodes 12 present every two layers are connected electrically with the copper foil 15 via the conductive film 13 and the insulation layer 18.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、圧電材料の薄膜を多枚
数積層し、電圧を印加することにより縦方向の変位を得
る積層型圧電素子に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laminated piezoelectric element in which a plurality of thin films of piezoelectric material are laminated and a longitudinal displacement can be obtained by applying a voltage.

【0002】[0002]

【従来の技術】従来、積層型圧電素子を製造する場合、
圧電シートの全面に電極を印刷して積層する方法が一般
的となっている。このような構造の場合、内部電極を一
層置きに電気的に接続する必要がある。その一例とし
て、図8及び図9に示すような方法が考えられている。
2. Description of the Related Art Conventionally, when manufacturing a laminated piezoelectric element,
A general method is to print electrodes on the entire surface of the piezoelectric sheet and stack the electrodes. In the case of such a structure, it is necessary to electrically connect every other internal electrode. As an example thereof, a method as shown in FIGS. 8 and 9 is considered.

【0003】まず、図8(a)に示すように、内部電極
72が印刷された膜状の圧電材料71を一層置きに内部
電極72の端部が露出するように積層し、焼結して焼結
体70を形成する。そして、内部電極72の端部が一層
置きに露出している側面に仮の外部電極73、74を塗
布し、その仮の外部電極73を陰極として電気メッキを
行うと、図8(b)に示すように、電気メッキ法による
導電性凸部75が一層置きに形成された状態となる。
First, as shown in FIG. 8A, film-shaped piezoelectric materials 71 on which internal electrodes 72 are printed are laminated every other layer so that the end portions of the internal electrodes 72 are exposed, and sintered. The sintered body 70 is formed. Then, temporary external electrodes 73 and 74 are applied to the side surfaces where the end portions of the internal electrodes 72 are exposed every other layer, and electroplating is performed using the temporary external electrodes 73 as a cathode. As shown, the conductive protrusions 75 formed by the electroplating method are formed in alternate layers.

【0004】以下、焼結体70の縦断面図で説明する。
図9(a)に示すように、導電性凸部75及び内部電極
72の端部に電着塗装法等により樹脂成分76を電着さ
せ、150℃前後で焼き付けすると、図9(b)に示す
ように、樹脂成分が溶融後、硬化して絶縁層77が形成
される。
The sintered body 70 will be described below with reference to a vertical sectional view.
As shown in FIG. 9A, the resin component 76 is electrodeposited on the end portions of the conductive protrusions 75 and the internal electrodes 72 by an electrodeposition coating method or the like, and baked at around 150 ° C. As shown, the resin component is melted and then cured to form the insulating layer 77.

【0005】一方、図9(c)に示すように、熱圧着が
可能で、且つ加圧部分のみ一方向への導電性を持ち、導
電性粒子80を含有した異方性導電膜78と、外部電極
となる銅箔79とを貼り合わせたものを用意し、図9
(d)に示すように、熱圧着すると、異方性導電膜78
は導電性凸部75と対向した部分のみが他の部分より高
い圧力で部分的に加圧されることになり、その結果、高
い圧力で加圧された部分の導電性粒子80が絶縁層77
を突き破り、導電性凸部75及び銅箔79と接触するこ
とになり、外部電極となる銅箔79、導電性凸部75及
び内部電極72が一層置きに電気的に接続される。
On the other hand, as shown in FIG. 9 (c), an anisotropic conductive film 78 which is capable of thermocompression bonding and has conductivity in one direction only in the pressed portion and contains conductive particles 80, A copper foil 79, which will be the external electrode, is prepared and attached, and FIG.
As shown in (d), when thermocompression-bonded, the anisotropic conductive film 78 is formed.
Is only partially pressed with a higher pressure than the other parts, so that the conductive particles 80 in the part pressed with a high pressure are insulated from the insulating layer 77.
Through, and comes into contact with the conductive protrusions 75 and the copper foil 79, and the copper foil 79 serving as an external electrode, the conductive protrusions 75, and the internal electrodes 72 are electrically connected every other layer.

【0006】同様の方法で、反対側の側面で層をずらし
て一層置きの内部電極と銅箔とを接続した焼結体70
は、リード線の取り付け、樹脂外装及び分極処理等の工
程を経て完成品となる。
[0006] In the same manner, the sintered body 70 in which the internal electrodes and the copper foil, which are one layer apart, are connected by shifting the layers on the opposite side surface,
Is a finished product after undergoing steps such as lead wire attachment, resin coating, and polarization treatment.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記の
ような積層型圧電素子の製造工程において、導電性凸部
75は、幅5〜10μmの内部電極72の端部に電気メ
ッキ法で形成されるために、電気メッキ法の性質上、内
部電極の幅よりもはるかに広い幅で形成されてしまう。
その結果、内部電極72の端部の露出の程度及び導電性
凸部75の広がりの程度によっては、導電性凸部75が
両側に隣接する内部電極72と接触して電気的にショー
トしたり、あるいは、導電性凸部75の高さが不揃いに
なりやすくなるため、後工程での異方性導電膜78の熱
圧着の際に電気的な接続が不完全になるといった問題点
があった。
However, in the manufacturing process of the laminated piezoelectric element as described above, the conductive convex portion 75 is formed on the end portion of the internal electrode 72 having a width of 5 to 10 μm by the electroplating method. Therefore, due to the nature of the electroplating method, it is formed with a width much wider than the width of the internal electrodes.
As a result, depending on the degree of exposure of the end of the internal electrode 72 and the extent of expansion of the conductive convex portion 75, the conductive convex portion 75 may contact the internal electrodes 72 adjacent on both sides to electrically short-circuit, Alternatively, since the heights of the conductive protrusions 75 are likely to be uneven, there is a problem that electrical connection becomes incomplete during thermocompression bonding of the anisotropic conductive film 78 in a later step.

【0008】本発明は、上述した問題点を解決するため
になされたものであり、内部電極と外部電極とを一層お
きに確実に接続し、導通不良や絶縁不良を防止すること
ができる積層型圧電素子を提供することを目的としてい
る。
The present invention has been made in order to solve the above-mentioned problems, and is a laminated type capable of reliably connecting the internal electrodes and the external electrodes every other layer to prevent defective conduction and defective insulation. The purpose is to provide a piezoelectric element.

【0009】[0009]

【課題を解決するための手段】この目的を達成するため
に本発明の積層型圧電素子は、圧電材料と内部電極とが
交互に積層された積層体の側面に露出する一層置きの内
部電極の端部に形成された導電性凸部と、前記導電性凸
部が形成された積層体の前記側面の全体を覆う絶縁層
と、その絶縁層上に連続して形成されると共に、前記導
電性凸部を介して一層置きの内部電極と電気的に接続さ
れる外部電極とを備えた積層型圧電素子において、前記
導電性凸部に対応する前記絶縁層の部分を未硬化部によ
って構成すると共に、前記導電性凸部間の部分に対応す
る前記絶縁層の部分を硬化部によって構成している。
In order to achieve this object, a laminated piezoelectric element of the present invention comprises a layered internal electrode exposed on a side surface of a laminated body in which piezoelectric materials and internal electrodes are alternately laminated. A conductive convex portion formed at an end portion, an insulating layer that covers the entire side surface of the laminated body on which the conductive convex portion is formed, and the conductive layer that is continuously formed on the insulating layer In a laminated piezoelectric element including an internal electrode and a external electrode electrically connected to each other through a convex portion, a portion of the insulating layer corresponding to the conductive convex portion is formed by an uncured portion. A portion of the insulating layer corresponding to a portion between the conductive convex portions is formed by a hardened portion.

【0010】また、前記絶縁層を、高エネルギー線を放
射することによって硬化する熱硬化性樹脂、あるいは紫
外線硬化性樹脂によって構成することが望ましい。
Further, it is desirable that the insulating layer is made of a thermosetting resin which is cured by radiating a high energy ray or an ultraviolet curable resin.

【0011】[0011]

【作用】上記の構成を有する本発明の積層型圧電素子
は、前記導電性凸部に対応する前記絶縁層の部分を未硬
化部によって構成すると共に、前記導電性凸部間の部分
に対応する前記絶縁層の部分を硬化部によって構成して
いるので、一層置きの内部電極と外部電極とを確実に接
続することができ、導通不良や絶縁不良を防止すること
ができる。
In the laminated piezoelectric element of the present invention having the above-mentioned structure, the portion of the insulating layer corresponding to the conductive convex portion is constituted by the uncured portion and corresponds to the portion between the conductive convex portions. Since the portion of the insulating layer is constituted by the hardened portion, it is possible to reliably connect the internal electrode and the external electrode, which are placed in a single layer, and prevent conduction failure and insulation failure.

【0012】[0012]

【実施例】以下に、本発明の積層型圧電素子を具体化し
た実施例を図面を参照して説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments embodying the laminated piezoelectric element of the present invention will be described below with reference to the drawings.

【0013】図1に、本実施例の積層型圧電素子の断面
図を示す。膜状の圧電材料11と内部電極12とが交互
に重なる積層体の側面において、一層置きの内部電極1
2の端部に導電性凸部16が形成されている。さらに、
絶縁層18が素子の積層方向に全ての圧電材料11にか
かるように形成され、その上から導電性粒子17を含む
導電膜13が熱圧着されている。導電性粒子17は、絶
縁膜18を突き破り導電性凸部16と接触し、導電性凸
部16は、導電膜13を介して外部電極となる銅箔15
に電気的に接続されている。
FIG. 1 is a sectional view of the laminated piezoelectric element of this embodiment. On the side surface of the laminated body in which the film-shaped piezoelectric material 11 and the internal electrode 12 are alternately stacked, the internal electrode 1 having one layer is placed.
A conductive convex portion 16 is formed at the end of No. 2. further,
The insulating layer 18 is formed so as to cover all the piezoelectric materials 11 in the stacking direction of the device, and the conductive film 13 including the conductive particles 17 is thermocompression bonded thereon. The conductive particles 17 penetrate the insulating film 18 and come into contact with the conductive protrusions 16, and the conductive protrusions 16 serve as external electrodes via the conductive film 13 and serve as the copper foil 15.
Electrically connected to.

【0014】次に、図1に示される積層型圧電素子の製
造方法を図2〜図7を参照して説明する。
Next, a method of manufacturing the laminated piezoelectric element shown in FIG. 1 will be described with reference to FIGS.

【0015】まず、PZT(チタン酸ジルコン酸鉛)を
主成分とする圧電材料を所望の組成に混合した後、85
0℃で仮焼成した粉末に適量のバインダーと微量の可塑
材及び消泡剤を添加し、有機溶媒中に分散させスラリー
状にする。このスラリーをドクターブレード法により所
定の厚さに成形しグリーンシートとする。このグリーン
シート上に内部電極12としてPd(パラジウム)ペー
ストをスクリーン印刷し、所定寸法に打ち抜いたものを
所定枚数積層し、熱プレスにより一体化する。脱脂後、
約1200℃で焼結を行い、図2に示すように、内部電
極12が一層置きに露出するような位置で切断した焼結
体21に、仮の外部電極22及び23としてAgペース
ト等の導電ペーストを塗布焼き付けし、さらに、別の一
対の側面24,25が露出するように切断する。
First, after mixing a piezoelectric material containing PZT (lead zirconate titanate) as a main component to a desired composition, 85
An appropriate amount of binder, a small amount of a plasticizer and a defoaming agent are added to the powder calcined at 0 ° C., and the powder is dispersed in an organic solvent to form a slurry. This slurry is formed into a green sheet by a doctor blade method to a predetermined thickness. A Pd (palladium) paste is screen-printed as the internal electrodes 12 on the green sheet, and a predetermined number of punched products having a predetermined size are stacked and integrated by hot pressing. After degreasing,
Sintering was performed at about 1200 ° C., and as shown in FIG. 2, a sintered body 21 cut at a position where the internal electrodes 12 were exposed at every other layer was used as temporary external electrodes 22 and 23. The paste is applied and baked, and further cut so that another pair of side surfaces 24 and 25 are exposed.

【0016】次に、焼結体21の一方の側面24におい
て、導電性凸部16を形成する以外の部分をテープでマ
スキングする。即ち、仮の外部電極22,23を塗布し
た面に、リード線取り付け部分を除いてマスキングテー
プを貼り、さらに、他方の側面25全体にもマスキング
テープを貼る。
Next, on one side surface 24 of the sintered body 21, the portion other than the area where the conductive protrusion 16 is formed is masked with a tape. That is, a masking tape is applied to the surface on which the temporary external electrodes 22 and 23 are applied, except for the lead wire attachment portion, and further the other side surface 25 is also applied with the masking tape.

【0017】そして、仮の外部電極22を陰極として電
気メッキを行うと、図3の断面図に示すように、一層置
きの内部電極12上に導電性凸部16が形成される。こ
の場合の電気メッキは、一般のニッケルメッキで良く、
具体的には、メッキ浴にスルファミン酸ニッケル浴を用
い、仮の外部電極22を陰極として電流密度1〜5A/
dm2で所定時間実施すると、仮の外部電極22につな
がる内部電極12上に導電性凸部16となる電気ニッケ
ルメッキ層が形成される。
Then, when electroplating is performed using the temporary external electrode 22 as a cathode, as shown in the cross-sectional view of FIG. 3, the conductive convex portion 16 is formed on the internal electrode 12 having one layer. Electroplating in this case may be general nickel plating,
Specifically, a nickel sulfamate bath is used as the plating bath, and the current density is 1 to 5 A / with the temporary external electrode 22 as the cathode.
When it is carried out at dm 2 for a predetermined time, an electric nickel plating layer to be the conductive convex portion 16 is formed on the internal electrode 12 connected to the temporary external electrode 22.

【0018】次に、図4に示すように、絶縁層18とし
て、熱硬化性樹脂、あるいは紫外線硬化樹脂を塗布した
後、図5に示すように、絶縁層18の導電性凸部16に
対応させてフォトマスク19を配置し、このフォトマス
ク19を介して、側面24全体に高エネルギー線20を
一様に照射する。その結果、導電性凸部16が形成され
ていない部分の絶縁層18は、直接的に高エネルギー線
20を受けることにより完全に硬化し、絶縁層18の硬
化部18aとなり、また、絶縁層18の導電性凸部16
に対応する部分は、フォトマスク19により遮光される
ため硬化せず、絶縁層18の未硬化部18bとなる。
Next, as shown in FIG. 4, a thermosetting resin or an ultraviolet curable resin is applied as the insulating layer 18, and then the conductive convex portion 16 of the insulating layer 18 is applied as shown in FIG. Then, the photomask 19 is arranged, and the high-energy ray 20 is uniformly irradiated to the entire side surface 24 through the photomask 19. As a result, the insulating layer 18 in the portion where the conductive convex portion 16 is not formed is completely cured by directly receiving the high energy beam 20, and becomes the cured portion 18a of the insulating layer 18, and the insulating layer 18 is also formed. Conductive protrusion 16
The portion corresponding to is not cured because it is shielded by the photomask 19 and becomes the uncured portion 18b of the insulating layer 18.

【0019】尚、高エネルギー線20としては、炭酸ガ
スレーザー、YAGレーザー、エキシマレーザー等のレ
ーザー光を用いることが望ましい。
As the high energy ray 20, it is desirable to use a laser beam such as a carbon dioxide gas laser, a YAG laser or an excimer laser.

【0020】そして、前記熱硬化性樹脂には、エポキシ
樹脂、フェノール樹脂及びジアリルフタレート等を用
い、前記紫外線硬化樹脂には、アクリル系のポリエステ
ルアクリレート、エポキシアクリレート及びウレタンア
クリレート等が用いる。
Epoxy resin, phenol resin, diallyl phthalate, etc. are used for the thermosetting resin, and acrylic polyester acrylate, epoxy acrylate, urethane acrylate, etc. are used for the ultraviolet curing resin.

【0021】さらに、前記焼結体21とは別に、図6に
示すような、粒径20〜50μm程度の銅粉末等から成
る導電性粒子17を含有したエポキシ系樹脂接着剤を、
外部電極となる銅箔15上に50μm程度の厚さで均一
に塗布、加熱して半硬化状態とした導電膜13を用意し
ておく。これを導電性凸部16及び絶縁層18が形成さ
れた焼結体21の側面24と同程度の大きさに切断し、
側面24上に仮止めする。
Separately from the sintered body 21, an epoxy resin adhesive containing conductive particles 17 made of copper powder or the like having a particle size of about 20 to 50 μm as shown in FIG.
A conductive film 13 which is semi-cured by applying and heating uniformly on a copper foil 15 to be an external electrode with a thickness of about 50 μm is prepared. This is cut into the same size as the side surface 24 of the sintered body 21 on which the conductive convex portion 16 and the insulating layer 18 are formed,
Temporarily fixed on the side surface 24.

【0022】そして、外部電極となる銅箔15の上方か
ら、150℃に加熱した一対の平面状の加圧用治具(図
示せず)で挟み、適度の荷重をかけて熱圧着する。これ
により、図1に示すように、導電膜13は、導電性凸部
16と対向した部分のみが他の部分よりも高い圧力で部
分的に加圧されるため、その高い圧力で加圧された部分
の導電性粒子17が絶縁層18を突き破り導電性凸部1
6と接触する。特に、導電性凸部16に対応する部分で
ある絶縁層18は、未硬化部18bであるため、わずか
な加圧力で、容易に、導電性粒子17と導電性凸部16
とが接触し、電気的接続がなされる。逆に、絶縁層18
の硬化部18aは、完全に硬化しているため、極めて大
きな加圧力がかからない限り硬化部18aが破壊される
ことがなく、電気的絶縁が保たれる。また、熱圧着時の
加熱により、硬化部18aは、電気的に接続された状態
で完全に硬化する。
Then, the copper foil 15 serving as an external electrode is sandwiched from above by a pair of flat pressing jigs (not shown) heated to 150 ° C., and an appropriate load is applied to perform thermocompression bonding. As a result, as shown in FIG. 1, only the portion of the conductive film 13 facing the conductive convex portion 16 is partially pressurized with a higher pressure than the other portions, so that the conductive film 13 is pressurized with the higher pressure. The conductive particles 17 in the open portion break through the insulating layer 18 and the conductive convex portion 1
Contact 6 In particular, since the insulating layer 18, which is a portion corresponding to the conductive convex portion 16, is the uncured portion 18b, the conductive particles 17 and the conductive convex portion 16 can be easily formed with a slight pressure.
And come into contact, and an electrical connection is made. On the contrary, the insulating layer 18
Since the hardened portion 18a is completely hardened, the hardened portion 18a is not destroyed unless an extremely large pressure is applied, and electrical insulation is maintained. Further, by heating during thermocompression bonding, the curing portion 18a is completely cured while being electrically connected.

【0023】その結果、外部電極である銅箔15が導電
膜13を介して導電性凸部16、ひいては内部電極12
と一層置きに電気的に接続される。
As a result, the copper foil 15, which is the external electrode, has the conductive convex portion 16 and the internal electrode 12 via the conductive film 13.
And is electrically connected every other layer.

【0024】一方、導電性凸部16が形成された側面2
4とは反対側の側面で層をずらして同様の処理を行な
う。
On the other hand, the side surface 2 on which the conductive convex portion 16 is formed
The same process is performed by shifting the layers on the side opposite to 4.

【0025】このようにして、互いに反対側の側面で層
をずらして一層置きの内部電極12と銅箔15とを電気
的に接続した焼結体21は、所定の寸法に切断された
後、銅箔15の一部に電力供給用のリード線を取り付
け、樹脂外装及び分極処理を施して完成品となる。
In this way, the sintered body 21 in which the layers of the internal electrodes 12 and the copper foil 15 are electrically connected to each other by shifting the layers on the opposite side surfaces, is cut into a predetermined size, A lead wire for power supply is attached to a part of the copper foil 15, and a resin sheath and polarization treatment are applied to complete the product.

【0026】また、絶縁層18の硬化部18a及び未硬
化部18bを形成するためのその他の方法として、図7
に示すような方法が考えられる。
As another method for forming the hardened portion 18a and the uncured portion 18b of the insulating layer 18, as shown in FIG.
The method shown in can be considered.

【0027】この方法は、絶縁層18として熱硬化性樹
脂、あるいは紫外線硬化性樹脂を塗布した後、導電性凸
部16間の部分に対応する絶縁層18の部分に、ビーム
径を100〜120μmに絞った高エネルギー線20を
照射するものである。
In this method, a thermosetting resin or an ultraviolet curable resin is applied as the insulating layer 18, and then the beam diameter is 100 to 120 μm in the portion of the insulating layer 18 corresponding to the portion between the conductive convex portions 16. The high-energy ray 20 focused on is irradiated.

【0028】その結果、高エネルギー線20の照射を受
けた部分は、完全に硬化し、硬化部18aとなる。一
方、導電性凸部16に対応する絶縁層18の部分は、高
エネルギー線20の照射を受けないため、硬化せず、未
硬化部18bとなる。
As a result, the portion irradiated with the high-energy rays 20 is completely cured and becomes the cured portion 18a. On the other hand, the portion of the insulating layer 18 corresponding to the conductive convex portion 16 is not cured because it is not irradiated with the high energy beam 20, and becomes the uncured portion 18b.

【0029】尚、本発明は上述した実施例に限定される
ものではなく、その主旨を逸脱しない限り種々の変更を
加えることができる。例えば、導電性凸部の形成には、
ニッケルメッキの代わりに、クロムメッキや銅メッキを
用いても良く、また、内部電極の材料には、金、白金、
銀等を用いても良い。さらに、導電性粒子には、ニッケ
ル、カーボン、銀等、様々な粒子を使用することができ
る。また、外部電極として使用する銅箔の一方を、その
まま延ばせばリード線の代用となり、リード線取付け工
程を省略することができる。
The present invention is not limited to the above-mentioned embodiments, and various modifications can be made without departing from the spirit of the invention. For example, to form the conductive protrusion,
Chromium plating or copper plating may be used instead of nickel plating, and gold, platinum, and
You may use silver etc. Further, various particles such as nickel, carbon, and silver can be used as the conductive particles. Further, if one of the copper foils used as the external electrode is extended as it is, it can be used as a substitute for the lead wire, and the lead wire attaching step can be omitted.

【0030】[0030]

【発明の効果】以上説明したことから明らかなように、
本発明の積層型圧電素子によれば、前記導電性凸部に対
応する前記絶縁層の部分を未硬化部によって構成すると
共に、前記導電性凸部間の部分に対応する前記絶縁層の
部分を硬化部によって構成しているので、一層置きの内
部電極と外部電極とを確実に接続することができ、導通
不良や絶縁不良を防止することができる。
As is apparent from the above description,
According to the multilayer piezoelectric element of the present invention, the portion of the insulating layer corresponding to the conductive convex portion is constituted by the uncured portion, and the portion of the insulating layer corresponding to the portion between the conductive convex portions is formed. Since it is composed of the hardened portion, it is possible to reliably connect the internal electrode and the external electrode, which are placed in a single layer, and prevent conduction failure and insulation failure.

【図面の簡単な説明】[Brief description of drawings]

【図1】本実施例の積層型圧電素子の断面図である。FIG. 1 is a cross-sectional view of a laminated piezoelectric element of this example.

【図2】積層焼結体の一部を示す斜視図である。FIG. 2 is a perspective view showing a part of a laminated sintered body.

【図3】導電性凸部が形成された状態を示す断面図であ
る。
FIG. 3 is a cross-sectional view showing a state in which conductive protrusions are formed.

【図4】導電性凸部が形成された積層焼結体上に絶縁層
となる樹脂を塗布した状態を示す断面図である。
FIG. 4 is a cross-sectional view showing a state in which a resin to be an insulating layer is applied on a laminated sintered body on which conductive protrusions are formed.

【図5】硬化部と未硬化部とから成る絶縁層を形成する
方法の説明図である。
FIG. 5 is an explanatory diagram of a method of forming an insulating layer including a cured portion and an uncured portion.

【図6】導電膜と外部電極となる銅箔とを貼り合わせた
状態を示す図である。
FIG. 6 is a diagram showing a state in which a conductive film and a copper foil to be an external electrode are attached.

【図7】硬化部と未硬化部とから成る絶縁層を形成する
方法の説明図である。
FIG. 7 is an explanatory diagram of a method of forming an insulating layer including a hardened portion and an uncured portion.

【図8】従来の積層型圧電素子の製造工程を示す図であ
る。
FIG. 8 is a diagram showing a manufacturing process of a conventional laminated piezoelectric element.

【図9】従来の積層型圧電素子の製造行程を示す図であ
る。
FIG. 9 is a diagram showing a manufacturing process of a conventional laminated piezoelectric element.

【符号の説明】[Explanation of symbols]

11 圧電材料膜 12 内部電極 13 導電膜 15 銅箔 16 導電性凸部 18 絶縁層 18a 硬化部 18b 未硬化部 20 高エネルギー線 11 piezoelectric material film 12 internal electrode 13 conductive film 15 copper foil 16 conductive convex portion 18 insulating layer 18a cured portion 18b uncured portion 20 high energy ray

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 圧電材料と内部電極とが交互に積層され
た積層体の側面に露出する一層置きの内部電極の端部に
形成された導電性凸部と、前記導電性凸部が形成された
積層体の前記側面の全体を覆う絶縁層と、その絶縁層上
に連続して形成されると共に、前記導電性凸部を介して
一層置きの内部電極と電気的に接続される外部電極とを
備えた積層型圧電素子において、 前記導電性凸部に対応する前記絶縁層の部分を未硬化部
によって構成すると共に、前記導電性凸部間の部分に対
応する前記絶縁層の部分を硬化部によって構成したこと
を特徴とする積層型圧電素子。
1. A conductive convex portion formed on an end portion of a one-layer internal electrode exposed on a side surface of a laminated body in which piezoelectric materials and internal electrodes are alternately laminated, and the conductive convex portion are formed. An insulating layer that covers the entire side surface of the stacked body, and an external electrode that is continuously formed on the insulating layer and that is electrically connected to a single-layer internal electrode via the conductive protrusion. In the laminated piezoelectric element including, the portion of the insulating layer corresponding to the conductive convex portion is constituted by an uncured portion, and the portion of the insulating layer corresponding to the portion between the conductive convex portions is a hardened portion. A laminated piezoelectric element characterized by being constituted by:
【請求項2】 前記絶縁層を、高エネルギー線を放射す
ることによって硬化する熱硬化性樹脂、あるいは紫外線
硬化性樹脂によって構成したことを特徴とする請求項1
に記載の積層型圧電素子。
2. The insulating layer is made of a thermosetting resin or an ultraviolet curable resin which is cured by radiating a high energy ray.
The laminated piezoelectric element according to item 1.
JP6185907A 1994-08-08 1994-08-08 Multilayer piezoelectric element Pending JPH0851240A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6185907A JPH0851240A (en) 1994-08-08 1994-08-08 Multilayer piezoelectric element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6185907A JPH0851240A (en) 1994-08-08 1994-08-08 Multilayer piezoelectric element

Publications (1)

Publication Number Publication Date
JPH0851240A true JPH0851240A (en) 1996-02-20

Family

ID=16178975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6185907A Pending JPH0851240A (en) 1994-08-08 1994-08-08 Multilayer piezoelectric element

Country Status (1)

Country Link
JP (1) JPH0851240A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10208417B4 (en) * 2001-02-27 2010-09-02 Kyocera Corp. Laminated piezoelectric device and its use
US20150022055A1 (en) * 2012-02-24 2015-01-22 Epcos Ag Method for Producing an Electric Contact Connection of a Multilayer Component and Multilayer Component with an Electric Contact Connection

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10208417B4 (en) * 2001-02-27 2010-09-02 Kyocera Corp. Laminated piezoelectric device and its use
US20150022055A1 (en) * 2012-02-24 2015-01-22 Epcos Ag Method for Producing an Electric Contact Connection of a Multilayer Component and Multilayer Component with an Electric Contact Connection
US10090454B2 (en) * 2012-02-24 2018-10-02 Epcos Ag Method for producing an electric contact connection of a multilayer component

Similar Documents

Publication Publication Date Title
JP2006203070A (en) Lamination piezoelectric element
JPS6317354B2 (en)
JPH07226541A (en) Multilayered piezoelectric element
JPH0851240A (en) Multilayer piezoelectric element
JPS62211974A (en) Laminated piezoelectric element and manufacture thereof
JPS63142875A (en) Piezoelectric laminated actuator
JPH07283453A (en) Laminated piezoelectric element
JPS59122200A (en) Method for connecting electrically internal electrode of electrostrictive element
JPH07226542A (en) Multilayered piezoelectric element
JPH0832131A (en) Laminated piezolectric element and its manufacture
JP2508314B2 (en) Method for manufacturing laminated piezoelectric element
JPH07162049A (en) Multilayer piezoelectric element
JPH07154006A (en) Multilayer piezoelectric element and fabrication thereof
JPH07283452A (en) Laminated piezoelectric element
JP3237966B2 (en) Multilayer piezoelectric element
JPH07283451A (en) Laminated piezoelectric element
US20240099144A1 (en) Manufacturing method of plane piezoelectric vibration module
JPH07106655A (en) Multilayer piezoelectric element
JPS62133777A (en) Lamination-type piezoelectric element and manufacture thereof
JPH07111346A (en) Laminated type piezoelectric device
JP5205689B2 (en) Multilayer piezoelectric element
JPS60128682A (en) Manufacture of laminating type piezoelectric actuator
JP4373904B2 (en) Multilayer piezoelectric element
JP2024058316A (en) Piezoelectric element
JPH07142780A (en) Manufacture of multilayer piezoelectric device