JPH08335928A - Receiver - Google Patents

Receiver

Info

Publication number
JPH08335928A
JPH08335928A JP7140368A JP14036895A JPH08335928A JP H08335928 A JPH08335928 A JP H08335928A JP 7140368 A JP7140368 A JP 7140368A JP 14036895 A JP14036895 A JP 14036895A JP H08335928 A JPH08335928 A JP H08335928A
Authority
JP
Japan
Prior art keywords
signal
power
station
demodulation
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7140368A
Other languages
Japanese (ja)
Inventor
Ikuo Kawasumi
育男 川澄
Daiki Sugimoto
大樹 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP7140368A priority Critical patent/JPH08335928A/en
Publication of JPH08335928A publication Critical patent/JPH08335928A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • Y02B60/50

Abstract

PURPOSE: To reduce an error rate in the demodulation state by the reduction in the power level of a signal from each station by reducing the fluctuation in the signal power of each station in the demodulation state by the increase in the number of channels so as to keep the quantization accuracy constant in the receiver for a mobile communication system where simultaneous speech is conducted among mobile stations based on the code division multiple address communication system. CONSTITUTION: Analog signals sent from plural mobile stations are multiplexed in air and the multiplexed signal is received by an antenna 10. The frequency of the signal received by the antenna 10 is decreased up to a base band frequency at a reception section 20. The signal with the base band frequency is converted into a signal whose maximum amplitude is constant by an AGC 30. An output signal S30 of the AGC 30 is A/D-converted by an A/D converter 40 and outputted to a demodulation power controller 50. The demodulation power controller 50 normalizes the power of the signal of each station and outputs to a demodulation section 60. The demodulation section 60 uses a spread code for each station to take correlation for the demodulation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、符号分割多元接続(Co
de Devision Multiple Access 、以下、CDMAという)方
式を用いた移動体通信システムの受信装置に関するもの
である。
BACKGROUND OF THE INVENTION The present invention relates to code division multiple access (Co
The present invention relates to a receiver of a mobile communication system using a de Devision Multiple Access (hereinafter referred to as CDMA) system.

【0002】[0002]

【従来の技術】従来、このような分野の技術としては、
例えば、次のような文献に記載されるものがあった。 文献;電子情報通信学会論文誌、J77−B−II[1
1](1994-11) 、深澤敦司、佐藤拓朗、川辺学、佐藤慎
一、杉本大樹共著、「パイロット信号を用いた伝搬路推
定に基づく干渉キャンセラの構成とその特性」、P.628-
640 従来のCDMA変復調装置では、送信データがユーザ固有の
拡散符号で広い帯域に拡散され、更に該拡散された信号
が無線機(送信機)によって高周波信号に変換される。
高周波信号に変換された信号はアンテナから送信され、
この送信された信号がCDMAの1チャネルになる。
2. Description of the Related Art Conventionally, techniques in such a field include:
For example, some documents were described in the following documents. References: IEICE Transactions , J77-B-II [1
1] (1994-11), Atsushi Fukasawa, Takuro Sato, Manabu Kawabe, Shinichi Sato and Daiki Sugimoto, "Structure and characteristics of interference canceller based on propagation path estimation using pilot signal", P.628-
640 In a conventional CDMA modulator / demodulator, transmission data is spread over a wide band by a user-specific spreading code, and the spread signal is converted into a high frequency signal by a wireless device (transmitter).
The signal converted to a high frequency signal is transmitted from the antenna,
This transmitted signal becomes one channel of CDMA.

【0003】CDMAでは複数の送信局で同一周波数帯域を
使うが、各送信局の拡散符号がそれぞれ異なっているの
で、同時通話が可能である。通常、同期系のCDMAでは、
拡散符号として直交符号(即ち、符号間の相関値が0の
符号)を用いるため、符号間の干渉は無視できる。しか
し、実際のCDMAシステム、特に移動局から基地局ヘの上
り回線(即ち、リバースリンク) では、各移動局システ
ムがそれぞれ独自のクロックで動いているので、受信側
は非同期のシステムになる。非同期のシステムで、拡散
符号として例えば疑似ランダム符号のような非直交符号
を用いた場合には、同時通話する局数が増えると、各局
のチャネル間で符号間干渉が発生し、復調時の誤りが増
える。この問題を解消するために、前記文献に記載され
たCDMA変復調装置では、チャネル間の符号間干渉を除去
するための干渉除去部が設けられている。この干渉除去
部により符号間干渉が除去され、誤りの少ない復調が可
能になる。
In CDMA, a plurality of transmitting stations use the same frequency band, but since the transmitting stations have different spreading codes, simultaneous communication is possible. Normally, in synchronous CDMA,
Since an orthogonal code (that is, a code having a correlation value between codes of 0) is used as the spreading code, interference between the codes can be ignored. However, in the actual CDMA system, especially in the uplink from the mobile station to the base station (that is, the reverse link), each mobile station system operates with its own clock, so the receiving side becomes an asynchronous system. In a non-synchronous system, if a non-orthogonal code such as a pseudo-random code is used as the spreading code, inter-code interference occurs between the channels of each station when the number of stations communicating at the same time increases, and errors during demodulation occur. Will increase. In order to solve this problem, the CDMA modulator / demodulator described in the above document is provided with an interference canceling unit for canceling inter-code interference between channels. The interference removing unit removes inter-code interference and enables demodulation with few errors.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来の
CDMA変復調装置では、次のような課題があった。即ち、
CDMAの復調時、特に干渉除去部を用いた復調時に誤りを
引き起こす原因の1つに、信号のパワーの減少による量
子化の精度の劣化がある。CDMAでは、送信パワーをコン
トロールして受信側で受ける各局のパワーが同じになる
ようにする技術(即ち、パワーコントロール)がある
が、これは各移動局のパワーレベルがばらつかないよう
に調整する技術である。このパワーコントロールの技術
を用いることで、受信局と各移動局との距離にかかわら
ず、該受信局は同じパワーレベルの信号を受信すること
ができる。ところが、次のような問題もある。
SUMMARY OF THE INVENTION However, the conventional
The CDMA modem has the following problems. That is,
One of the causes of an error at the time of CDMA demodulation, particularly at the time of demodulation using an interference canceller, is deterioration of quantization accuracy due to a decrease in signal power. In CDMA, there is a technique (that is, power control) that controls the transmission power so that the power of each station received at the receiving side becomes the same, but this is adjusted so that the power level of each mobile station does not vary. It is a technology. By using this power control technique, the receiving station can receive a signal of the same power level regardless of the distance between the receiving station and each mobile station. However, there are also the following problems.

【0005】即ち、アンテナで受信したアナログ信号
は、複数の移動局のチャネルが多重されている。この信
号は一般に自動利得調整器(Auto Gain Contoroler、以
下、AGCという) を経由し、アナログ/デジタル変換
器(Analog Degital Converter、以下、ADCという)
でデジタル信号に変換される。この時、AGCから出力
された信号は、入力した信号の振幅の大きさに関わらず
最大振幅値が固定された信号として出力される。そのた
め、AGCの出力信号の後の信号では、局数の変化によ
り各局1局当たりの信号のパワーが変動する。従って、
局数が少ない場合には問題がないが、局数が多い場合に
は各局1局当たりのパワーが小さくなるため、量子化の
ビット数によっては、干渉除去部の量子化時の精度が劣
化し、復調時の誤り率が大きくなるといった問題があ
る。本発明の目的は、チャネル数(局数)の変化による
復調時の各移動局の信号パワーの変動を小さくすること
により量子化の精度を一定に保ち、該各移動局の信号の
パワーレベルの低減による復調時の誤り率を小さくする
ことである。
That is, the analog signal received by the antenna is multiplexed with the channels of a plurality of mobile stations. This signal generally passes through an automatic gain controller (hereinafter referred to as AGC), and an analog-to-digital converter (hereinafter referred to as ADC).
Is converted into a digital signal. At this time, the signal output from the AGC is output as a signal whose maximum amplitude value is fixed regardless of the amplitude of the input signal. Therefore, in the signal after the output signal of the AGC, the power of the signal per station changes due to the change in the number of stations. Therefore,
When the number of stations is small, there is no problem, but when the number of stations is large, the power per station decreases, so the accuracy of quantization in the interference canceller may deteriorate depending on the number of quantization bits. However, there is a problem that the error rate during demodulation becomes large. The object of the present invention is to keep the accuracy of quantization constant by reducing the fluctuation of the signal power of each mobile station at the time of demodulation due to the change of the number of channels (the number of stations), and This is to reduce the error rate at the time of demodulation due to the reduction.

【0006】[0006]

【課題を解決するための手段】第1の発明は、前記課題
を解決するために、複数の移動局の信号が多重されたア
ナログ信号を受信し、該アナログ信号をベースバンド周
波数の信号に変換する受信部と、前記ベースバンド周波
数の信号の振幅に応じて利得を制御して振幅の最大値が
常に一定の出力信号に変換するAGCと、前記自動利得
制御部の出力信号をアナログ信号からデジタル信号へ変
換するADCと、前記ADCの出力信号と前記各移動局
毎の拡散符号とを用いて相関を取って復調を行う復調部
とを備え、符号分割多元接続通信方式に基づき前記各移
動局間で同時通話を行う移動通信システムの受信装置に
おいて、次のような装置を設けている。即ち、前記AD
Cの出力信号から前記各移動局の信号のパワーを推定し
該各移動局の信号のパワーを正規化する復調電力制御装
置を設けている。
In order to solve the above-mentioned problems, the first invention receives an analog signal in which signals of a plurality of mobile stations are multiplexed and converts the analog signal into a signal of a baseband frequency. A receiving unit, an AGC that controls the gain according to the amplitude of the signal of the baseband frequency and converts the output signal to a constant maximum amplitude value, and an output signal of the automatic gain control unit from an analog signal to a digital signal. The mobile station includes an ADC for converting into a signal and a demodulation section for performing demodulation by correlating the output signal of the ADC and the spreading code for each mobile station, and each mobile station based on a code division multiple access communication system. The following devices are provided in a receiving device of a mobile communication system for performing simultaneous calls between two devices. That is, the AD
A demodulation power controller for estimating the power of the signal of each mobile station from the output signal of C and normalizing the power of the signal of each mobile station is provided.

【0007】第2の発明では、第1の発明の復調電力制
御装置は、前記ADCの出力信号から前記各移動局の信
号パワーを計算する信号パワー計算部と、前記各移動局
の信号パワーから全移動局の平均パワーを求める第1の
平均値計算部と、前記各移動局の全体の平均パワーを用
いて各局のパワーを正規化する正規化部とを備えてい
る。更に、前記信号パワー計算部は、前記各移動局のう
ちの所望局の各パス毎の前記ADCの出力信号と拡散符
号との相関値を求める相関演算部と、所望局の各パス毎
の前記相関値を合成して該所望局の相関値パワーを求め
る相関値パワー計算部と、前記所望局の相関値パワーを
平均して該所望局の信号パワーを求める第2の平均値計
算部とを、備えている。第3の発明では、第1の発明の
受信部と、第1の発明のAGCと、第1の発明のADC
と、前記複数の移動局の信号が多重された信号の該各移
動局の各パスの干渉成分を除去する干渉除去部と、前記
干渉除去部の出力信号と前記各移動局毎の拡散符号とを
用いて相関を取って復調を行う復調部とを備えた受信装
置において、前記干渉除去部の前に第2の発明の復調電
力制御装置を設けている。
In a second aspect of the invention, the demodulation power control device of the first aspect of the invention uses a signal power calculator for calculating the signal power of each mobile station from the output signal of the ADC, and a signal power of each mobile station. It comprises a first average value calculation unit for obtaining the average power of all mobile stations, and a normalization unit for normalizing the power of each station using the overall average power of each mobile station. Further, the signal power calculation unit includes a correlation calculation unit that obtains a correlation value between the output signal of the ADC and a spread code for each path of the desired station among the mobile stations, and the correlation calculation unit for each path of the desired station. A correlation value power calculation unit for synthesizing correlation values to obtain the correlation value power of the desired station, and a second average value calculation unit for averaging the correlation value powers of the desired station to obtain the signal power of the desired station. Is prepared. According to a third invention, the receiving unit of the first invention, the AGC of the first invention, and the ADC of the first invention.
An interference canceling unit that cancels an interference component of each path of each mobile station of a signal in which signals of the plurality of mobile stations are multiplexed, an output signal of the interference canceling unit, and a spreading code of each mobile station. A demodulation power control device of the second invention is provided in front of the interference removal part in a reception device provided with a demodulation part for performing correlation by using and to perform demodulation.

【0008】[0008]

【作用】第1及び第2の発明によれば、以上のように受
信装置を構成したので、信号パワー計算部でADCの出
力信号から各移動局の信号パワーが計算される。次に、
第1の平均値計算部で前記各移動局の信号パワーから全
移動局の平均パワーが計算される。更に、正規化部で前
記各移動局の全体の平均パワーを用いて各局のパワーが
正規化される。そのため、局数の変化による復調時の各
局の信号パワーの変動が小さくなり、復調部での量子化
の誤差による誤り率が減少する。第3の発明によれば、
信号パワー計算部でADCの出力信号から各移動局の信
号パワーが計算される。次に、第1の平均値計算部で前
記各移動局の信号パワーから全移動局の平均パワーが計
算される。更に、正規化部で前記各移動局の全体の平均
パワーを用いて各局のパワーが正規化される。そのた
め、局数の変化による復調時の各局の信号パワーの変動
が小さくなり、干渉除去部での量子化の誤差による誤り
率が減少する。従って、前記課題を解決できるのであ
る。
According to the first and second aspects of the invention, since the receiving apparatus is configured as described above, the signal power of each mobile station is calculated from the output signal of the ADC in the signal power calculation section. next,
The first average value calculation unit calculates the average power of all mobile stations from the signal power of each mobile station. Further, the normalizing unit normalizes the power of each mobile station by using the average power of all the mobile stations. Therefore, the fluctuation of the signal power of each station at the time of demodulation due to the change of the number of stations becomes small, and the error rate due to the quantization error in the demodulation unit decreases. According to the third invention,
The signal power calculator calculates the signal power of each mobile station from the output signal of the ADC. Next, the first average value calculation unit calculates the average power of all mobile stations from the signal power of each mobile station. Further, the normalizing unit normalizes the power of each mobile station by using the average power of all the mobile stations. Therefore, the fluctuation of the signal power of each station at the time of demodulation due to the change of the number of stations becomes small, and the error rate due to the quantization error in the interference canceller decreases. Therefore, the above problem can be solved.

【0009】[0009]

【実施例】第1の実施例 図1は、本発明の第1の実施例を示す受信装置の構成ブ
ロック図である。この受信装置は、複数の移動局の信号
が多重されたアナログ信号を受信するアンテナ10を有
し、受信部20に接続されている。受信部20は、アン
テナ10からのアナログ信号をベースバンド周波数の信
号S20に変換する機能を有している。受信部20の出
力側はAGC30の入力側に接続されている。AGC3
0は、前記ベースバンド周波数の信号の振幅に応じて利
得を制御して振幅の最大値が常に一定の出力信号S30
に変換する機能を有している。AGC30の出力側は、
AGC30の出力信号S30をアナログ信号からデジタ
ル信号へ変換するADC40に接続されている。ADC
40の出力側は、復調電力制御装置50の入力側に接続
されている。復調電力制御装置50は、ADC40の出
力信号S40から前記各移動局の信号のパワーを推定
し、該各移動局の信号のパワーを正規化する機能を有し
ている。復調電力制御装置50の出力側は、復調電力制
御装置50の出力信号S50と前記各移動局毎の拡散符
号とを用いて相関を取って復調を行う復調部60に接続
されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First Embodiment FIG. 1 is a block diagram of the configuration of a receiving apparatus showing a first embodiment of the present invention. This receiving device has an antenna 10 for receiving an analog signal in which signals of a plurality of mobile stations are multiplexed, and is connected to a receiving section 20. The receiver 20 has a function of converting an analog signal from the antenna 10 into a signal S20 having a baseband frequency. The output side of the receiver 20 is connected to the input side of the AGC 30. AGC3
0 controls the gain according to the amplitude of the signal of the baseband frequency, and the maximum value of the amplitude is always constant in the output signal S30.
It has the function of converting to. The output side of AGC30 is
It is connected to an ADC 40 that converts the output signal S30 of the AGC 30 from an analog signal to a digital signal. ADC
The output side of 40 is connected to the input side of the demodulation power control device 50. The demodulation power control device 50 has a function of estimating the power of the signal of each mobile station from the output signal S40 of the ADC 40 and normalizing the power of the signal of each mobile station. The output side of the demodulation power control device 50 is connected to a demodulation section 60 which performs demodulation by correlating the output signal S50 of the demodulation power control device 50 and the spreading code of each mobile station.

【0010】図2は、図1中の復調電力制御装置の一例
を示す構成ブロック図である。この復調電力制御装置
は、ADC40の出力信号S40を入力する入力端子i
nを有している。入力端子inは、相関演算部51−1
〜51−nの各入力端子に接続されている。但し、nは
送信側の局数である。又、送信側の各局はそれぞれ異な
った拡散符号系列をもつものとする。相関演算部51−
1〜51−nの各出力端子は、平均パワー計算部52−
1〜52−nの各入力端子にそれぞれ接続されている。
相関演算部51−1〜51−n及び平均パワー計算部5
2−1〜52−nで信号パワー計算部が構成されてい
る。平均パワー計算部52−1〜52−nの各出力端子
は、1局からn局の全局の平均値を計算する第1の平均
値計算部53に接続されている。平均値計算部53の出
力端子は、正規化部54に接続されている。又、この正
規化部54には出力信号S40が入力されるようになっ
ている。正規化部54は、平均値計算部53の出力信号
S53を用いて出力信号S40を正規化する機能を有し
ている。
FIG. 2 is a block diagram showing an example of the demodulation power control device shown in FIG. This demodulation power control device has an input terminal i for inputting an output signal S40 of the ADC 40
have n. The input terminal in has a correlation calculator 51-1.
To 51-n are connected to the respective input terminals. However, n is the number of stations on the transmission side. Also, each station on the transmission side has a different spreading code sequence. Correlation calculator 51-
The output terminals 1 to 51-n are connected to the average power calculator 52-
1 to 52-n are connected to the respective input terminals.
Correlation calculation units 51-1 to 51-n and average power calculation unit 5
A signal power calculator is composed of 2-1 to 52-n. Each output terminal of the average power calculation units 52-1 to 52-n is connected to a first average value calculation unit 53 that calculates an average value of all stations from 1 station to n stations. The output terminal of the average value calculation unit 53 is connected to the normalization unit 54. The output signal S40 is input to the normalizing section 54. The normalization unit 54 has a function of normalizing the output signal S40 using the output signal S53 of the average value calculation unit 53.

【0011】図3は、図2中の相関演算部51−1の一
例を示す構成ブロック図である。この相関演算部は、デ
ータDinの入力端子INを有している。入力端子IN
は、1パスからmパスに対応する乗算部51C1〜51
Cmの各第1の入力端子に接続されている。又、この相
関演算部は、拡散符号発生部51Aを備えている。拡散
符号発生部51Aは、1パスからmパスに対応するディ
レイ部51B1〜51Bnの各入力端子に接続されてい
る。ディレイ部51B1〜51Bnの各出力端子は、乗
算部51C1〜51Cmの各第2の入力端子に接続され
ている。乗算部51C1〜51Cmの各出力端子は、1
パスからmパスに対応する累積加算部51D1〜51D
mの各入力端子に接続されている。累積加算部51D1
〜51Dmの各出力端子は、1パスからmパスに対応す
る正規化部51E1〜51Emの各入力端子に接続され
ている。正規化部51E1〜51Emの各出力端子は、
1パスからmパスに対応する相関値パワー計算部51F
1〜51Fmの各入力端子に接続されている。パワー計
算部51F1〜51Fmの各出力端子は、1パスからm
パスの全パスの合計パワー計算部51Gに接続されてい
る。尚、相関演算部51−2〜51−nも同様の構成で
ある。
FIG. 3 is a configuration block diagram showing an example of the correlation calculator 51-1 in FIG. The correlation calculator has an input terminal IN for data Din. Input terminal IN
Is the multiplication units 51C1 to 51C1 to 51 corresponding to 1 to m paths.
It is connected to each first input terminal of Cm. The correlation calculator also includes a spread code generator 51A. The spread code generating section 51A is connected to the respective input terminals of the delay sections 51B1 to 51Bn corresponding to the 1st to mth paths. The output terminals of the delay units 51B1 to 51Bn are connected to the second input terminals of the multiplication units 51C1 to 51Cm. Each output terminal of the multiplication units 51C1 to 51Cm has a value of 1
Cumulative addition units 51D1 to 51D corresponding to paths to m paths
m is connected to each input terminal. Cumulative addition unit 51D1
Each output terminal of ~ 51Dm is connected to each input terminal of the normalization units 51E1 to 51Em corresponding to 1 path to m path. The output terminals of the normalization units 51E1 to 51Em are
Correlation value power calculation unit 51F corresponding to 1 to m paths
It is connected to each input terminal of 1 to 51 Fm. Each output terminal of the power calculators 51F1 to 51Fm is from one path to m
It is connected to the total power calculation unit 51G of all the paths. The correlation calculation units 51-2 to 51-n have the same configuration.

【0012】図4は、図2中の平均パワー計算部52−
1の一例を示す構成ブロック図である。この平均パワー
計算部は、相関演算部51−1の出力信号を累積する累
積加算器52aを有し、該累積加算器52aの出力端子
が除算器52bの入力端子に接続されている。除算器5
2bは、相関演算部51−1の出力信号の平均値を計算
する機能を有している。尚、平均パワー計算部52−2
〜52−nも同様の構成である。
FIG. 4 shows the average power calculator 52- in FIG.
FIG. 3 is a configuration block diagram showing an example of No. 1. The average power calculation unit has a cumulative adder 52a that accumulates the output signal of the correlation calculation unit 51-1 and the output terminal of the cumulative adder 52a is connected to the input terminal of the divider 52b. Divider 5
2b has a function of calculating the average value of the output signal of the correlation calculation unit 51-1. The average power calculator 52-2
52-n have the same configuration.

【0013】図5は、図2中の平均値計算部53の一例
を示す構成ブロック図である。この平均値計算部53
は、平均パワー計算部51−2〜52−nの出力信号S
51−2〜S52−nを加算する加算器53aを有して
いる。加算器53aの出力端子は、出力信号S51−2
〜S52−nの平均値S53を計算する除算器53bに
接続されている。図6は、図2中の正規化部の一例を示
す構成ブロック図である。この正規化部は、出力信号S
40を平均値S53で除す除算器54Aで構成されてい
る。次に、図2の復調電力制御装置の動作を説明する。
一例として、第1局の動作に注目して説明を行う。相関
演算部では、出力信号S40を第1局の拡散符号により
各パス毎に相関をとり、第1局の相関値パワーCorr1を
求める。ここで、相関値パワーCorr1を求めるための相
関演算部の詳細な動作を説明する。
FIG. 5 is a block diagram showing an example of the average value calculator 53 in FIG. This average value calculation unit 53
Is the output signal S of the average power calculation units 51-2 to 52-n.
It has an adder 53a for adding 51-2 to S52-n. The output terminal of the adder 53a outputs the output signal S51-2.
It is connected to the divider 53b which calculates the average value S53 of S52-n. FIG. 6 is a configuration block diagram showing an example of the normalization unit in FIG. This normalization unit outputs the output signal S
It is composed of a divider 54A that divides 40 by the average value S53. Next, the operation of the demodulation power control device of FIG. 2 will be described.
As an example, the operation of the first station will be focused on in the description. In the correlation calculator, the output signal S40 is correlated for each path with the spreading code of the first station, and the correlation value power Corr1 of the first station is obtained. Here, a detailed operation of the correlation calculation unit for obtaining the correlation value power Corr1 will be described.

【0014】例として、第1パスの動作について述べ
る。入力端子INから入力したデータDinは、次式
(1)で拡散符号発生部51Aから得た拡散符号codel
と乗算部51C1で乗算されてその乗算結果R1を累積
加算部D1に入力する。 R1=Din・Codel ・・・(1) このとき、ディレイB1を調整して、データDinに含ま
れる送信側の第1局の第1パスの拡散符号と受信側で発
生した拡散符号codel との同期が取れるようにタイミン
グを調整する。累積加算部51D1では、乗算結果R1
を所定の数(拡散ゲイン数:PG)だけ累積加算して累
積加算値S1を求め、正規化部51E1へ出力する。 S1=ΣR1(i)(i=1〜PG) ・・・(2) 正規化部51E1では、次式(3)で累積加算値S1を
所定の数(拡散ゲイン数) PGで除算することにより正規
化して相関値Corr1P1 を求め、パワー計算部51F1に
出力する。 Corr1P1=S1/PG ・・・(3) パワー計算部51F1では、次式(4)で相関値Corr1P
1 を自乗して相関値のパワーCorr1P1を求め、合計パワ
ー計算部51Gに出力する。 PCorr1P1=(Corr1P1) ・・・(4) 他のパス(即ち、第2パスからnパス)も同様に上記の
操作を行う。合計パワー計算部51Gでは、次式(5)
で各パスのパワー計算部51F1〜51Fnから得た相
関値のパワーPCorr1P1〜PCorr1Pnを全
て加算して第1局の相関値パワーCorr1 を求める。 Corr1=ΣPCorr1P(i)(i=1〜n) ・・・(5) この相関値Corr1 は第1局の信号のパワーを表してい
る。但し、局数が多いときには干渉の影響で相関値に含
まれる誤差が大きい。このため、長時間の平均値を用い
る方がより良い値が得られる。この相関値Corr1を図2
中の平均パワー計算部52−1へに出力する。平均パワ
ー計算部52−1では、一定サンプル数M(例えばM=
100)の平均値Ave(1)を次式(6)で求め、平
均値計算部53へ出力する。 Ave(1)={ΣCorr(i)}/M(i=1〜M)・・・(6) 他の局(第2局から第n局)も同様に上記の動作を行
う。
As an example, the operation of the first pass will be described. The data Din input from the input terminal IN is the spread code codel obtained from the spread code generator 51A by the following equation (1).
Is multiplied by the multiplication unit 51C1 and the multiplication result R1 is input to the cumulative addition unit D1. R1 = Din · Codel (1) At this time, the delay B1 is adjusted so that the spreading code of the first path of the first station on the transmitting side and the spreading code codel generated on the receiving side are included in the data Din. Adjust the timing to be in sync. In the cumulative addition unit 51D1, the multiplication result R1
Is cumulatively added by a predetermined number (spreading gain number: PG) to obtain a cumulative addition value S1 and output to the normalization unit 51E1. S1 = ΣR1 (i) (i = 1 to PG) (2) In the normalization unit 51E1, the cumulative addition value S1 is divided by a predetermined number (spreading gain number) PG by the following equation (3). The correlation value Corr1P1 is obtained by normalization and output to the power calculation unit 51F1. Corr1P1 = S1 / PG (3) In the power calculation unit 51F1, the correlation value Corr1P is calculated by the following equation (4).
The power Corr1P1 of the correlation value is obtained by squaring 1 and output to the total power calculator 51G. PCorr1P1 = (Corr1P1) 2 (4) Other paths (that is, the second to nth paths) similarly perform the above operation. In the total power calculation unit 51G, the following equation (5)
Then, all the powers PCorr1P1 to PCorr1Pn of the correlation values obtained from the power calculation units 51F1 to 51Fn of each path are added to obtain the correlation value power Corr1 of the first station. Corr1 = ΣPCcorr1P (i) (i = 1 to n) (5) This correlation value Corr1 represents the power of the signal of the first station. However, when the number of stations is large, the error included in the correlation value is large due to the influence of interference. Therefore, a better value can be obtained by using the average value for a long time. This correlation value Corr1 is shown in FIG.
It outputs to the inside average power calculation part 52-1. In the average power calculation unit 52-1 a fixed number of samples M (for example M =
The average value Ave (1) of 100) is calculated by the following equation (6) and output to the average value calculation unit 53. Ave (1) = {ΣCorr (i)} / M (i = 1 to M) (6) Other stations (second station to nth station) also perform the above operation in the same manner.

【0015】このCDMAシステムでは、各局の信号はパワ
ーコントロールされているため、各局の受信信号のパワ
ーレベルはほぼ等しいと仮定できる。従って、平均パワ
ー計算部52−1〜52−nから得た出力信号S52−
1〜S52−nを平均することにより、更に正確な1局
当たりのパワーを得ることができる。平均値計算部53
では、平均パワー計算部52−1〜52−nから得た各
局の平均値Ave1〜Avenから全局のパワーの平均
値Avetotalを次式(7)で求め、正規化部54へ出力す
る。 Avetotal={ΣAve(i)}/n ・・・(7) (i=1〜n) 正規化部54では、次式(8)で全局のパワーの平均値
Avetotalを用いて図1中のADC40の出力信号S40
であるデジタル受信信号Din(t)を正規化し、該正
規化したデジタル受信信号DAveを求めて復調部へ出
力する。 DAve(t)=Din(t)/Avetotal ・・・(8) この受信信号DAveが復調電力制御装置の出力信号S
50になる。次に、上記のデジタル受信信号DAveの
各局のパワーの正規化の原理を数式により説明する。
In this CDMA system, since the signals of the stations are power-controlled, it can be assumed that the received signals of the stations have almost the same power level. Therefore, the output signals S52- obtained from the average power calculation units 52-1 to 52-n
By averaging 1 to S52-n, more accurate power per station can be obtained. Average value calculator 53
Then, from the average values Ave1 to Aven of each station obtained from the average power calculation units 52-1 to 52-n, the average value Avetotal of the power of all the stations is calculated by the following equation (7) and output to the normalization unit 54. Avetotal = {ΣAve (i)} / n (7) (i = 1 to n) In the normalization unit 54, the average value of the power of all stations is calculated by the following equation (8).
Output signal S40 of ADC 40 in FIG. 1 using Avetotal
The digital received signal Din (t) is normalized and the normalized digital received signal DAve is obtained and output to the demodulation unit. DAve (t) = Din (t) / Avetotal (8) This received signal DAve is the output signal S of the demodulation power control device.
50. Next, the principle of normalizing the power of each station of the digital received signal DAve will be described by using mathematical expressions.

【0016】送信局(第i局)のパワーをPS(i)、
受信局のAGCのゲインをGa(t)、及びAGCの後
の送信局(第i局)の信号のパワーをPr(i)とす
る。簡単のため、ノイズの成分はないものとする。アン
テナの受信信号のパワーDinは、n局の送信局の信号
が多重されているので、次式(9)のようになる。 Din=ΣPS(i) ・・・(9) (i=1〜n) AGCの後の受信信号のパワーDGinは次式(10)
のようになる。 DGin=Din/Ga(t)=ΣPS(i)/Ga(t) ・・・(10) 第i局のパワーは次式(11)で表される。 Pr(i)=PS(i)/Ga(t) ・・・(11) よって、出力値DAveは次式(12)のようになる。 DAve=Din/Avetotal =ΣPr(i)/Avetotal=n×Pra/Avetotal=n×Ns ・・・(12) 但し、 Pra;ΣPr(i)/n Ns;Pra/Avetotal ここで、DAveに含まれるl局の平均パワーをPout
とすると、Pout は次式(13)のようになる。 Pout =DAve/n=n×Ns/n=Ns ・・・(13) となる。
The power of the transmitting station (i-th station) is PS (i),
The gain of the AGC of the receiving station is Ga (t), and the signal power of the transmitting station (i-th station) after AGC is Pr (i). For simplicity, it is assumed that there is no noise component. The power Din of the reception signal of the antenna is expressed by the following equation (9) because the signals of the transmission stations of n stations are multiplexed. Din = ΣPS (i) (9) (i = 1 to n) The power DGin of the received signal after AGC is expressed by the following equation (10).
become that way. DGin = Din / Ga (t) = ΣPS (i) / Ga (t) (10) The power of the i-th station is expressed by the following equation (11). Pr (i) = PS (i) / Ga (t) (11) Therefore, the output value DAve is expressed by the following equation (12). DAve = Din / Avetotal = ΣPr (i) / Avetotal = n × Pra / Avetotal = n × Ns (12) However, Pra; ΣPr (i) / nNs; Pra / Avetotal Here, included in DAve The average power of l station is Pout
Then, Pout is expressed by the following equation (13). Pout = DAve / n = n × Ns / n = Ns (13)

【0017】以上のように、Praは各局の受信信号の
パワーの平均値、NsはAvetotalに対するPraの比、
及びPout は各局1局の信号のパワーである。このよう
に、出力信号DAveに含まれる各局の信号のパワーは
Nsに正規化される。式(6)にも示したように、Av
e(i)は相関値のパワーCorr(i)の時間平均の
値である。Corr(i)は相関の精度が十分であれ
ば、その時間での信号のパワーを表しているので、相関
の精度が十分であると仮定すると、次式(14)の関係
が成り立つ。 Corr(i)=Pr(i) ・・・(14) Ave(i)は第i局の或る時間内の信号の平均パワー
を示しているので次式(15)の関係が成り立つ。 Ave(i)=Pr(i) ・・・(15) 従って、全局のパワーの平均値Avetotalは次式(16)
のようになる。 Avetotal=ΣPr(i)/n=Pra ・・・(16) 以上より、上記の式(12),(13)は、それぞれ次
式(17),(18)のようになる。 Dout =D/Avetotal =ΣPr(i)/Pra=n×Pra/Pra=n×1 ・・・(17) Pout =n×1/n=1 ・・・(18) このように、ノイズ成分がなく、符号間干渉もない場合
には、出力値Dout は各局のパワーが常に一定のパワー
“1”になるように正規化されて出力される。実際の系
ではノイズの成分、符号間干渉、各局の信号のパワーの
ばらつき(パワーコントロールが不完全なことによる)
等により相関値Corr(i)が劣化し、式(14)の
関係が完全に成り立つとは限らない。しかし、上記に詳
細に説明したような平均を多用する方法を用いてAvetot
alを求めることにより、式(16)の関係が近似的に成
り立つようにしている。
As described above, Pra is the average value of the power of the received signal of each station, Ns is the ratio of Pra to Avetotal,
And Pout are the signal power of each station. In this way, the power of the signal of each station included in the output signal DAve is normalized to Ns. As shown in equation (6), Av
e (i) is a time average value of the power Corr (i) of the correlation value. Corr (i) represents the power of the signal at that time if the accuracy of the correlation is sufficient. Therefore, assuming that the accuracy of the correlation is sufficient, the relationship of the following expression (14) is established. Corr (i) = Pr (i) (14) Since Ave (i) represents the average power of the signal of the i-th station within a certain time, the relationship of the following expression (15) is established. Ave (i) = Pr (i) (15) Therefore, the average value Avetotal of the power of all stations is expressed by the following equation (16).
become that way. Avetotal = ΣPr (i) / n = Pra (16) From the above, the above equations (12) and (13) become the following equations (17) and (18), respectively. Dout = D / Avetotal = ΣPr (i) / Pra = n × Pra / Pra = n × 1 (17) Pout = n × 1 / n = 1 (18) Thus, the noise component is If there is no intersymbol interference, the output value Dout is normalized and output so that the power of each station is always a constant power "1". In a real system, noise components, intersymbol interference, and signal power variations at each station (due to imperfect power control)
For example, the correlation value Corr (i) deteriorates, and the relationship of Expression (14) is not always established. However, using the average-heavy method as detailed above, Avetot
By obtaining al, the relationship of Expression (16) is approximately established.

【0018】次に、図1の動作を説明する。複数の移動
局から送信されたアナログ信号は空中で多重され、アン
テナ10により受信される。ここで、移動局から送信さ
れる信号はパワーコントロールされているものとする。
アンテナ10で受信した信号は受信部20によりベース
バンド周波数にまで落とされる。このベースバンド信号
はAGC30により振幅の最大値が一定の信号に変換さ
れる。AGC30の出力信号S30はADC40により
アナログ/ デジタル変換され、復調電力制御装置50に
出力される。復調電力制御装置50では各局の信号のパ
ワーを正規化し、復調部60へ出力する。復調部60で
は各局ごとに拡散符号を用いて相関を取り、復調を行
う。以上のように、この第1の実施例では、ADC30
と復調部60との間に復調電力制御装置50を設けるこ
とにより、各局1局当たりのパワーの変動が少なくなる
ので、復調部60での計算の誤差が少なくなり、量子化
の誤差による誤り率が小さくなる。
Next, the operation of FIG. 1 will be described. The analog signals transmitted from a plurality of mobile stations are multiplexed in the air and received by the antenna 10. Here, it is assumed that the signal transmitted from the mobile station is power-controlled.
The signal received by the antenna 10 is dropped to the baseband frequency by the receiver 20. This baseband signal is converted by the AGC 30 into a signal having a constant maximum amplitude value. The output signal S30 of the AGC 30 is analog / digital converted by the ADC 40 and output to the demodulation power control device 50. The demodulation power control device 50 normalizes the power of the signal of each station and outputs it to the demodulation unit 60. The demodulation unit 60 uses a spread code for each station to perform correlation and demodulates. As described above, in the first embodiment, the ADC 30
By providing the demodulation power control device 50 between the demodulation unit 60 and the demodulation unit 60, the fluctuation of the power per station is reduced, so that the calculation error in the demodulation unit 60 is reduced and the error rate due to the quantization error is reduced. Becomes smaller.

【0019】第2の実施例 図7は、本発明の第2の実施例を示す受信装置の構成ブ
ロック図であり、図1中の要素と共通の要素には共通の
符号が付されている。この受信装置では、図1中の復調
電力制御装置50と復調部60との間に各局各パスの干
渉成分を除去する干渉除去部70が設けられている。次
に、図7の動作を説明する。復調電力制御装置50まで
の動作は第1の実施例と同じである。復調電力制御装置
50で各局のパワーが正規化された信号は、干渉除去部
70に出力される。干渉除去部70では、各局各パスの
干渉成分を除去する操作を行い、他局の干渉成分を除去
したデータS70を復調部60ヘ出力する。ここで、本
実施例のように、ADC40の出力側に復調電力制御装
置50を設けることにより、各局1局当たりのパワーの
変動が少なくなる。従って、干渉除去部70で信号を量
子化する精度が一定に保たれる。以上のように、この第
2の実施例では、ADC40と干渉除去部70との間に
復調電力制御装置50を設けることにより、各局1局当
たりのパワーの変動を少なくすることができる。そのた
め、干渉除去部70で出力信号S40を量子化する精度
が一定に保たれる。
Second Embodiment FIG. 7 is a block diagram showing the configuration of a receiving apparatus according to a second embodiment of the present invention. Elements common to those in FIG. 1 are designated by common reference numerals. . In this receiving device, an interference removing unit 70 for removing an interference component of each path of each station is provided between the demodulation power control device 50 and the demodulation unit 60 in FIG. Next, the operation of FIG. 7 will be described. The operation up to the demodulation power control device 50 is the same as in the first embodiment. The signal in which the power of each station is normalized by the demodulation power control device 50 is output to the interference removing unit 70. The interference removing unit 70 performs an operation of removing the interference component of each path of each station, and outputs the data S70 from which the interference component of another station is removed to the demodulation unit 60. Here, by providing the demodulation power control device 50 on the output side of the ADC 40 as in the present embodiment, fluctuations in power per station of each station are reduced. Therefore, the precision with which the interference canceller 70 quantizes the signal is kept constant. As described above, in the second embodiment, by providing the demodulation power control device 50 between the ADC 40 and the interference removing unit 70, it is possible to reduce the power fluctuation per station. Therefore, the accuracy with which the interference canceller 70 quantizes the output signal S40 is kept constant.

【0020】[0020]

【発明の効果】以上詳細に説明したように、第1及び第
2の発明によれば、複数のチャネルが多重されて受信し
たベースバンド信号から各局の信号の平均パワーを求
め、この平均パワーを用いて各局の信号のパワーを正規
化するようにしたので、局数の変化による復調時の各局
の信号パワーの変動を小さくすることができ、復調部で
の量子化の誤差による誤り率を小さくできる。第3の発
明によれば、複数のチャネルが多重されて受信したベー
スバンド信号から各局の信号の平均パワーを求め、この
平均パワーを用いて各局の信号のパワーを正規化するよ
うにしたので、局数の変化による復調時の各局の信号の
パワーレベルが一定に保たれる。そのため、干渉除去部
での量子化の精度を一定に保つことができ、量子化の誤
差による誤り率を減少させることができる。
As described in detail above, according to the first and second aspects of the invention, the average power of the signal of each station is obtained from the baseband signal received by multiplexing a plurality of channels, and this average power is calculated. Since the signal power of each station is normalized by using it, the fluctuation of the signal power of each station at the time of demodulation due to the change in the number of stations can be reduced, and the error rate due to the quantization error in the demodulation unit can be reduced. it can. According to the third invention, the average power of the signal of each station is obtained from the baseband signal received by multiplexing a plurality of channels, and the power of the signal of each station is normalized using this average power. The power level of the signal of each station during demodulation due to the change in the number of stations is kept constant. Therefore, the accuracy of the quantization in the interference canceller can be kept constant, and the error rate due to the quantization error can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例を示す受信装置の構成ブ
ロック図である。
FIG. 1 is a configuration block diagram of a receiving device showing a first embodiment of the present invention.

【図2】図1中の復調電力制御装置の一例を示す構成ブ
ロック図である。
FIG. 2 is a configuration block diagram showing an example of a demodulation power control device in FIG.

【図3】図2中の相関演算部の一例を示す構成ブロック
図である。
FIG. 3 is a configuration block diagram showing an example of a correlation calculation unit in FIG.

【図4】図2中の平均パワー計算部の一例を示す構成ブ
ロック図である。
4 is a configuration block diagram showing an example of an average power calculation unit in FIG.

【図5】図2中の平均値計算部の一例を示す構成ブロッ
ク図である。
5 is a configuration block diagram showing an example of an average value calculation unit in FIG. 2. FIG.

【図6】図2中の正規化部の一例を示す構成ブロック図
である。
FIG. 6 is a configuration block diagram showing an example of a normalization unit in FIG.

【図7】本発明の第2の実施例を示す受信装置の構成ブ
ロック図である。
FIG. 7 is a configuration block diagram of a receiving device showing a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

20 受信部 30 自動利得制御部 40 アナログ/デジタル変換部 50 復調電力制御装置 51−1〜51−n 相関演算部 52−1〜52−n 平均パワー計算部 53 平均値計算部 54 正規化部 60 復調部 70 干渉除去部 20 receiver 30 automatic gain controller 40 analog / digital converter 50 demodulation power controller 51-1 to 51-n correlation calculator 52-1 to 52-n average power calculator 53 average value calculator 54 normalizer 60 Demodulation unit 70 Interference removal unit

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 複数の移動局の信号が多重されたアナロ
グ信号を受信し、該アナログ信号をベースバンド周波数
の信号に変換する受信部と、 前記ベースバンド周波数の信号の振幅に応じて利得を制
御して振幅の最大値が常に一定の出力信号に変換する自
動利得制御部と、 前記自動利得制御部の出力信号をアナログ信号からデジ
タル信号へ変換するアナログ/デジタル変換部と、 前記アナログ/デジタル変換部の出力信号と前記各移動
局毎の拡散符号とを用いて相関を取って復調を行う復調
部とを備え、 符号分割多元接続通信方式に基づき前記各移動局間で同
時通話を行う移動通信システムの受信装置において、 前記アナログ/デジタル変換部の出力信号から前記各移
動局の信号のパワーを推定し該各移動局の信号のパワー
を正規化する復調電力制御装置を、 設けたことを特徴とする受信装置。
1. A receiving unit for receiving an analog signal in which signals of a plurality of mobile stations are multiplexed and converting the analog signal into a signal of a baseband frequency, and a gain according to an amplitude of the signal of the baseband frequency. An automatic gain control unit that controls and converts an output signal whose amplitude maximum value is always constant; an analog / digital conversion unit that converts the output signal of the automatic gain control unit from an analog signal to a digital signal; A mobile station for simultaneous communication between the mobile stations based on a code division multiple access communication system, comprising a demodulation section for performing correlation using the output signal of the conversion section and the spread code for each mobile station. In a receiver of a communication system, demodulation for estimating the power of the signal of each mobile station from the output signal of the analog / digital converter and normalizing the power of the signal of each mobile station A force control device, the receiving apparatus characterized by comprising.
【請求項2】 前記復調電力制御装置は、 前記アナログ/デジタル変換部の出力信号から前記各移
動局の信号パワーを計算する信号パワー計算部と、 前記各移動局の信号パワーから全移動局の平均パワーを
求める第1の平均値計算部と、 前記各移動局の全体の平均パワーを用いて各局のパワー
を正規化する正規化部とを備え、 前記信号パワー計算部は、 前記各移動局のうちの所望局の各パス毎の前記アナログ
/デジタル変換部の出力信号と拡散符号との相関値を求
める相関演算部と、 所望局の各パス毎の前記相関値を合成して該所望局の相
関値パワーを求める相関値パワー計算部と、 前記所望局の相関値パワーを平均して該所望局の信号パ
ワーを求める第2の平均値計算部とを、 備えたことを特徴とする請求項1記載の受信装置。
2. The demodulation power control device includes a signal power calculation unit that calculates the signal power of each mobile station from the output signal of the analog / digital conversion unit, and a total power of all mobile stations from the signal power of each mobile station. A first average value calculation unit that obtains average power; and a normalization unit that normalizes the power of each station using the overall average power of each mobile station, wherein the signal power calculation unit includes each of the mobile stations. A correlation calculation unit for obtaining a correlation value between the output signal of the analog / digital conversion unit and a spread code for each path of the desired station, and the desired station by combining the correlation value for each path of the desired station. And a second average value calculating section for averaging the correlation value powers of the desired station to obtain the signal power of the desired station. Item 1. The receiving device according to item 1.
【請求項3】 請求項1記載の受信部と、請求項1記載
の自動利得制御部と、請求項1記載のアナログ/デジタ
ル変換部と、前記複数の移動局の信号が多重された信号
の該各移動局の各パスの干渉成分を除去する干渉除去部
と、前記干渉除去部の出力信号と前記各移動局毎の拡散
符号とを用いて相関を取って復調を行う復調部とを備え
た受信装置において、 前記干渉除去部の前に請求項2記載の復調電力制御装置
を設けたことを特徴とする受信装置。
3. A receiving unit according to claim 1, an automatic gain control unit according to claim 1, an analog / digital converting unit according to claim 1, and a signal obtained by multiplexing signals of the plurality of mobile stations. An interference removing unit that removes an interference component of each path of each mobile station, and a demodulating unit that performs correlation by performing demodulation using an output signal of the interference removing unit and a spreading code of each mobile station are provided. In the receiving device, the demodulation power control device according to claim 2 is provided before the interference removing unit.
JP7140368A 1995-06-07 1995-06-07 Receiver Withdrawn JPH08335928A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7140368A JPH08335928A (en) 1995-06-07 1995-06-07 Receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7140368A JPH08335928A (en) 1995-06-07 1995-06-07 Receiver

Publications (1)

Publication Number Publication Date
JPH08335928A true JPH08335928A (en) 1996-12-17

Family

ID=15267206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7140368A Withdrawn JPH08335928A (en) 1995-06-07 1995-06-07 Receiver

Country Status (1)

Country Link
JP (1) JPH08335928A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999023777A1 (en) * 1997-11-04 1999-05-14 Sharp Kabushiki Kaisha Transmitter and receiver for multi-rated delay multiplexing direct spread spectrum communication system, and multi-rated delay multiplexing direct spread spectrum communication system
WO2000054528A1 (en) * 1999-03-06 2000-09-14 Matsushita Electric Industrial Co., Ltd. Radio receiver and received power amplifying method
JP2002246950A (en) * 2001-02-15 2002-08-30 Hitachi Kokusai Electric Inc Code division multiple access receiver
JP2003509949A (en) * 1999-09-10 2003-03-11 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Circuit used for communication system and receiver unit
US7333420B2 (en) 2001-01-31 2008-02-19 Ntt Docomo, Inc. Receiving process method and receiving apparatus in mobile communication system
JP2008524882A (en) * 2004-12-20 2008-07-10 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Scaling in the receiver for coded digital data symbols

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999023777A1 (en) * 1997-11-04 1999-05-14 Sharp Kabushiki Kaisha Transmitter and receiver for multi-rated delay multiplexing direct spread spectrum communication system, and multi-rated delay multiplexing direct spread spectrum communication system
US6738448B1 (en) 1997-11-04 2004-05-18 Sharp Kabushiki Kaisha Transmitter and receiver for multi-rated delay multiplexing direct spread spectrum communication system, and multi-rated delay multiplexing direct spread spectrum communication system
WO2000054528A1 (en) * 1999-03-06 2000-09-14 Matsushita Electric Industrial Co., Ltd. Radio receiver and received power amplifying method
EP1077577A1 (en) * 1999-03-06 2001-02-21 Matsushita Electric Industrial Co., Ltd. Radio receiver and received power amplifying method
US6778616B1 (en) 1999-03-06 2004-08-17 Matsushita Electric Industrial Co., Ltd. Radio reception apparatus and received power amplification method
EP1077577A4 (en) * 1999-03-06 2005-11-16 Matsushita Electric Ind Co Ltd Radio receiver and received power amplifying method
JP2003509949A (en) * 1999-09-10 2003-03-11 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Circuit used for communication system and receiver unit
US7333420B2 (en) 2001-01-31 2008-02-19 Ntt Docomo, Inc. Receiving process method and receiving apparatus in mobile communication system
JP2002246950A (en) * 2001-02-15 2002-08-30 Hitachi Kokusai Electric Inc Code division multiple access receiver
JP4558225B2 (en) * 2001-02-15 2010-10-06 株式会社日立国際電気 Code division multiple access receiver
JP2008524882A (en) * 2004-12-20 2008-07-10 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Scaling in the receiver for coded digital data symbols
JP4917547B2 (en) * 2004-12-20 2012-04-18 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Scaling in the receiver for coded digital data symbols

Similar Documents

Publication Publication Date Title
RU2156545C2 (en) Method for controlling real transmission power of base station in cellular communication network and device which implements said method
US7313167B2 (en) Signal-to-noise ratio estimation of CDMA signals
JP4574924B2 (en) Method and apparatus for determining a closed loop power control set point in a wireless packet data communication system
US7792151B2 (en) CDMA receiving apparatus and method
JP3523236B2 (en) Data rate determination based on power spectral density estimation
EP0893888A2 (en) Spread spectrum communication apparatus and rake receiver
JP4653917B2 (en) Method and system for measuring and adjusting the quality of orthogonal transmit diversity signals
US20080070536A1 (en) Method and apparatus for estimating and controlling initial time slot gain in a wireless communication system
JPH08508871A (en) Method and apparatus for providing communication link quality indication
EP0945995A2 (en) RAKE receiver with adaptive delay profile measurement
WO2001048933A1 (en) Receiver and gain control method
KR19990044064A (en) Gain Control Method and System Based on Non-Orthogonal Noise Energy
US6633766B1 (en) Frequency selective RF output power calibration using digital and analog power measurements for use in a cellular telecommunications system
WO1999044319A1 (en) Method and apparatus for interference rejection
JPH07170242A (en) Cdma base station receiver
EP0794627A2 (en) Spread spectrum communication apparatus
JPH08335928A (en) Receiver
EP1156600A1 (en) Cdma terminal and cdma method
AU745469B2 (en) Reception method and apparatus in CDMA system
US6724808B1 (en) Transmission power control method of measuring Eb/N0 after weighted signals are combined
JPH07273713A (en) Reception equipment, base station reception system, and mobile station reception system
US7978786B2 (en) Apparatus and method for quantization in digital communication system
WO2000060889A1 (en) Cdma base station device and cdma communication method
EP1569350A1 (en) Power limit device and digital radio transmitter using the same
JP3891270B2 (en) Automatic gain controller

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020903