JPH0836017A - Device for locating failure block of transmission line - Google Patents

Device for locating failure block of transmission line

Info

Publication number
JPH0836017A
JPH0836017A JP17132394A JP17132394A JPH0836017A JP H0836017 A JPH0836017 A JP H0836017A JP 17132394 A JP17132394 A JP 17132394A JP 17132394 A JP17132394 A JP 17132394A JP H0836017 A JPH0836017 A JP H0836017A
Authority
JP
Japan
Prior art keywords
failure
zero
time
transmission line
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP17132394A
Other languages
Japanese (ja)
Inventor
Makoto Hashimoto
誠 橋本
Kazuhiro Hosono
一広 細野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokkaido Electric Power Co Inc
Sumitomo Electric Industries Ltd
Original Assignee
Hokkaido Electric Power Co Inc
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokkaido Electric Power Co Inc, Sumitomo Electric Industries Ltd filed Critical Hokkaido Electric Power Co Inc
Priority to JP17132394A priority Critical patent/JPH0836017A/en
Publication of JPH0836017A publication Critical patent/JPH0836017A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Locating Faults (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

PURPOSE:To provide a device for locating a failure block of a transmission line, which can locate the failure block without using a voltage sensor and which can locate the failure block at the time only when the failure has really occurred. CONSTITUTION:A central device stores values IOA, IOB of the zero phase currents at the time of failure, which are detected by current sensors 34, 35 and failure detecting devices 1, 2, and stores the phase phiOA, phiOB, and the detection time tOA, tOB. A central device 3 stores the failure-generated time tO, when supply of the current to a transmission line 33 is cut by a relay 61, and takes out the detection data dOA, dOB, which include the detection time tOA, tOB near the detected time tO, so as to locate the failure block.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は送電線路の故障区間標
定装置に関し、特に、複数の区間に分割された送電線路
において故障が発生した場合に、その故障が発生した区
間を標定する装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a faulty section locating device for a power transmission line, and more particularly to a device for locating a faulty section when a fault occurs in a power transmission line divided into a plurality of sections.

【0002】[0002]

【従来の技術】従来より、商用電力系統においては送電
線路の故障区間を標定するための故障区間標定装置が設
けられている。従来の故障区間標定装置にあっては、送
電線路を複数の区間に分割する複数の地点のそれぞれに
電圧センサおよび電流センサが設けられ、各地点の零相
電圧および零相電流が検出される。そして、その地点の
零相電圧の位相が零相電流の位相よりも90°進んでい
る場合は故障点はその地点よりも上流側(発電所側)に
あると判断され、逆に、その地点の零相電圧の位相が零
相電流の位相よりも90°遅れている場合は故障点はそ
の地点よりも下流側(需要者側)にあると判断される。
したがって、すべての地点の零相電圧および零相電流を
測定し、両者の位相差を検出することにより、送電線路
のどの区間で故障が発生したかを標定することができ
る。
2. Description of the Related Art Conventionally, in a commercial power system, a failure section locating device for locating a failure section of a transmission line has been provided. In the conventional fault section locating device, a voltage sensor and a current sensor are provided at each of a plurality of points that divide the transmission line into a plurality of sections, and the zero-phase voltage and the zero-phase current at each point are detected. If the phase of the zero-phase voltage at that point leads the phase of the zero-phase current by 90 °, it is determined that the failure point is upstream (power station side) from that point, and conversely, that point. If the phase of the zero-phase voltage of is delayed by 90 ° from the phase of the zero-phase current, it is determined that the failure point is on the downstream side (customer side) of that point.
Therefore, by measuring the zero-phase voltage and the zero-phase current at all points and detecting the phase difference between them, it is possible to locate in which section of the transmission line the fault has occurred.

【0003】しかし、従来の故障区間標定装置において
は、電圧センサが送電線と大地の間の電圧をコンデンサ
の所定の容量と対地容量で分圧した分圧電圧を測定して
いたため、その測定値が天候に左右され不安定であると
いう問題があった。
However, in the conventional fault zone locating device, the voltage sensor measures the divided voltage obtained by dividing the voltage between the transmission line and the ground by the predetermined capacitance of the capacitor and the ground capacitance. There was a problem that was unstable depending on the weather.

【0004】そこで、本願発明者らは、特願平5−06
0217において、電圧センサを必要としない故障区間
標定装置を提案した。図6は、その故障区間標定装置の
構成を示すブロック図である。
Therefore, the inventors of the present application filed Japanese Patent Application No. 5-06.
In 0217, a fault section locator that does not require a voltage sensor was proposed. FIG. 6 is a block diagram showing the configuration of the fault segment location device.

【0005】図6を参照して、この故障区間標定装置
は、上流側の変電所31と下流側の変電所32の間の送
電線路33の2つの地点A,Bにそれぞれ設けられる電
流センサ34,35と、各電流センサ34,35に対応
して設けられる故障検出装置36,37と、各故障検出
装置36,37の出力を受ける中央装置38とを備え
る。
Referring to FIG. 6, this fault zone locating device has current sensors 34 provided at two points A and B of a transmission line 33 between an upstream substation 31 and a downstream substation 32. , 35, failure detection devices 36, 37 provided corresponding to the current sensors 34, 35, and a central device 38 for receiving the output of each failure detection device 36, 37.

【0006】送電線路33は、図7に示すように、一般
に3本の送電線33a,33b,33cで構成される。
電流センサ34は、図7および図8に示すように、それ
ぞれが送電線33a,33b,33cを挿通させるギャ
ップ付きの環状鉄心41a,41b,41cと、各環状
鉄心41a,41b,41cのギャップ内に設けられる
磁界センサ(ファラデー素子)42a,42b,42c
とを含む。環状鉄心41a,41b,41cは、送電線
33a,33b,33cの電流により発生する磁界を集
束する。磁界センサ42a,42b,42cは、環状鉄
心41a,41b,41cのギャップの磁界すなわち送
電線33a,33b,33cの電流に応じた光信号を出
力する。電流センサ35も同様である。
As shown in FIG. 7, the power transmission line 33 is generally composed of three power transmission lines 33a, 33b, 33c.
As shown in FIG. 7 and FIG. 8, the current sensor 34 includes annular cores 41 a, 41 b, 41 c with gaps through which the transmission lines 33 a, 33 b, 33 c are inserted, respectively, and inside the gaps of the respective annular cores 41 a, 41 b, 41 c. Magnetic field sensors (Faraday elements) 42a, 42b, 42c provided in the
And The annular cores 41a, 41b, 41c focus the magnetic field generated by the currents of the power transmission lines 33a, 33b, 33c. The magnetic field sensors 42a, 42b, 42c output optical signals corresponding to the magnetic fields in the gaps of the annular cores 41a, 41b, 41c, that is, the currents of the power transmission lines 33a, 33b, 33c. The same applies to the current sensor 35.

【0007】故障検出装置36は、図7に示すように、
O/E変換器51a,51b,51c、3相合成部5
2、フィルタ部53および判定部54を含み、O/E変
換器51a,51b,51cは、それぞれ光ファイバケ
ーブル43a,43b,43cを介して磁界センサ43
a,43b,43cの出力端に接続される。
The failure detection device 36, as shown in FIG.
O / E converters 51a, 51b, 51c, three-phase synthesis section 5
2. The O / E converters 51a, 51b and 51c including the filter unit 53 and the determination unit 54 are connected to the magnetic field sensor 43 via the optical fiber cables 43a, 43b and 43c, respectively.
It is connected to the output terminals of a, 43b, and 43c.

【0008】O/E変換器51a,51b,51cは、
磁界センサ43a,43b,43cからの光信号を電気
信号に変換して3相合成部52に出力する。3相合成部
52は、O/E変化器51a,51b,51cからの電
気信号の和(零相電流に相当する。)を求め、その電気
信号をフィルタ部53に出力する。フィルタ部53は、
その電気信号からノイズを除去して判定部54に出力す
る。
The O / E converters 51a, 51b and 51c are
The optical signals from the magnetic field sensors 43a, 43b, 43c are converted into electric signals and output to the three-phase combining section 52. The three-phase synthesis unit 52 obtains the sum (corresponding to a zero-phase current) of the electric signals from the O / E changers 51a, 51b, 51c, and outputs the electric signal to the filter unit 53. The filter unit 53 is
Noise is removed from the electrical signal and output to the determination unit 54.

【0009】判定部54は、フィルタ部53の出力に基
づいて零相電流の値I0Aおよびその位相φ0Aを求める。
フィルタ部53の出力と、O/E変換器51cの出力
(送電線33cの電流に相当する。)の位相差が零相電
流の位相φ0Aとされる。
The determination unit 54 determines the value I 0A of the zero-phase current and its phase φ 0A based on the output of the filter unit 53.
The phase difference between the output of the filter unit 53 and the output of the O / E converter 51c (corresponding to the current of the power transmission line 33c) is the phase φ 0A of the zero-phase current.

【0010】また、判定部54は、フィルタ部53の出
力から求めた零相電流の値I0Aと所定のしきい値Ith
比較し、零相電流の値I0Aがしきい値Ithよりも大きい
場合は故障(たとえば地絡事故)が発生したと判別し、
零相電流の値I0Aおよびその位相φ0Aを中央装置38に
出力する。故障検出装置37も同様である。
Further, the judging section 54 compares the zero phase current value I 0A obtained from the output of the filter section 53 with a predetermined threshold value I th , and the zero phase current value I 0A is compared with the threshold value I th. If it is larger than the above, it is determined that a failure (for example, a ground fault) has occurred,
The value I 0A of the zero-phase current and its phase φ 0A are output to the central unit 38. The same applies to the failure detection device 37.

【0011】中央装置38は、故障検出装置36,37
からの零相電流の値I0A,I0Bおよびその位相φ0A,φ
0Bの大小関係から故障が発生した区間を標定する。すな
わち、中央装置38は、I0A>I0Bかつφ0A=φ0B
場合は変電所31と地点Aの間の区間Xで故障が発生し
たと判定し、I0A<I0Bかつφ0A=φ0Bの場合は変電
所32と地点Bの間の区間Zで故障が発生したと判定
し、φ0Aとφ0Bが180°異なる場合は地点Aと地点
Bの間の区間Yで故障が発生したと判定する。
The central unit 38 is the failure detection unit 36, 37.
Values of zero-phase current I 0A , I 0B and their phases φ 0A , φ
The faulty section is located based on the magnitude relation of 0B . That is, the central unit 38 determines that a failure has occurred in the section X between the substation 31 and the point A when I 0A > I 0B and φ 0A = φ 0B , and I 0A <I 0B and φ 0A = In the case of φ 0B , it is determined that the failure has occurred in the section Z between the substation 32 and the point B. When φ 0A and φ 0B are different by 180 °, the failure occurs in the section Y between the point A and the point B. It is judged that it did.

【0012】なお、零相電流の値I0A,I0Bおよびその
位相φ0A,φ0Bの大小関係と故障発生区間X,Y,Zの
相関は、本願発明者らによるフィールド試験から求めら
れたものである。
The correlation between the magnitudes of the zero-phase current values I 0A and I 0B and their phases φ 0A and φ 0B and the fault occurrence sections X, Y and Z was obtained from the field test conducted by the inventors of the present application. It is a thing.

【0013】このように、特願平5−060217に係
る故障区間標定装置は電圧センサを必要としないので、
従来例のように測定結果が天候に左右されることがな
い。
As described above, since the fault section locating device according to Japanese Patent Application No. Hei 5-060217 does not need a voltage sensor,
Unlike the conventional example, the measurement result does not depend on the weather.

【0014】[0014]

【発明が解決しようとする課題】しかしながら、特願平
5−060217に係る故障区間標定装置においても、
以下のような問題点が考えられる。
However, even in the fault section locating apparatus according to Japanese Patent Application No. 5-060217,
The following problems can be considered.

【0015】図9はしきい値Ithを0.15(A)から
0.4(A)まで変えた場合の各地点A,Bにおける故
障検出件数の変化を示す図である。図9からわかるよう
に、しきい値Ithを小さく設定すると故障検出件数が大
きくなり、しきい値Ithを大きく設定すると故障検出件
数が少なくなる。
FIG. 9 is a diagram showing changes in the number of detected faults at points A and B when the threshold value I th is changed from 0.15 (A) to 0.4 (A). As can be seen from FIG. 9, when the threshold value I th is set small, the number of detected failures increases, and when the threshold value I th is set large, the number of detected failures decreases.

【0016】これは、送電線路33の故障電流は通常
0.08(A/km)程度であり、送電線路33を流れ
る定格電流に比べて非常に小さい(1/1000程度)
ことや、3本の送電線33a,33b,33cの電流
をそれぞれ独立に検出し合成して零相電流の値I0A,I
0Bを求めていることから、送電線路33の負荷電流の変
動(レベル変動、周波数変動)により故障時以外でも零
相電流の値I0A,I0Bがしきい値Ithを超えてしまうか
らである。しきい値Ithをさらに大きくすれば故障時以
外の故障検出をなくすことができるが、逆に、実際に故
障が生じた場合の故障検出が難しくなる。
This is because the fault current of the power transmission line 33 is usually about 0.08 (A / km), which is much smaller than the rated current flowing through the power transmission line 33 (about 1/1000).
That is, the currents of the three power transmission lines 33a, 33b, and 33c are independently detected and combined, and the zero-phase current values I 0A and I 0 are obtained .
Since 0B is obtained, the zero-phase current values I 0A and I 0B exceed the threshold value I th even when there is no failure due to fluctuations in the load current of the transmission line 33 (level fluctuations, frequency fluctuations). is there. If the threshold value I th is further increased, it is possible to eliminate the failure detection except when a failure occurs, but on the contrary, it becomes difficult to detect the failure when an actual failure occurs.

【0017】それゆえに、この発明の主たる目的は、電
圧センサを必要とせず、かつ実際に故障が発生したとき
のみ故障区間を標定できる送電線路の故障区間標定装置
を提供することである。
Therefore, a main object of the present invention is to provide a faulty section locating device for a transmission line which does not require a voltage sensor and can locate a faulty section only when a failure actually occurs.

【0018】[0018]

【課題を解決するための手段】この発明の送電線路の故
障区間標定装置は、上流側変電所と下流側変電所の間の
送電線路を複数の区間に分割する複数の地点にそれぞれ
設けられ、その地点の零相電流の値およびその位相を検
出する複数の零相電流検出手段と、それぞれが前記零相
電流検出手段に対応して設けられ、その零相電流検出手
段によって検出された零相電流の値が所定のしきい値を
超えたことに応じて、その零相電流の値およびその位相
ならびに検出時刻を含む検出データを記憶する複数の記
憶手段と、前記上流側変電所に設けられ、前記送電線路
に故障電流が流れたことに応じて故障発生信号を出力す
る故障発生報知手段と、前記故障発生報知手段が前記故
障発生信号を出力した故障発生時刻を記憶し、前記複数
の記憶手段に記憶された検出データを検索して前記故障
発生時刻との時間差が所定の範囲内にある検出時刻を含
む検出データを取出し、その検出データから故障が発生
した区間を標定する演算処理手段とを備えたことを特徴
としている。
Means for Solving the Problems A faulty section locating device for a power transmission line according to the present invention is provided at each of a plurality of points that divide the power transmission line between an upstream substation and a downstream substation into a plurality of sections. A plurality of zero-phase current detecting means for detecting the value of the zero-phase current at that point and its phase, and zero phases detected by the zero-phase current detecting means respectively provided corresponding to the zero-phase current detecting means. A plurality of storage means for storing detection data including the zero-phase current value, its phase, and detection time when the current value exceeds a predetermined threshold value; and the upstream substation. A plurality of storages that store a failure occurrence notification unit that outputs a failure occurrence signal in response to a failure current flowing through the power transmission line, and a failure occurrence time at which the failure occurrence notification unit outputs the failure occurrence signal. Memorized by means And a processing unit for locating a section in which a failure occurs from the detected data by retrieving the detected data and extracting the detected data including the detection time whose time difference from the failure occurrence time is within a predetermined range. It is characterized by that.

【0019】また、前記演算処理手段は前記故障発生時
刻を読出すための時計を含み、前記各記憶手段は前記演
算処理手段の時計に同期して駆動される前記検出時刻を
読出すための時計を含むこととしてもよい。
Further, the arithmetic processing means includes a clock for reading the failure occurrence time, and each of the storage means is a clock for reading the detection time driven in synchronization with the clock of the arithmetic processing means. May be included.

【0020】[0020]

【作用】この発明に係る送電線路の故障区間標定装置に
あっては、送電線路の複数の地点の零相電流検出手段に
対応して設けられた記憶手段が、その地点の零相電流の
値が所定のしきい値を超えたことに応じて零相電流の値
およびその位相ならびに検出時刻を含む検出データを記
憶する。演算処理手段は、実際に故障が発生した故障発
生時刻を記憶し、その時刻に近い検出時刻を含む検出デ
ータを前記記憶手段から取出し、その検出データから故
障区間を標定する。したがって、電圧センサを必要とせ
ず、かつ実際に故障が発生したときのみ故障区間を標定
できる。
In the transmission line fault zone locating device according to the present invention, the storage means provided corresponding to the zero-phase current detecting means at a plurality of points of the transmission line are the values of the zero-phase current at the points. Stores the detection data including the value of the zero-phase current, its phase, and the detection time in response to the threshold value exceeding the predetermined threshold value. The arithmetic processing means stores the failure occurrence time at which the failure actually occurred, retrieves the detection data including the detection time close to that time from the storage means, and locates the failure section from the detection data. Therefore, the voltage sensor is not required, and the fault section can be located only when the fault actually occurs.

【0021】また、各記憶手段と演算処理手段のそれぞ
れに時計を設け、それらの時計を同期させれば、各記憶
手段と演算処理手段において時刻がずれるのを防止する
ことができ、故障発生時刻に近い検出時刻を含む検出デ
ータを正確に取出すことができる。
Further, by providing a clock in each of the storage means and the arithmetic processing means and synchronizing those clocks, it is possible to prevent the time from being shifted in each of the storage means and the arithmetic processing means, and the failure occurrence time. It is possible to accurately extract the detection data including the detection time close to.

【0022】[0022]

【実施例】図1はこの発明の一実施例による送電線路の
故障区間標定装置の構成を示すブロック図である。図1
を参照して、この故障区間標定装置は、上流側の変電所
31と下流側の変電所32の間の送電線路33の2つの
地点A,Bにそれぞれ設けられる電流センサ34,35
と、各電流センサ34,35に対応して設けられる故障
検出装置1,2と、上流側の変電所31内に設けられる
中央装置3とを備える。また、上流側の変電所31に
は、送電線路33に故障電流が流れたことに応じて送電
線路33への電流の供給を遮断するリレー61が設けら
れている。
1 is a block diagram showing the configuration of a faulty section locating device for a transmission line according to an embodiment of the present invention. FIG.
With reference to FIG. 2, the fault location device is provided with current sensors 34 and 35 provided at two points A and B of a transmission line 33 between an upstream substation 31 and a downstream substation 32, respectively.
And failure detection devices 1 and 2 provided corresponding to the respective current sensors 34 and 35, and a central device 3 provided in the upstream substation 31. In addition, the upstream substation 31 is provided with a relay 61 that cuts off the supply of current to the power transmission line 33 in response to a fault current flowing through the power transmission line 33.

【0023】故障検出装置1は、図2に示すように、O
/E変換器51a,51b,51c、3相合成部52お
よびフィルタ部53を含み、O/E変換器51a,51
b,51cは光ファイバケーブル43a,43b,43
cを介して電流センサ34の磁気センサ42a,42
b,42cの出力端に接続される。これらについては、
図7で示したものと同じであるので説明は省略される。
As shown in FIG. 2, the failure detection device 1 has an O
/ E converters 51a, 51b, 51c, including a three-phase combining section 52 and a filter section 53, and O / E converters 51a, 51
b and 51c are optical fiber cables 43a, 43b and 43
the magnetic sensors 42a, 42 of the current sensor 34 via c
It is connected to the output terminals of b and 42c. For these,
Since it is the same as that shown in FIG. 7, its explanation is omitted.

【0024】また、故障区間標定装置1は、演算処理部
4、記憶部5および時計6を含む。演算処理部4は、フ
ィルタ部53の出力に基づいて零相電流の値I0Aおよび
その位相φ0Aを求める。フィルタ部52の出力(零相電
流に相当する。)と、O/E変換器51cの出力(送電
線33cの電流に相当する。)の位相差が零相電流の位
相φ0Aとされる。
Further, the fault section locating device 1 includes an arithmetic processing section 4, a storage section 5 and a clock 6. The arithmetic processing unit 4 obtains the value I 0A of the zero-phase current and its phase φ 0A based on the output of the filter unit 53. The phase difference between the output of the filter unit 52 (corresponding to the zero-phase current) and the output of the O / E converter 51c (corresponding to the current of the power transmission line 33c) is the phase φ 0A of the zero-phase current.

【0025】また、演算処理部4は、フィルタ部53の
出力から求めた零相電流の値I0Aと所定のしきい値Ith
を比較し、零相電流の値I0Aがしきい値Ithよりも大き
い場合は故障が発生したと判断し、その零相電流の値I
0Aとその位相φ0Aとそのときの時刻t0Aとを含む検出デ
ータを記憶部5に格納する。時刻t0Aは時計6から読出
される。
Further, the arithmetic processing section 4 has a value I 0A of the zero-phase current obtained from the output of the filter section 53 and a predetermined threshold value I th.
When the value I 0A of the zero-phase current is larger than the threshold value I th , it is determined that a failure has occurred, and the value I of the zero-phase current I
The detection data including 0A , its phase φ 0A, and time t 0A at that time is stored in the storage unit 5. The time t 0A is read from the clock 6.

【0026】また、演算処理部4は、中央装置3からの
指令に応じて記憶部5から検出データを取出し、中央装
置3に送出する。また、演算処理部4は、中央装置3か
らの指令に応じて時計6の時刻をセットする。
Further, the arithmetic processing section 4 fetches the detection data from the storage section 5 in response to a command from the central unit 3 and sends it to the central unit 3. Further, the arithmetic processing unit 4 sets the time of the timepiece 6 according to the instruction from the central unit 3.

【0027】中央装置3は、図3に示すように、演算処
理部7、記憶部8および時計9を含む。演算処理部7は
リレー61および故障検出装置1,2と有線または無線
で接続される。
As shown in FIG. 3, the central unit 3 includes an arithmetic processing unit 7, a storage unit 8 and a clock 9. The arithmetic processing unit 7 is connected to the relay 61 and the failure detection devices 1 and 2 by wire or wirelessly.

【0028】演算処理部7は、定期的に故障検出装置
1,2をポーリングし、検出データがあれば収集し、記
憶部8に格納する。ポーリングは、検出データ量が故障
検出装置1,2の記憶部5の容量を超えない時間間隔で
行なわれる。
The arithmetic processing unit 7 periodically polls the failure detection devices 1 and 2, collects detection data if any, and stores it in the storage unit 8. The polling is performed at time intervals in which the amount of detected data does not exceed the capacity of the storage unit 5 of the failure detection device 1 or 2.

【0029】また、演算処理部7は、リレー61が動作
したことに応じてその時刻t0 を記憶し、故障区間の標
定を行なう。故障区間の標定は以下のようにして行な
う。
Further, the arithmetic processing unit 7 stores the time t 0 in response to the operation of the relay 61, and locates the fault section. The fault segment is located as follows.

【0030】(1) 記憶部8に格納した検出データを
検索し、故障発生時刻t0 に最も近い検出時刻t0A,t
0Bを含む検出データd0A,d0Bを取出す。
(1) The detection data stored in the storage unit 8 is searched and the detection times t 0A and t closest to the failure occurrence time t 0.
The detection data d 0A and d 0B including 0B are extracted.

【0031】(2) 取出した検出データd0A,d0B
検出時刻t0A,t0Bと故障発生時刻t0 の差が所定の時
間σ(sec)よりも大きい場合は検出エラーとする。
(2) If the difference between the detection times t 0A and t 0B of the fetched detection data d 0A and d 0B and the failure occurrence time t 0 is larger than a predetermined time σ (sec), it is judged as a detection error.

【0032】(3) 検出データd0A,d0Bの零相電流
の値I0A,I0Bおよびその位相φ0A,φ0Bの大小関係か
ら故障区間を標定する。すなわちI0A>I0Bで、かつ
φ0Aとφ0Bの差が90°以下の場合は区間Xで故障が発
生したと判定し、I0A<I 0Bで、かつφ0Aとφ0Bの差
が90°以下の場合は区間Zで故障が発生したと判定
し、φ0Aとφ0Bの差が90°よりも大きい場合は区間
Yで故障が発生したと判定する。
(3) Detection data d0A, D0BZero-phase current of
The value of0A, I0BAnd its phase φ0A, Φ0BIs it big or small
The faulty section is located. Ie I0A> I0BAnd
φ0AAnd φ0BIf the difference is less than 90 °, the fault occurs in section X.
I judged that it was born, I0A<I 0BAnd φ0AAnd φ0BDifference
If is less than 90 °, it is determined that a failure occurred in section Z.
, Φ0AAnd φ0BIf the difference between is greater than 90 °, the interval
It is determined that a failure has occurred in Y.

【0033】また、演算処理部7は、故障検出装置1,
2間で時計6の誤差が発生しないように、故障検出装置
1,2の時計6を中央装置3の時計9に同期させる。
Further, the arithmetic processing section 7 includes the failure detection device 1,
The timepiece 6 of the failure detection devices 1 and 2 is synchronized with the timepiece 9 of the central device 3 so that an error of the timepiece 6 does not occur between the two.

【0034】図4は演算処理部7の動作を示すフローチ
ャートである。演算処理部7は、通常時はステップ(図
4ではSと略記する。)S1〜S10を含むメイン処理
を行ない、リレー61が送電線路33への電流の供給を
遮断したことに応じてステップS11,S12を含む故
障発生割込処理を行なう。演算処理部7は、リレー61
が送電線路33への電流の供給を遮断したことに応じ
て、ステップS11においてその時刻t0 を記憶すると
ともに、ステップS12において故障発生フラグを立て
る。
FIG. 4 is a flow chart showing the operation of the arithmetic processing section 7. The arithmetic processing unit 7 normally performs a main process including steps (abbreviated as S in FIG. 4) S1 to S10, and in response to the relay 61 cutting off the supply of current to the power transmission line 33, step S11. , S12 including the failure occurrence interrupt processing. The arithmetic processing unit 7 includes a relay 61
In response to the interruption of the current supply to the power transmission line 33, the time t 0 is stored in step S11, and the failure occurrence flag is set in step S12.

【0035】また、演算処理部7は、ステップS1にお
いて故障が発生しているか否かを判別し、故障が発生し
ている(故障フラグが立てられている)ことに応じて、
ステップS2において記憶部8の検出データを検索し、
故障発生時刻t0 に近い検出時刻t0A,t0Bを含むデー
タd0A,d0Bを取出し、ステップS3において上述の方
法で標定処理を行なう。
Further, the arithmetic processing section 7 determines whether or not a failure has occurred in step S1 and, in response to the occurrence of a failure (a failure flag is set),
In step S2, the detection data in the storage unit 8 is searched,
The data d 0A and d 0B including the detection times t 0A and t 0B close to the failure occurrence time t 0 are taken out, and the orientation process is performed by the above-mentioned method in step S3.

【0036】標定処理が終了したことに応じて、または
ステップS1において故障が発生していなかった(故障
フラグが立てられていなかった)ことに応じて、演算処
理部7は、ステップS4において時間ポーリングを行な
う。すなわち、定期的に時計9から時刻を読出す。次い
で、演算処理部7は、ステップS5において処理時刻が
か否かを判別し処理時刻であることに応じて故障検出装
置1,2からの検出データの収集(ステップS6)、故
障検出装置1,2の時計6を同期させる処理(ステップ
S7)および収集した検出データの保存管理(ステップ
S8)を行なう。
In response to the end of the orientation processing or the failure not occurring in step S1 (the failure flag was not set), the arithmetic processing section 7 polls the time in step S4. Do. That is, the time is periodically read from the clock 9. Next, the arithmetic processing unit 7 determines in step S5 whether or not the processing time is reached, and depending on the processing time, the detection data is collected from the failure detection devices 1 and 2 (step S6). A process of synchronizing the second clock 6 (step S7) and a storage management of the collected detection data (step S8) are performed.

【0037】これらの処理(ステップS6〜S8)が終
了したことに応じて、またはステップS5において処理
時刻でなかったことに応じて、演算処理部7は、ステッ
プS9においてメニューが選択されているか否かを判別
する。メニューが選択されている場合、演算処理部7
は、ステップS10においてそのメニューに応じた処理
(たとえばデータ表示)を行なう。その処理が終了した
ことに応じて、またはステップS9においてメニューが
選択されていなかったことに応じて、演算処理部7は、
ステップS1に戻る。
In response to the completion of these processes (steps S6 to S8) or the processing time not being reached in step S5, the arithmetic processing section 7 determines whether or not the menu is selected in step S9. Determine whether. When the menu is selected, the arithmetic processing unit 7
Performs processing (for example, data display) according to the menu in step S10. In response to the completion of the processing, or in response to the selection of the menu in step S9, the arithmetic processing unit 7
Return to step S1.

【0038】なお、図5は図1〜図4で示した故障区間
標定装置の具体的構成を例示するブロック図である。図
5を参照して、この故障区間標定装置にあっては、無人
の変電所31と有人の電力所70にそれぞれパーソナル
コンピュータ12,13が設けられる。パーソナルコン
ピュータ12は中央装置3を構成し、パーソナルコンピ
ュータ13はパーソナルコンピュータ12の標定結果を
表示する表示装置を構成する。パーソナルコンピュータ
12,13および検出装置1,2はモデム(変復調装
置)14を介して電話回線71に接続される。パーソナ
ルコンピュータ12,13およびパーソナルコンピュー
タ12,13用のモデム14にはUPS(無停電電源)
15から電源が供給される。また、変電所31の地絡リ
レー62、微地絡リレー63および短絡リレー64のリ
レー動作信号は電圧変換器10およびDIポート(デジ
タル入力ポート)11を介してパーソナルコンピュータ
12に入力される。電圧変換器10は、55(V)のリ
レー動作信号を24(V)に降圧する。DIポート11
は、入出力端間がフォトカプラで結合された絶縁型であ
る。
FIG. 5 is a block diagram illustrating a specific configuration of the fault section locating device shown in FIGS. Referring to FIG. 5, in this fault location device, personal computers 12 and 13 are provided in unattended substation 31 and manned power station 70, respectively. The personal computer 12 constitutes the central device 3, and the personal computer 13 constitutes a display device for displaying the orientation result of the personal computer 12. The personal computers 12, 13 and the detection devices 1, 2 are connected to a telephone line 71 via a modem (modulation / demodulation device) 14. UPS (uninterruptible power supply) is used for the personal computers 12 and 13 and the modem 14 for the personal computers 12 and 13.
Power is supplied from 15. Further, the relay operation signals of the ground fault relay 62, the fine ground fault relay 63 and the short circuit relay 64 of the substation 31 are input to the personal computer 12 via the voltage converter 10 and the DI port (digital input port) 11. The voltage converter 10 steps down the relay operation signal of 55 (V) to 24 (V). DI port 11
Is an insulation type in which the input and output ends are coupled by a photocoupler.

【0039】次に、図5の故障区間標定装置の動作につ
いて説明する。パーソナルコンピュータ12は、電話回
線71を介して故障検出装置1,2を定期的にポーリン
グし、検出データがあれば収集し記憶する。送電線路3
3に故障電流が流れて地絡リレー62、微地絡リレー6
3または短絡リレー64が動作すると、そのリレー6
2,63または64からパーソナルコンピュータ12に
リレー動作信号が入力される。
Next, the operation of the fault zone locating device of FIG. 5 will be described. The personal computer 12 periodically polls the failure detection devices 1 and 2 via the telephone line 71, and collects and stores the detected data, if any. Power transmission line 3
A fault current flows in 3 and a ground fault relay 62, a fine ground fault relay 6
3 or the short circuit relay 64 operates, the relay 6
A relay operation signal is input to the personal computer 12 from 2, 63 or 64.

【0040】パーソナルコンピュータ12は、リレー動
作信号が入力された時刻t0 を記憶し、その時刻t0
近い検出時刻t0A,t0Bを含む検出データd0A,d0B
取出し、その検出データd0A,d0Bに基づいて故障区間
を標定する。パーソナルコンピュータ12は、その標定
結果を電話回線71を介して電力所70のパーソナルコ
ンピュータ13に伝える。
The personal computer 12 stores the time t 0 to the relay operation signal is input, the detection time close to the time t 0 t 0A, detection data d 0A containing t 0B, taken out d 0B, the detected data The fault section is located based on d 0A and d 0B . The personal computer 12 transmits the orientation result to the personal computer 13 of the power station 70 via the telephone line 71.

【0041】パーソナルコンピュータ13は、報知手段
(たとえばブザー)によって故障発生を電力所70内に
報知するとともに、故障区間を表示画面に表示する。電
力所70内の作業員は、パーソナルコンピュータ13の
表示画面から故障の発生と故障区間を検知し故障復帰作
業に向かう。
The personal computer 13 notifies the occurrence of a failure to the power station 70 by means of a notification means (for example, a buzzer) and also displays the failure section on the display screen. The worker in the power station 70 detects the occurrence of a failure and the failure section from the display screen of the personal computer 13 and proceeds to the failure recovery work.

【0042】[0042]

【発明の効果】以上のように、この発明にあっては、故
障検出時の零相電流の値およびその位相ならびに検出時
刻を含む検出データを記憶手段に格納しておき、実際に
故障が発生したときにその時刻に近い検出時刻を含む検
出データを記憶手段から取出し、その検出データに基づ
いて故障区間を標定する。したがって、電圧センサを必
要とせず、かつ実際に故障が発生したときのみ故障区間
を標定できる。
As described above, according to the present invention, the detection data including the value of the zero-phase current at the time of failure detection, its phase, and the detection time is stored in the storage means, and the failure actually occurs. At that time, the detection data including the detection time close to that time is taken out from the storage means, and the failure section is located based on the detection data. Therefore, the voltage sensor is not required, and the fault section can be located only when the fault actually occurs.

【0043】また、各記憶手段と演算処理手段のそれぞ
れに時計を設け、それらの時計を同期させれば、各記憶
手段と演算処理手段において時刻がずれるのを防止する
ことができ、故障発生時刻に近い検出時刻を含む検出デ
ータを正確に取出すことができる。
Further, if clocks are provided in each of the storage means and the arithmetic processing means and the clocks are synchronized with each other, it is possible to prevent the time from being shifted in each of the storage means and the arithmetic processing means, and the failure occurrence time can be prevented. It is possible to accurately extract the detection data including the detection time close to.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例による送電線路の故障区間
標定装置の構成を示すブロック図である。
FIG. 1 is a block diagram showing a configuration of a faulty section locating device for a transmission line according to an embodiment of the present invention.

【図2】図1に示した故障区間標定装置の故障検出装置
の構成を示すブロック図である。
FIG. 2 is a block diagram showing a configuration of a fault detection device of the fault section locating device shown in FIG.

【図3】図1に示した故障区間標定装置の中央装置の構
成を示すブロック図である。
FIG. 3 is a block diagram showing a configuration of a central device of the fault section locating device shown in FIG.

【図4】図3に示した中央装置の演算処理部の動作を示
すフローチャートである。
FIG. 4 is a flowchart showing an operation of an arithmetic processing unit of the central apparatus shown in FIG.

【図5】図1に示した故障区間標定装置の具体的な構成
を例示するブロック図である。
5 is a block diagram illustrating a specific configuration of the fault section locating device shown in FIG.

【図6】従来の送電線路の故障区間標定装置の構成を示
すブロック図である。
FIG. 6 is a block diagram showing a configuration of a conventional faulty section locating device for a transmission line.

【図7】図6に示した故障区間標定装置の故障検出装置
の構成を示すブロック図である。
FIG. 7 is a block diagram showing a configuration of a failure detection device of the failure section locator shown in FIG.

【図8】図6に示した故障区間標定装置の電流センサの
構成を示す一部破断した斜視図である。
FIG. 8 is a partially cutaway perspective view showing a configuration of a current sensor of the fault section locating device shown in FIG.

【図9】図6に示した故障区間標定装置の問題点を説明
するための図であって、零相電流のしきい値と故障検出
件数の関係を示す図である。
9 is a diagram for explaining the problem of the fault section locating device shown in FIG. 6, and is a diagram showing the relationship between the threshold value of the zero-phase current and the number of detected faults.

【符号の説明】[Explanation of symbols]

1,2 故障区間標定装置 3 中央装置 4,7 演算処理部 5,8 記憶部 6,9 時計 31,32 変電所 33 送電線路 34,35 電流センサ 61〜64 リレー A,B 地点 X,Y,Z 区間 1 and 2 failure section locator 3 central apparatus 4 and 7 arithmetic processing section 5 and 8 storage section 6 and 9 clock 31 and 32 substation 33 transmission line 34 and 35 current sensor 61 to 64 relay A and B points X and Y, Z section

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 上流側変電所と下流側変電所の間の送電
線路を複数の区間に分割する複数の地点にそれぞれ設け
られ、その地点の零相電流の値およびその位相を検出す
る複数の零相電流検出手段と、 それぞれが前記零相電流検出手段に対応して設けられ、
その零相電流検出手段によって検出された零相電流の値
が所定のしきい値を超えたことに応じて、その零相電流
の値およびその位相ならびに検出時刻を含む検出データ
を記憶する複数の記憶手段と、 前記上流側変電所に設けられ、前記送電線路に故障電流
が流れたことに応じて故障発生信号を出力する故障発生
報知手段と、 前記故障発生報知手段が前記故障発生信号を出力した故
障発生時刻を記憶し、前記複数の記憶手段に記憶された
検出データを検索して前記故障発生時刻との時間差が所
定の範囲内にある検出時刻を含む検出データを取出し、
その検出データから故障が発生した区間を標定する演算
処理手段とを備えたことを特徴とする、送電線路の故障
区間標定装置。
1. A plurality of power transmission lines between an upstream substation and a downstream substation, each of which is provided at a plurality of points that divide the transmission line into a plurality of sections, and which detects a zero-phase current value and a phase thereof at the points. Zero-phase current detection means, each provided corresponding to the zero-phase current detection means,
In response to the value of the zero-phase current detected by the zero-phase current detecting means exceeding a predetermined threshold value, a plurality of detection data including the value of the zero-phase current and its phase and the detection time are stored. Storage means, failure occurrence notification means provided in the upstream substation and outputting a failure occurrence signal in response to a failure current flowing through the power transmission line, and the failure occurrence notification means outputs the failure occurrence signal The failure occurrence time is stored, the detection data stored in the plurality of storage means is searched, and the detection data including the detection time whose time difference from the failure occurrence time is within a predetermined range is taken out.
An arithmetic processing unit for locating a section in which a failure has occurred from the detected data, and a faulty section locating device for a transmission line.
【請求項2】 前記演算処理手段は前記故障発生時刻を
読出すための時計を含み、 前記各記憶手段は前記演算処理手段の時計に同期して駆
動される前記検出時刻を読出すための時計を含むことを
特徴とする、請求項1に記載の送電線路の故障区間標定
装置。
2. The arithmetic processing means includes a clock for reading the failure occurrence time, and each of the storage means is a clock for reading the detection time driven in synchronization with the clock of the arithmetic processing means. The fault section locating device for a power transmission line according to claim 1, comprising:
JP17132394A 1994-07-22 1994-07-22 Device for locating failure block of transmission line Withdrawn JPH0836017A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17132394A JPH0836017A (en) 1994-07-22 1994-07-22 Device for locating failure block of transmission line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17132394A JPH0836017A (en) 1994-07-22 1994-07-22 Device for locating failure block of transmission line

Publications (1)

Publication Number Publication Date
JPH0836017A true JPH0836017A (en) 1996-02-06

Family

ID=15921119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17132394A Withdrawn JPH0836017A (en) 1994-07-22 1994-07-22 Device for locating failure block of transmission line

Country Status (1)

Country Link
JP (1) JPH0836017A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7546365B2 (en) 2002-04-30 2009-06-09 Canon Kabushiki Kaisha Network device management system and method of controlling same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7546365B2 (en) 2002-04-30 2009-06-09 Canon Kabushiki Kaisha Network device management system and method of controlling same

Similar Documents

Publication Publication Date Title
US9874593B2 (en) Decision support system for outage management and automated crew dispatch
US6453248B1 (en) High impedance fault detection
EP3408911B1 (en) Oscillations in electrical power networks
JP2009005454A (en) Power monitor system
US4261038A (en) Protection of electrical power supply systems
US11482855B2 (en) Electrical protection system for detection and isolation of faults in power distribution using synchronized voltage measurements and a method of its application
JPH0836017A (en) Device for locating failure block of transmission line
CN110794335A (en) Single-phase grounding detection system based on waveform difference and detection method thereof
CN112285464A (en) Power grid fault diagnosis method and system
Hart et al. Tapping protective relays for power quality information
US20140307357A1 (en) Systems and methods for detecting over/under excitation faults
CN109375134B (en) Generator outlet voltage transformer internal fault on-line monitoring method and system
CN116106688A (en) Short-circuit fault detection device and system
CN114243654A (en) Recording data fault line judgment system and method based on pure analog quantity identification
AU647600B2 (en) Protection device for electrical equipment, machines and installations
US6501631B1 (en) Method and device for power system protection
JP3260982B2 (en) Harmonic measurement analysis system
US10310017B2 (en) Detection of generator stator inter-circuit faults
KR20210094786A (en) Real Time Failure Analysis System and Determination Method
CN219552575U (en) Intelligent distribution network fault monitoring system
JP4391330B2 (en) Accident point location method and accident point location system
JPH06284551A (en) Testing circuit of overcurrent protection device
KR19980074129A (en) Distribution System Fault Detector
JPH06281690A (en) Synchronously measuring method for different point information
Claus et al. Proceedings in distance relaying

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20011002