JPH0833342B2 - Metal tissue inspection method - Google Patents

Metal tissue inspection method

Info

Publication number
JPH0833342B2
JPH0833342B2 JP63288356A JP28835688A JPH0833342B2 JP H0833342 B2 JPH0833342 B2 JP H0833342B2 JP 63288356 A JP63288356 A JP 63288356A JP 28835688 A JP28835688 A JP 28835688A JP H0833342 B2 JPH0833342 B2 JP H0833342B2
Authority
JP
Japan
Prior art keywords
illumination light
light
image
internal
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63288356A
Other languages
Japanese (ja)
Other versions
JPH02134541A (en
Inventor
竜太郎 児玉
淳 廣瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP63288356A priority Critical patent/JPH0833342B2/en
Publication of JPH02134541A publication Critical patent/JPH02134541A/en
Publication of JPH0833342B2 publication Critical patent/JPH0833342B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は顕微鏡を用いた金属組織の検査方法に関し、
さらに詳しくは例えば合金組織のなかに含まれる特定の
成分の面積率を検出するのに好適な検査方法に関する。
TECHNICAL FIELD The present invention relates to a method for inspecting a metal structure using a microscope,
More specifically, the present invention relates to an inspection method suitable for detecting the area ratio of a specific component contained in the alloy structure.

従来の技術 例えばアルミニウム合金の表面組織のなかからSi(シ
リコン)結晶部の析出面積率を検出する方法として第9
図に示すような方法がある。
2. Description of the Related Art For example, as a method for detecting the precipitation area ratio of Si (silicon) crystal part from the surface structure of aluminum alloy,
There is a method as shown in the figure.

これは定盤1上にセットされた試料2に対し、落射式
顕微鏡3の鏡筒4および対物レンズ5を通してハーフミ
ラー6で反射した内部照明光源7の照明光L1を照射する
一方、対物レンズ5がとらえた試料2の表面組織をハー
フミラー6を通して二次元の固体撮像素子(例えばCCD
等)型のカメラ8で撮像する。そして、カメラ8がとら
えた画像を画像処理装置9にて所定のレベルで明暗二値
化し、前述したSi結晶部に相当するところの明部の面積
を演算して求めることにより、Si結晶部の析出面接率が
得られる。
This is for irradiating the sample 2 set on the surface plate 1 with the illumination light L 1 of the internal illumination light source 7 reflected by the half mirror 6 through the lens barrel 4 and the objective lens 5 of the epi-illumination microscope 3, while the objective lens The two-dimensional solid-state image pickup device (for example, CCD
And the like) type camera 8. Then, the image captured by the camera 8 is binarized at a predetermined level by the image processing device 9, and the area of the bright portion corresponding to the above-described Si crystal portion is calculated to obtain the Si crystal portion. A deposition interview rate can be obtained.

すなわち、第3図にも示すように試料2の表面は一旦
平滑に仕上げたのちにエッチングを施すことにより、Si
結晶部10の露出面は鏡面に近い平滑面のままであるのに
対してAl共晶層11はエッチングにより荒らされて粗面と
なっている。したがって、内部照明光L1を試料2の表面
に照射すると、Al共晶層11では粗面のために乱反射して
反射光のごく一部が対物レンズ5側に入射するのに対
し、Si結晶部10では平滑面であるために照射光が正反射
して反射光の大部分が対物レンズ5側に入射することに
なる。つまり、前述した二値化画像では正反射光の強い
部分がSi結晶部10として認識されて抽出されることにな
る。
That is, as shown in FIG. 3, the surface of the sample 2 is once finished to be smooth and then etched to obtain Si.
The exposed surface of the crystal part 10 remains a smooth surface close to a mirror surface, whereas the Al eutectic layer 11 is roughened by etching and becomes a rough surface. Therefore, when the surface of the sample 2 is irradiated with the internal illumination light L 1 , the Al eutectic layer 11 is diffusely reflected due to the rough surface and a small part of the reflected light is incident on the objective lens 5 side, whereas the Si crystal is Since the part 10 has a smooth surface, the irradiation light is specularly reflected, and most of the reflected light is incident on the objective lens 5 side. That is, in the above-described binarized image, the portion where the specular reflection light is strong is recognized and extracted as the Si crystal portion 10.

発明が解決しようとする課題 しかしながら従来の方法においては、反射光の明るさ
の違いから平滑面であるところのSi結晶部10を抽出する
方式であるため、エッチングにより腐食した部分が必ず
しも粗面とはならずに偶然に平滑面に近い状態になるよ
うなことがあるとSi結晶部10とAl共晶層11とを明確に区
別できないことになる。したがって、Si結晶部10を抽出
するのに最適しきい値を設定することがきわめて困難で
検出誤差が生じやすい。しかも、従来の方法では外光の
影響を受けやすく、これが上記の検出誤差を一段と大き
くする一因となっている。
However, in the conventional method, since it is a method of extracting the Si crystal portion 10 which is a smooth surface from the difference in the brightness of reflected light, the portion corroded by etching is not necessarily a rough surface. However, if it happens that the state becomes close to a smooth surface, the Si crystal part 10 and the Al eutectic layer 11 cannot be clearly distinguished. Therefore, it is extremely difficult to set the optimum threshold value for extracting the Si crystal portion 10, and a detection error is likely to occur. Moreover, the conventional method is easily affected by the external light, which is one of the causes of further increasing the detection error.

本発明は以上のような点に鑑みてなされたもので、そ
の目的とするところは、照明条件が異なる三種類の画像
から、相互に重複する部分のみを例えば組織の平滑面と
して抽出することで精度の向上を図った検査方法を提供
するものである。
The present invention has been made in view of the above points, and an object thereof is to extract only mutually overlapping portions from, for example, a smooth surface of a tissue from three types of images with different illumination conditions. The present invention provides an inspection method with improved accuracy.

課題を解決するための手段 本発明は、試料表面の粗面部と平滑面との光反射特性
の相違に基づいて表面組織の特定の成分を抽出して検査
する方法であって、試料に対し顕微鏡の対物レンズを通
して内部照明光を照射するとともに試料表面と所定角度
をなす斜め方向から外部照明光を照射し、内部照明光と
外部照明光の双方を照射した場合と内部照射光のみを照
射した場合、および外部照明光のみを照射した場合のそ
れぞれについて、対物レンズがとらえた試料の表面組織
を撮像装置で撮像し、内部照明光照射時の画像と内外部
照明光同時照射時の画像とを比較して双方の画像のうち
明るさの差のない明部を表面組織の特定の成分の領域と
して抽出して明暗反転した上で明確二値化するととも
に、外部照明光照射時の画像を明暗二値化して特定の成
分の領域を抽出し、二つの二値化画像を合成して各二値
化画像から抽出した領域が相互に重複する部分のみを特
定成分の真の領域として抽出することを特徴としてい
る。
Means for Solving the Problems The present invention is a method for extracting and inspecting a specific component of a surface structure based on a difference in light reflection characteristics between a rough surface portion and a smooth surface of a sample surface, and a microscope for the sample. When the internal illumination light is emitted through the objective lens of, and the external illumination light is emitted from an oblique direction that forms a predetermined angle with the sample surface, both the internal illumination light and the external illumination light are emitted, and only the internal illumination light is emitted. , And the case of irradiating only the external illumination light, the surface texture of the sample captured by the objective lens is imaged by the imaging device, and the image of the internal illumination light irradiation and the image of the internal and external illumination light simultaneous irradiation are compared. Then, the bright part of both images that has no difference in brightness is extracted as the region of the specific component of the surface tissue, and the light and dark are inverted before binarization. Quantify and identify It is characterized in that the region of the component is extracted, the two binarized images are combined, and only the part where the regions extracted from the respective binarized images overlap each other is extracted as the true region of the specific component.

作用 この方法によるた、照明条件が異なれば、たとえ同一
対象物を撮像したとしても反射光量の変動のために各画
像から抽出した特定成分の領域は少しずつ異なる。そこ
で例えば金属組織の平滑面に対応する領域について、内
部照明光照射時の画像と内外部照明光同時照射時の画像
とを比較して双方の画像のうち明るさの差のない部分、
すなわち検査すべき金属組織が例えばアルミニウム合金
である場合に、Si結晶部は上記二照射条件においても明
度に変化はないが、Al共晶層は双方の照射条件で明度が
変化することに着目して、Si結晶部を抽出するべく、明
るさの差のない明部を表面組織の特定の成分の領域とし
て抽出して明暗反転した上で明暗二値化する。同様に外
部照明光照射時の画像を明暗二値化して特定の成分の領
域を抽出する。そして、二つの二値化画像を合成して各
二値化画像から抽出した領域が相互に重複する部分のみ
を真の平滑面領域として抽出することでその抽出誤差が
小さくなる。
Action According to this method, if the illumination conditions are different, even if the same object is imaged, the region of the specific component extracted from each image is slightly different due to the fluctuation of the reflected light amount. Therefore, for example, for the region corresponding to the smooth surface of the metallographic structure, the image at the time of internal illumination light irradiation is compared with the image at the time of internal / external illumination light simultaneous irradiation, and there is no difference in brightness between both images,
That is, when the metallographic structure to be inspected is, for example, an aluminum alloy, the Si crystal part does not change in brightness even under the above two irradiation conditions, but the Al eutectic layer focuses on the change in brightness under both irradiation conditions. Then, in order to extract the Si crystal part, the bright part having no difference in brightness is extracted as the region of the specific component of the surface texture, the light and dark are inverted, and then the light and dark binarization is performed. Similarly, the image at the time of external illumination light irradiation is binarized to extract the region of a specific component. The extraction error is reduced by synthesizing the two binarized images and extracting only the portions where the regions extracted from the respective binarized images overlap each other as the true smooth surface region.

実施例 第1図〜第7図は本発明の一実施例を示す図であっ
て、検査装置の具体的構成としては第2図に示すように
試料2に対し斜め方向から照射光L2を照射する外部照明
光源12を備えている点で第9図のものと異なっている。
Example Figure 1 - Figure 7 is a diagram showing an embodiment of the present invention, the illumination light L 2 from an oblique direction with respect to the sample 2 as a specific configuration of the inspection apparatus shown in FIG. 2 It is different from that of FIG. 9 in that an external illumination light source 12 for illuminating is provided.

先ず第2図および第3図に示めすように内部照明光源
7のみを点灯させてその内部照明光L1を対物レンズ5を
通して試料2の表面に照射する。この時、Al共晶層11で
は前述したようにエッチングにより粗面となっているた
めに内部照明光L1が乱反射して反射光のごく一部が対物
レンズ5側に入射する。一方、Si結晶部10ではその表面
が鏡面に近い平滑面となっているために内部照明光L1
正反射して反射光の大部分が明るさとして対物レンズ5
側に入射する。
First, as shown in FIGS. 2 and 3, only the internal illumination light source 7 is turned on, and the internal illumination light L 1 is applied to the surface of the sample 2 through the objective lens 5. At this time, since the Al eutectic layer 11 has a rough surface due to etching as described above, the internal illumination light L 1 is diffusely reflected and a small part of the reflected light enters the objective lens 5 side. On the other hand, since the surface of the Si crystal portion 10 is a smooth surface close to a mirror surface, the internal illumination light L 1 is specularly reflected, and most of the reflected light is regarded as brightness and the objective lens 5
Incident on the side.

対物レンズ5側に戻ってくるAl共晶層11からの乱反射
光とSi結晶部10からの正反射光はそれぞれの物質の明る
さとしてカメラ8でとらえられ、第2図の画像処理装置
9の画像メモリに記憶される。画像の明るさはA/D変換
器により1画面を例えば256×240の画素に標本化し、64
段階の濃度レベルに量子化されている。
The diffusely reflected light from the Al eutectic layer 11 and the specularly reflected light from the Si crystal portion 10 returning to the objective lens 5 side are captured by the camera 8 as the brightness of each substance, and the image processing device 9 shown in FIG. It is stored in the image memory. For image brightness, one screen is sampled into 256 x 240 pixels by A / D converter,
It has been quantized into graded density levels.

続いて、照明光源の点灯状態を切り換えて、第2図お
よび第4図に示すように外部照明光源12のみを点灯させ
てその外部照明光L2を試料2の表面に対し所定角度θを
もって斜め方向から照射する。この時、Al共晶層11では
粗面であるために外部照明光L2が乱反射して反射光のご
く一部が対物レンズ5側に明るさとして戻ってくる。一
方、Si結晶部10では平滑面であるために外部照明光L2
入射角θと等しい角度で正反射し、したがってその正反
射光は対物レンズ5側にはほとんど戻ってこない。そし
て、対物レンズ5側に戻ってくる反射光は第3図と同様
にカメラ8でとらえられて画像処理装置9の画像メモリ
に記憶される。
Subsequently, the lighting state of the illumination light source is switched, and only the external illumination light source 12 is turned on as shown in FIGS. 2 and 4, and the external illumination light L 2 is obliquely inclined with respect to the surface of the sample 2 at a predetermined angle θ. Irradiate from the direction. At this time, since the Al eutectic layer 11 is a rough surface, the external illumination light L 2 is diffusely reflected, and a small part of the reflected light returns to the objective lens 5 side as brightness. On the other hand, since the Si crystal portion 10 is a smooth surface, the external illumination light L 2 is regularly reflected at an angle equal to the incident angle θ, and thus the regular reflection light hardly returns to the objective lens 5 side. Then, the reflected light returning to the objective lens 5 side is captured by the camera 8 and stored in the image memory of the image processing device 9 as in FIG.

次に、再度照明条件を換えるべく内部照明光源7と外
部照明光源12の双方を点灯させて第1図(A)に示すよ
うに試料2の表面を照射する。この時、Al共晶層11およ
びSi結晶部10での反射状態は第3図と第4図の状態を合
成した状態、すなわち内部照明光7のみを照射した場合
と外部照明光12のみを照射した場合との合成状態となっ
ており、対物レンズ5側に戻ってくるAl共晶層11および
Si結晶部10からの反射光は、上記と同様にカメラ8でと
らえられて画像処理装置9の画像メモリに記憶される。
Next, in order to change the illumination condition again, both the internal illumination light source 7 and the external illumination light source 12 are turned on and the surface of the sample 2 is irradiated as shown in FIG. 1 (A). At this time, the reflection state at the Al eutectic layer 11 and the Si crystal portion 10 is a state in which the states of FIGS. 3 and 4 are combined, that is, only when the internal illumination light 7 is applied and when the external illumination light 12 is applied. It is in a combined state with that of the Al eutectic layer 11 returning to the objective lens 5 side and
The reflected light from the Si crystal portion 10 is captured by the camera 8 and stored in the image memory of the image processing device 9 as in the above.

上記のように照明条件を変えて画像処理装置9に記憶
した三種類の画像は例えば第5図〜第7図のようにな
る。すなわち、第5図は内部照明光7のみを照射した場
合の画像を示しており、また第6図は外部照明光12のみ
を照射した場合の画像を示しており、さらに第7図は内
部照明光7と外部照明光12の双方を照射した場合の画像
を示している。
The three types of images stored in the image processing device 9 by changing the illumination conditions as described above are as shown in FIGS. 5 to 7, for example. That is, FIG. 5 shows an image when only the internal illumination light 7 is applied, and FIG. 6 shows an image when only the external illumination light 12 is applied. Further, FIG. 7 shows the internal illumination. The image when both the light 7 and the external illumination light 12 are irradiated is shown.

これら三種類の画像を比較すると明らかなように、第
5図および第7図では平滑面であるSi結晶部10からの正
反射光が対物レンズ5側に入射するために第5図および
第7図ではSi結晶部10が白色部分として表れているのに
対し、第6図ではSi結晶部10の正反射光が対物レンズ5
側にほとんど入射しないためにSi結晶部10は黒色部分と
して表れている。
As is clear from comparison of these three types of images, in FIGS. 5 and 7, since the specularly reflected light from the Si crystal portion 10 which is a smooth surface is incident on the objective lens 5 side, FIGS. In the figure, the Si crystal portion 10 is shown as a white portion, whereas in FIG. 6, the specularly reflected light of the Si crystal portion 10 is the objective lens 5
The Si crystal portion 10 appears as a black portion because it hardly enters the side.

したがって、第5図および第7図でSi結晶部10として
認識された白色部分と、第6図でSi結晶部10として認識
された黒色部分とが完全一致していれば問題はないので
あるが、上記各図から明らかなように反射特性の違いの
ために各画像上でSi結晶部10と認識された領域形状が少
しづつ異なっている。
Therefore, if the white portion recognized as the Si crystal portion 10 in FIGS. 5 and 7 and the black portion recognized as the Si crystal portion 10 in FIG. As is clear from the above figures, the shape of the region recognized as the Si crystal portion 10 on each image is slightly different due to the difference in reflection characteristics.

そこで、第1図(B)に示すように、画像処理装置9
に記憶されているところの内部照明光L1照射時の画像P1
と、内部照明光L1および外部照射光L2の双方照射時の画
像P3とを比較し、双方の画像P1,P3にて明るさの差のな
い部分をSi結晶部10として認識した上で白黒反転させ
る。つまり、双方の画像P1,P3を比較して、各画像P1,P3
上での白色部分のうち明度に差のない部分のみをSi結晶
部10として認識する。この場合において、前述したよう
にエッチングにより腐食したAl共晶層11に偶然に粗面で
ない平面部が存在すると、この平面部は平滑面であると
ころのSi結晶部10に類似した反射特性を呈するためにSi
結晶部10との区別がつかなくなる。その結果として、画
像P1とP3とを合成した画像P4上においても、なおも実際
にSi結晶部10でない部分がSi結晶部10として認識されて
いる可能性がある。
Therefore, as shown in FIG. 1 (B), the image processing device 9
Image P 1 when the internal illumination light L 1 is stored in
And the image P 3 when both the internal illumination light L 1 and the external illumination light L 2 are irradiated, and the portion having no difference in brightness between the images P 1 and P 3 is recognized as the Si crystal portion 10. Then, reverse the black and white. That is, both images P 1 and P 3 are compared and each image P 1 and P 3 is compared.
Only the white portion having no difference in brightness among the above white portions is recognized as the Si crystal portion 10. In this case, if the Al eutectic layer 11 corroded by etching accidentally has a flat surface that is not rough as described above, this flat surface exhibits a reflection characteristic similar to that of the Si crystal portion 10 that is a smooth surface. For Si
It cannot be distinguished from the crystal part 10. As a result, there is a possibility that a portion other than the Si crystal portion 10 is actually recognized as the Si crystal portion 10 on the image P 4 obtained by combining the images P 1 and P 3 .

そこで、合成画像P4を明暗二値化して二値化画像P5
する一方で、外部照明光L2照射時の画像P2を明暗二値化
し、双方の画像P5とP6とを比較して各画像P5,P6上での
黒色部分のうち相互に重複している部分のみを画像P7
でSi結晶部10の真の領域Eとして抽出して認識する。
Therefore, the composite image P 4 and dark binarized While the binary image P 5, and brightness binarized image P 2 in an external illumination light L 2 irradiated, and the P 6 both images P 5 By comparison, among the black portions on each of the images P 5 and P 6 , only the portions that overlap each other are extracted and recognized as the true region E of the Si crystal portion 10 on the image P 7 .

すなわち、外部照明光L2照射時の画像P2上では、Si結
晶部10は鏡面に近い状態にあるので照明光L2のほとんど
が正反射し、しかも照明光自体が斜め方向から照射であ
るのでSi結晶部10は黒色部分となって表れる。これに対
し、上記のようにAl共晶層11に粗面にならない平面部が
あった場合、Al共晶層11の平面部は金属であるためにSi
結晶部10よりも反射率が大きく、照明光L2を乱反射する
割合が高くなる。よって、Al共晶層11の平面部はSi結晶
部10よりも明るい白色部分として画像P2上に表れる。
That is, on the image P 2 when the external illumination light L 2 is irradiated, since the Si crystal portion 10 is in a state close to a mirror surface, most of the illumination light L 2 is specularly reflected, and the illumination light itself is irradiated from an oblique direction. Therefore, the Si crystal part 10 appears as a black part. On the other hand, if the Al eutectic layer 11 has a flat surface portion that does not become a rough surface as described above, the flat surface portion of the Al eutectic layer 11 is metal and
The reflectance is higher than that of the crystal part 10, and the ratio of irregularly reflecting the illumination light L 2 is high. Therefore, the plane portion of the Al eutectic layer 11 appears on the image P 2 as a white portion brighter than the Si crystal portion 10.

したがって、この性質を利用して、二値化画像P5とP6
との間で黒色部分についての論理積をとることにより、
画像P7のようにSi結晶部10の真の領域Eのみが抽出され
ることになる。
Therefore, by utilizing this property, the binarized images P 5 and P 6
By taking the logical product of the black part between
Only the true region E of the Si crystal portion 10 is extracted as in the image P 7 .

Si結晶部10の真の領域Eが抽出されると、画像処理装
置9は領域Eの面積を画素数として求めて、この画素数
と画面の総画素数との割合からSi結晶部10の析出面積率
を求めて出力することになる。
When the true region E of the Si crystal portion 10 is extracted, the image processing apparatus 9 obtains the area of the region E as the number of pixels, and the deposition of the Si crystal portion 10 is determined from the ratio of this number of pixels to the total number of pixels on the screen. The area ratio will be calculated and output.

第8図の実施例は試料22の円筒内周面22aを検査する
場合の例を示しており、対物レンズ25は鏡筒24の軸線に
対して直角に取り付けられる一方、図示外の外部照明光
源の照明光L12は光ファイバー27を通して内部照明光L11
と交差するように照射される。28はファイバーホルダ、
26は反射ミラー、29は外部照明光L12を旋回させるため
の軸部、30はセットビスである。画像処理の手順として
は先に説明した場合と同じであり、この実施例の場合に
も第1実施例と同様の作用効果が得られる。
The embodiment shown in FIG. 8 shows an example in which the cylindrical inner peripheral surface 22a of the sample 22 is inspected. The objective lens 25 is attached at a right angle to the axis of the lens barrel 24 while the external illumination light source not shown is shown. The illumination light L 12 of the internal illumination light L 11 is transmitted through the optical fiber 27.
It is irradiated so that it intersects with. 28 is a fiber holder,
Reference numeral 26 is a reflection mirror, 29 is a shaft portion for rotating the external illumination light L 12 , and 30 is a set screw. The procedure of the image processing is the same as the case described above, and in the case of this embodiment, the same operational effect as that of the first embodiment can be obtained.

発明の効果 以上のように本発明方法によれば、内部照明光照射時
の画像と内外部照明光同時照射時の画像とを引隠して双
方の画像のうち明るさの差のない部分、すなわち検査す
べき金属組織が例えばアルミニウム合金である場合に、
Si結晶部は上記二照射条件においても明度に変化はない
が、Al共晶層は双方の照射条件で明度が変化することに
着目して、Si結晶部を抽出するべく、明るさの差のない
明部を表面組織の特定の成分の領域として抽出して明暗
反転した上で明暗二値化するとともに、外部照明光照射
時の画像を明暗二値化して特定の成分の領域を抽出し、
二つの二値化画像を合成して各二値化画像から抽出した
領域が相互に重複する部分のみを特定の成分の真の領域
として抽出するようにしたことにより、外光等の影響に
よる抽出誤差を少なくして精度の高い特定成分の抽出を
行え、検査結果の信頼性が向上する。
EFFECTS OF THE INVENTION As described above, according to the method of the present invention, a portion having no difference in brightness between both images by concealing the image at the time of irradiation of the internal illumination light and the image at the time of simultaneous illumination of the internal and external illumination light, When the metal structure to be inspected is an aluminum alloy, for example,
Although the Si crystal part does not change in brightness even under the above two irradiation conditions, the Al eutectic layer is focused on the fact that the brightness changes under both irradiation conditions, and in order to extract the Si crystal part, there is a difference in brightness. Extracts a non-bright part as a region of a specific component of the surface tissue, inverts the light and dark, and then binarizes it, and extracts the region of the specific component by binarizing the image during external illumination light irradiation.
By combining two binarized images and extracting only the part where the regions extracted from each binarized image overlap each other as the true region of a specific component, extraction by the influence of external light etc. The error can be reduced to extract the specific component with high accuracy, and the reliability of the inspection result is improved.

【図面の簡単な説明】[Brief description of drawings]

第1図(A)は本発明の一実施例を示す図で第2図の内
部および外部照明光照射時の要部拡大図、第1図(B)
は特定成分の抽出時における画像処理過程の模式化した
フローチャート、第2図は本発明の一実施例を示すシス
テム全体の概略説明図、第3図は内部照明光照射時の要
部拡大図、第4図は外部照明光照射時の要部拡大図、第
5図は内部照明光照射時の画像例を示す説明図、第6図
は外部照明光照射時の画像例を示す説明図、第7図は内
部および外部照明光照射時の画像例を示す説明図、第8
図は本発明の他の実施例を示す要部拡大図、第9図は従
来の検査方法を説明するためのシステム全体の概略説明
図である。 2,22……試料、4,24……鏡筒、5,25……対物レンズ、7
……内部照明光源、8……カメラ、9……画像処理装
置、10……Si結晶部(平滑面)、11……Al共晶層(粗
面)、12……外部照明光源、L1,L11……内部照明光、
L2,L12……外部照明光。
FIG. 1 (A) is a diagram showing an embodiment of the present invention, and is an enlarged view of a main part of FIG. 2 during irradiation of internal and external illumination light, and FIG. 1 (B).
Is a schematic flow chart of an image processing process at the time of extracting a specific component, FIG. 2 is a schematic explanatory view of the entire system showing one embodiment of the present invention, and FIG. 3 is an enlarged view of a main part at the time of internal illumination light irradiation, FIG. 4 is an enlarged view of a main part when external illumination light is irradiated, FIG. 5 is an explanatory diagram showing an image example when internal illumination light is irradiated, and FIG. 6 is an explanatory diagram showing an image example when external illumination light is irradiated. FIG. 7 is an explanatory view showing an example of an image at the time of illuminating internal and external illumination light, and FIG.
FIG. 9 is an enlarged view of a main part showing another embodiment of the present invention, and FIG. 9 is a schematic explanatory view of the entire system for explaining a conventional inspection method. 2,22 …… Sample, 4,24 …… Body tube, 5,25 …… Objective lens, 7
...... Internal illumination light source, 8 ... Camera, 9 ... Image processing device, 10 ... Si crystal part (smooth surface), 11 ... Al eutectic layer (rough surface), 12 ... External illumination light source, L 1 , L 11 ...... Internal illumination light,
L 2 , L 12 …… External illumination light.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】試料表面の粗面部と平滑面との光反射特性
の相違に基づいて表面組織の特定の成分を抽出して検査
する方法であって、 試料に対し顕微鏡の対物レンズを通して内部照明光を照
射するとともに試料表面と所定角度をなす斜め方向から
外部照明光を照射し、 内部照明光と外部照明光の双方を照射した場合と内部照
射光のみを照射した場合、および外部照明光のみを照射
した場合のそれぞれについて、対物レンズがとらえた試
料の表面組織を撮像装置で撮像し、 内部照明光照射時の画像と内外部照明光同時照射時の画
像とを比較して双方の画像のうち明るさの差のない明部
を表面組織の特定の成分の領域として抽出して明暗反転
した上で明暗二値化するとともに、外部照明光照射時の
画像を明暗二値化して特定の成分の領域を抽出し、 二つの二値化画像を合成して各二値化画像から抽出した
領域が相互に重複する部分のみを特定の成分の真の領域
として抽出することを特徴とする金属組織の検査方法。
1. A method for extracting and inspecting a specific component of a surface texture based on a difference in light reflection characteristics between a rough surface portion and a smooth surface of a sample surface, wherein the sample is internally illuminated through an objective lens of a microscope. Irradiate light with external illumination light from an oblique direction that forms a predetermined angle with the sample surface, and emit both internal illumination light and external illumination light, only internal illumination light, and external illumination light only. In each case, the surface texture of the sample captured by the objective lens is imaged by the imaging device, and the images of the internal illumination light irradiation and the images of the internal and external illumination light simultaneous irradiation are compared. Among them, the bright part with no difference in brightness is extracted as the area of the specific component of the surface tissue, and the light and dark are inverted, and then the light and dark binarization is performed. Area of Inspection method of a metal structure, wherein a region extracted from the binarized image by synthesizing the two binarized image to extract only the portion overlapping with each other as the true region of a particular component.
JP63288356A 1988-11-15 1988-11-15 Metal tissue inspection method Expired - Lifetime JPH0833342B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63288356A JPH0833342B2 (en) 1988-11-15 1988-11-15 Metal tissue inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63288356A JPH0833342B2 (en) 1988-11-15 1988-11-15 Metal tissue inspection method

Publications (2)

Publication Number Publication Date
JPH02134541A JPH02134541A (en) 1990-05-23
JPH0833342B2 true JPH0833342B2 (en) 1996-03-29

Family

ID=17729149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63288356A Expired - Lifetime JPH0833342B2 (en) 1988-11-15 1988-11-15 Metal tissue inspection method

Country Status (1)

Country Link
JP (1) JPH0833342B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017146248A (en) * 2016-02-19 2017-08-24 株式会社Screenホールディングス Defect detection device, defect detection method, and program
US11216936B2 (en) 2016-02-19 2022-01-04 SCREEN Holdings Co., Ltd. Defect detection device, defect detection method, and program

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4840765B2 (en) * 2006-02-09 2011-12-21 セイコーインスツル株式会社 Thin section manufacturing apparatus and thin section manufacturing method
CN103175948B (en) * 2013-02-26 2015-01-07 奇瑞汽车股份有限公司 Detection tool of curve surface defects of sheet metal part

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6017044B2 (en) * 1979-07-23 1985-04-30 株式会社日立製作所 Printed wiring board pattern inspection equipment
JPS56168550A (en) * 1980-05-31 1981-12-24 Nippon Kokan Kk <Nkk> Method and appratus for measuring physical properties of sintered ore
JPS6288946A (en) * 1985-10-16 1987-04-23 Hitachi Ltd Image extracting method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017146248A (en) * 2016-02-19 2017-08-24 株式会社Screenホールディングス Defect detection device, defect detection method, and program
US11216936B2 (en) 2016-02-19 2022-01-04 SCREEN Holdings Co., Ltd. Defect detection device, defect detection method, and program

Also Published As

Publication number Publication date
JPH02134541A (en) 1990-05-23

Similar Documents

Publication Publication Date Title
JP3709426B2 (en) Surface defect detection method and surface defect detection apparatus
JP3754003B2 (en) Defect inspection apparatus and method
JPH0515978B2 (en)
JPH04220551A (en) Method and apparatus for inspecting flaw of transparent body
JPH08128959A (en) Optical inspection method and optical inspection device
JP2003329606A (en) Inner surface inspection device
JP3676092B2 (en) Surface defect inspection equipment
JPH0833342B2 (en) Metal tissue inspection method
JP2019100851A (en) Automatic part appearance inspection device
JP2006017685A (en) Surface defect inspection device
JP3810599B2 (en) Defect detection device
JPH0579999A (en) Inspecting device for precipitated foreign object in bottle
JP2000097867A (en) Defect detecting device and method for translucent substrate
JPH07151704A (en) Inspection device for color filter for viewfinder
JPH085573A (en) Method and apparatus for inspecting work surface
JP2000258348A (en) Defect inspection apparatus
JP3984367B2 (en) Surface defect inspection method and inspection apparatus
JPH0972823A (en) Optical-member inspection apparatus
JPH0921761A (en) Surface fault inspecting apparatus
JP2003050208A (en) Method and device for inspecting inner surface of paper cup
JP2001235428A (en) Visual examination instrument
JPH01214743A (en) Optical apparatus for checking
JPH0299807A (en) Detection of defect of rough surface
Beloborodov et al. Multichannel high-performance optoelectronic control of the surface of fuel pellets
JPH0690143B2 (en) Method for detecting agglomerated particles in transparent thin film