JPH08325566A - Zinc sulfide phosphor - Google Patents

Zinc sulfide phosphor

Info

Publication number
JPH08325566A
JPH08325566A JP13530295A JP13530295A JPH08325566A JP H08325566 A JPH08325566 A JP H08325566A JP 13530295 A JP13530295 A JP 13530295A JP 13530295 A JP13530295 A JP 13530295A JP H08325566 A JPH08325566 A JP H08325566A
Authority
JP
Japan
Prior art keywords
phosphor
zns
signal
concentration
static
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13530295A
Other languages
Japanese (ja)
Inventor
Toshie Harazono
としえ 原園
Yukio Tokunaga
幸男 徳永
Ryuji Adachi
隆二 安達
Takashi Hase
堯 長谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kasei Optonix Ltd
Mitsubishi Chemical Corp
Original Assignee
Kasei Optonix Ltd
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kasei Optonix Ltd, Mitsubishi Chemical Corp filed Critical Kasei Optonix Ltd
Priority to JP13530295A priority Critical patent/JPH08325566A/en
Publication of JPH08325566A publication Critical patent/JPH08325566A/en
Pending legal-status Critical Current

Links

Landscapes

  • Luminescent Compositions (AREA)

Abstract

PURPOSE: To obtain a high-luminance phosphor capable of attaining sufficiently high luminance without the aid of high-density electron beam irradiation, thus useful as an orange phosphor. CONSTITUTION: This phoshor is a Mn-activated ZnS phosphor represented by the composition formula ZnS:Mn, wherein, when the half-value width of<67> Zn signal in the proximity of 380ppm (Δν1/2 (Zn)) determined by static NMP is plotted in relation to the Mn concentration, and the half-value width of<67> Zn signal in the proximity of 380ppm (Δν1/2 (Zn)ST) determined by static NMR is plotted in relation to the Mn concentration of a ZnS:Mn phosphor as the standard, the relationship: Δν2 (Mn)>Δν1/2 (Mn)ST is satisfied where the above two kinds of Mn concentrations are identical.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、硫化亜鉛蛍光体に関
し、電子線励起で高輝度特性を示す薄膜EL板等に用い
られる硫化亜鉛蛍光体に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a zinc sulfide phosphor, and more particularly to a zinc sulfide phosphor used for a thin film EL plate or the like which exhibits high brightness characteristics when excited by an electron beam.

【0002】[0002]

【従来の技術】ZnS:Mnで示される賦活剤としてM
nを添加したMn賦活ZnS蛍光体は、明るい橙色蛍光
を示し、薄膜EL板等に用いられている。蛍光体に対す
る市場ニーズは、投写型大型テレビやハイビジョンテレ
ビ等に代表されるような映像機器の大型化、高品位化に
伴い、より微粒子化と共に、高輝度化が強く望まれてい
る。高精細な画像を大画面上に映し出すには、高密度の
電子線を入射させることが行われるが、ZnS蛍光体で
電流密度を増加させると、時間の経過とともに、蛍光体
の発光効率は低下してしまい、高密度画面にするには輝
度が十分でなく、更に高輝度なZnS蛍光体が必要とさ
れている。
2. Description of the Related Art M as an activator represented by ZnS: Mn
The Mn-activated ZnS phosphor to which n is added exhibits bright orange fluorescence and is used for a thin film EL plate and the like. The market needs for phosphors are strongly desired to be finer and brighter as the size and quality of video equipment such as projection large-screen televisions and high-definition televisions increase. In order to display a high-definition image on a large screen, a high-density electron beam is made incident. However, when the current density is increased with ZnS phosphor, the luminous efficiency of the phosphor decreases with the passage of time. Therefore, the brightness is not sufficient to obtain a high-density screen, and a ZnS phosphor with higher brightness is required.

【0003】[0003]

【発明が解決しようとする課題】このような事情から、
低い電流密度でより高い輝度特性を有するZnS蛍光体
が必要とされていた。本発明は入射する電子線の強度を
増加させずに、薄膜EL板上で高精細で高輝度な明るさ
を発現維持するZnS蛍光体を提供するものである。
[Problems to be Solved by the Invention] Under these circumstances,
There was a need for ZnS phosphors with higher brightness characteristics at low current densities. The present invention provides a ZnS phosphor that maintains high-definition and high-luminance brightness on a thin film EL plate without increasing the intensity of an incident electron beam.

【0004】[0004]

【課題を解決するための手段】本発明者等は、上記目的
を達成するため、Mn賦活ZnS蛍光体の発光中心であ
るMnの存在状態や分布状態、蛍光体結晶の構造の検討
を十分重ねた結果、特定のNMR(核磁気共鳴)特性を
有するZnS蛍光体が高輝度特性を有することを見出
し、本発明に到達した。
In order to achieve the above object, the inventors of the present invention have sufficiently studied the existence state and distribution state of Mn, which is the emission center of Mn-activated ZnS phosphor, and the structure of the phosphor crystal. As a result, they have found that a ZnS phosphor having a specific NMR (nuclear magnetic resonance) characteristic has a high brightness characteristic, and arrived at the present invention.

【0005】本発明の要旨は、ZnS:Mnで示される
Mn賦活ZnS蛍光体であって、スタティックNMRに
よる380ppm近傍の67Znシグナルの半値幅(Δν
1/2(Zn))をMn濃度に対してプロットし、標準と
なるZnS:Mn蛍光体のMn濃度とスタティックNM
Rによる380ppm近傍の67Znシグナルの半値幅
(Δν1/2 (Zn)ST)をプロットした際、同一Mn濃
度で、Δν1/2 (Mn)>Δν1/2 (Mn)STであるこ
とを特徴とする硫化亜鉛蛍光体である。
The gist of the present invention is a Mn-activated ZnS phosphor represented by ZnS: Mn, which has a full width at half maximum (Δν) of 67 Zn signal in the vicinity of 380 ppm by static NMR.
1/2 (Zn)) is plotted against Mn concentration, and the standard Mn concentration of ZnS: Mn phosphor and static NM
When the full width at half maximum of the 67 Zn signal (Δν 1/2 (Zn) ST ) near 380 ppm by R is plotted, Δν 1/2 (Mn)> Δν 1/2 (Mn) ST at the same Mn concentration. It is a zinc sulfide phosphor characterized by.

【0006】本発明は、スタティックNMRによる38
0ppm近傍の67Znのシグナルの線幅がMn濃度に対
して1次に比例すること、Mn濃度が一定のとき、この
67Znのシグナルの線幅が大きいものほど高い輝度を達
成できることに基づく。このことの学問的な解明はこれ
までになされていないが、380ppm近傍の67Znの
シグナルのピークの線幅の広がりは、Mn2+(3d5
の常磁性緩和によって引き起こされており、Zn2+がM
2+で置換されたZnSの結晶中で、Mnの分布の違い
を反映しているものと考えられる。
The present invention uses 38 by static NMR.
The line width of the 67 Zn signal near 0 ppm is linearly proportional to the Mn concentration, and when the Mn concentration is constant,
This is based on the fact that the larger the line width of the 67 Zn signal, the higher the brightness that can be achieved. Although the scientific elucidation of this has not been done so far, the line width broadening of the 67 Zn signal peak near 380 ppm was found to be Mn 2+ (3d 5 ).
Is caused by the paramagnetic relaxation of Zn 2+
It is considered that the difference in the distribution of Mn is reflected in the ZnS crystal substituted with n 2+ .

【0007】本発明の蛍光体は、ZnS:Mnで示され
るMn賦活ZnS蛍光体であり、賦活剤であるMnの添
加量は、通常10モル%以下、好ましくは1〜7モル%
である。スタティックNMRによる380ppm付近の
67Znのシグナルの線幅の広がりは、そのシグナルピー
クの半値幅(Δν1/2 (Zn))で表され、スタティッ
クプローブを用いたNMRにより共鳴周波数18.8M
Hz、パルス幅5μsec(30°パルス)、待ち時間
2.5sec、積算時間は通常1000〜2000回で
測定することにより得られる。シグナルの線形からは、
常法によりガウス型関数を用いて線形を分離し線幅が得
られる。これの半値幅を例えば縦軸にして、Mn濃度を
横軸にしてプロットする。
The phosphor of the present invention is a Mn-activated ZnS phosphor represented by ZnS: Mn, and the addition amount of Mn as an activator is usually 10 mol% or less, preferably 1 to 7 mol%.
Is. Around 380 ppm by static NMR
The broadening of the signal line width of 67 Zn is represented by the full width at half maximum (Δν 1/2 (Zn)) of the signal peak, and the resonance frequency is 18.8 M by NMR using a static probe.
Hz, pulse width 5 μsec (30 ° pulse), waiting time 2.5 sec, and integration time are usually obtained by measuring 1000 to 2000 times. From the linearity of the signal,
The line width is obtained by separating the linear shape using a Gaussian function by the usual method. The full width at half maximum is plotted on the vertical axis, and the Mn concentration is plotted on the horizontal axis.

【0008】つぎに、標準線の作成を行う。まず、Zn
S:Mnの標準物質を作成する。ZnSと各濃度に相当
する量の炭酸マンガンを良く混合した後、石英製の坩堝
に充填して900℃で75分間焼成する。得られた焼成
物を純水で十分に洗浄した後、120℃で乾燥し篩にか
けてZnS:Mn標準物質を得る。
Next, a standard line is created. First, Zn
A standard substance of S: Mn is prepared. After thoroughly mixing ZnS and manganese carbonate in an amount corresponding to each concentration, the mixture is filled in a quartz crucible and baked at 900 ° C. for 75 minutes. The fired product obtained is thoroughly washed with pure water, dried at 120 ° C. and sieved to obtain a ZnS: Mn standard substance.

【0009】この標準物質を前記と同じにして、スタテ
ィックNMRにより380ppm付近の67Znシグナル
を得、その半値幅(Δν1/2 (Zn)ST)を求める。先
と同じに、半値幅を例えば縦軸にして、Mn濃度を横軸
にしてプロットする。
Using the same standard material as above, a 67 Zn signal near 380 ppm was obtained by static NMR, and the half-value width (Δν 1/2 (Zn) ST ) was determined. Similarly to the above, the half-value width is plotted on the vertical axis, and the Mn concentration is plotted on the horizontal axis.

【0010】本発明の蛍光体は、同一Mn濃度で、標準
となるZnS:Mn蛍光体の半値幅より大である。すな
わち Δν1/2 (Mn)>Δν1/2 (Mn)ST とな
る。特には、Δν1/2 (Mn)>Δν1/2 (Mn)ST
50Hzが好ましく、更には、Δν1/2 (Mn)>Δν
1/2 (Mn)ST+100Hzが良い。
The phosphor of the present invention has the same Mn concentration and is larger than the full width at half maximum of the standard ZnS: Mn phosphor. That is, Δν 1/2 (Mn)> Δν 1/2 (Mn) ST . In particular, Δν 1/2 (Mn)> Δν 1/2 (Mn) ST +
50 Hz is preferable, and Δν 1/2 (Mn)> Δν
1/2 (Mn) ST +100 Hz is preferable.

【0011】本発明の蛍光体は、好ましくは、例えば次
の方法で製造できる。まず、所望の組成に原料ZnSと
炭酸マンガンを良く混合し、700℃〜980℃の温度
で30分以上焼成する。得られた焼成物を水洗後120
℃で乾燥して得られる。また、このような工程あるいは
他の製造方法による場合でも、あらかじめ標準物質によ
る検量線を作成しておき、得られる蛍光体の半値幅をモ
ニターして付活剤量、各処理条件を調製することで製造
することもできる。
The phosphor of the present invention can be preferably produced, for example, by the following method. First, raw material ZnS and manganese carbonate are mixed well in a desired composition, and the mixture is baked at a temperature of 700 ° C. to 980 ° C. for 30 minutes or more. 120 after washing the obtained baked product with water
Obtained by drying at ℃. Even in the case of such a process or other manufacturing method, a calibration curve with a standard substance should be prepared in advance, and the half-value width of the obtained phosphor should be monitored to adjust the amount of activator and each treatment condition. It can also be manufactured in.

【0012】[0012]

【実施例】以下、本発明を実施例によって更に具体的に
説明するが、本発明はその要旨を超えない限り、以下の
実施例に限定されるものではない。67Znシグナルの半
値幅(Δν1/2 (Zn)、Δν1/2 (Zn)ST)の測定
は、Bruker社製固体NMR装置MSL−300に
スタティックプローブを装着して行った。測定条件は以
下の通りである。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to the following examples unless it exceeds the gist thereof. The full width at half maximum of the 67 Zn signal (Δν 1/2 (Zn), Δν 1/2 (Zn) ST ) was measured by mounting a static probe on a solid NMR apparatus MSL-300 manufactured by Bruker. The measurement conditions are as follows.

【0013】[0013]

【表1】プローブ :スタティックプローブ 共鳴周波数 :18.8MHz パルス系列 :シングルパルス パルス幅 :5μsec(30°パルス) 待ち時間 :2.5sec[Table 1] Probe: Static probe Resonance frequency: 18.8 MHz Pulse sequence: Single pulse Pulse width: 5 μsec (30 ° pulse) Wait time: 2.5 sec

【0014】以下、各試料のMn濃度及び不純物濃度
は、Seiko SPS−1200AICP装置(誘導
結合高周波プラズマ発光分析装置)とRigaku33
70蛍光X線装置を用いて定量した。また、蛍光体の輝
度の測定は、電子線励起装置(TOPCON ABT−
32)を用いて行った。
Hereinafter, the Mn concentration and the impurity concentration of each sample are as follows: Seiko SPS-1200AICP device (inductively coupled high frequency plasma emission spectrometer) and Rigaku33.
Quantification was performed using a 70 fluorescent X-ray apparatus. In addition, the measurement of the brightness of the phosphor is performed by an electron beam excitation device (TOPCON ABT-
32).

【0015】参考例1〜6 (標準物質の作成)下記表1の組成に成るように原料Z
nSと炭酸マンガンを乾式にて十分混合し、石英製の坩
堝に充填して900℃の温度で75分間焼成した。得ら
れた焼成物を純水で十分に水洗した後、120℃で乾燥
し篩にかけてZnS:Mn標準物質を得た。粉末X線回
折の結果いずれもZnSであった。また、ICP装置に
より、Zn/Mnの量は仕込量と実験誤差の範囲内で一
致した。また、発光スペクトルのシグナルの形は参考例
2〜6でほぼ同じであった。これらの蛍光体を電子線で
励起すると参考例1を除いていずれもオレンジ色に光っ
た。
Reference Examples 1 to 6 (Preparation of Standard Material) Raw material Z having the composition shown in Table 1 below.
nS and manganese carbonate were thoroughly mixed by a dry method, filled in a crucible made of quartz, and baked at a temperature of 900 ° C. for 75 minutes. The obtained fired product was sufficiently washed with pure water, dried at 120 ° C., and sieved to obtain a ZnS: Mn standard substance. As a result of powder X-ray diffraction, all were ZnS. In addition, the amount of Zn / Mn was the same as the charged amount within the range of experimental error by the ICP apparatus. In addition, the signal shapes of the emission spectra were almost the same in Reference Examples 2 to 6. When these phosphors were excited with an electron beam, all of them glowed orange except for Reference Example 1.

【0016】[0016]

【表2】 [Table 2]

【0017】(67Znシグナルの半値幅の標準線の作
成)参考例1〜6の標準物質について、スタティックN
MRにて67Znシグナルの半値幅(Δν1/2 (Z
n)ST)を測定し算出した。67Znシグナルの半値幅
(Δν1/2 (Zn)ST)をMn濃度とともに表1に示
す。また、これをもとに、縦軸に67Znシグナルの半値
幅(Δν1/2 (Zn)ST)を、横軸にMn濃度をとっ
て、その関係をプロットして得られた標準線を図2に示
す。
(Preparation of standard line of full width at half maximum of 67 Zn signal) For the standard substances of Reference Examples 1 to 6, static N
Full width at half maximum of 67 Zn signal (Δν 1/2 (Z
n) ST ) was measured and calculated. The full width at half maximum of the 67 Zn signal (Δν 1/2 (Zn) ST ) is shown in Table 1 together with the Mn concentration. Also, based on this, the standard line obtained by plotting the relationship by plotting the full width at half maximum of the 67 Zn signal (Δν 1/2 (Zn) ST ) on the vertical axis and the Mn concentration on the horizontal axis, As shown in FIG.

【0018】(実施例1)ZnS 100.00g、M
nCO3 ・H2 O 2.42gを乾式にて十分混合した
後、石英製の坩堝に充填して980℃の温度で75分間
焼成した。得られた焼成物を純水で十分に洗浄した後、
120℃で乾燥し篩にかけた。得られた蛍光体はZn
S:Mnで表された。
(Example 1) ZnS 100.00 g, M
After 2.42 g of nCO 3 .H 2 O was thoroughly mixed by a dry method, the mixture was charged into a quartz crucible and baked at a temperature of 980 ° C. for 75 minutes. After thoroughly washing the obtained baked product with pure water,
It was dried at 120 ° C. and sieved. The obtained phosphor is Zn
It is represented by S: Mn.

【0019】(実施例2)実施例1において焼成時間を
150分にした以外は実施例1と同じにしてZnS:M
n蛍光体を得た。このものをスタティックNMRにて67
Znシグナルの半値幅(Δν1/2 (Zn))を測定し
た。図3にそのNMRチャート図を示す。ついで輝度を
測定した。結果を表2に示す。
(Example 2) ZnS: M was prepared in the same manner as in Example 1 except that the firing time was changed to 150 minutes.
An n phosphor was obtained. This was confirmed by static NMR 67
The full width at half maximum of the Zn signal (Δν 1/2 (Zn)) was measured. The NMR chart is shown in FIG. Then the brightness was measured. Table 2 shows the results.

【0020】(比較例1)実施例1において焼成温度を
700℃にした以外は実施例1と同じにしてZnS:M
n蛍光体を得た。このものをスタティックNMRにて67
Znシグナルの半値幅(Δν1/2 (Zn))を測定し
た。ついで輝度を測定した。結果を表2に示す。
(Comparative Example 1) ZnS: M was prepared in the same manner as in Example 1 except that the firing temperature was changed to 700 ° C.
An n phosphor was obtained. This was confirmed by static NMR 67
The full width at half maximum of the Zn signal (Δν 1/2 (Zn)) was measured. Then the brightness was measured. Table 2 shows the results.

【0021】(比較例2)実施例1において焼成時間を
30分にした以外は実施例1と同じにしてZnS:Mn
蛍光体を得た。このものをスタティックNMRにて67
nシグナルの半値幅(Δν1/2 (Zn))を測定した。
ついで輝度を測定した。結果を表2に示す。
Comparative Example 2 ZnS: Mn was prepared in the same manner as in Example 1 except that the firing time was changed to 30 minutes.
A phosphor was obtained. 67 Z by static NMR
The half-width of the n signal (Δν 1/2 (Zn)) was measured.
Then the brightness was measured. Table 2 shows the results.

【0022】(実施例3)ZnS 100.00g、M
nCO3 ・H2 O 3.63gを乾式にて十分混合した
後、石英製の坩堝に充填して980℃の温度で75分間
焼成した。得られた焼成物を純水で十分に洗浄した後、
120℃で乾燥し篩にかけた。得られた蛍光体はZn
S:Mnで表された。このものをスタティックNMRに
67Znシグナルの半値幅(Δν1/2 (Zn))を測定
した。ついで輝度を測定した。結果を表2に示す。
Example 3 ZnS 100.00 g, M
After 3.63 g of nCO 3 .H 2 O was thoroughly mixed by a dry method, the mixture was charged into a quartz crucible and baked at a temperature of 980 ° C. for 75 minutes. After thoroughly washing the obtained baked product with pure water,
It was dried at 120 ° C. and sieved. The obtained phosphor is Zn
It is represented by S: Mn. The full width at half maximum of the 67 Zn signal (Δν 1/2 (Zn)) was measured by static NMR. Then the brightness was measured. Table 2 shows the results.

【0023】(比較例3)実施例3において焼成温度を
800℃にした以外は実施例3と同じにしてZnS:M
n蛍光体を得た。このものをスタティックNMRにて67
Znシグナルの半値幅(Δν1/2 (Zn))を測定し
た。ついで輝度を測定した。結果を表2に示す。
(Comparative Example 3) ZnS: M was prepared in the same manner as in Example 3 except that the firing temperature was changed to 800 ° C.
An n phosphor was obtained. This was confirmed by static NMR 67
The full width at half maximum of the Zn signal (Δν 1/2 (Zn)) was measured. Then the brightness was measured. Table 2 shows the results.

【0024】[0024]

【表3】 [Table 3]

【0025】表3の67Znシグナルの半値幅(Δν1/2
67Zn))を縦軸に、Mn濃度を横軸にして、その関
係をプロットし、先の標準物質による図2の標準線との
関係を示したのが図1である。図1から明らかなよう
に、相対輝度に優れた本発明の実施例のものは、標準線
より高い半値幅値を有する。
The full width at half maximum of the 67 Zn signal in Table 3 (Δν 1/2
( 67 Zn)) is plotted on the vertical axis and Mn concentration is plotted on the horizontal axis. The relationship is plotted, and the relationship with the standard line of FIG. As is apparent from FIG. 1, those of the examples of the present invention having excellent relative brightness have half-width values higher than the standard line.

【0026】[0026]

【発明の効果】本発明の蛍光体は、高輝度で、高密度の
電子線照射によらずに十分な高い輝度を達成でき、橙色
蛍光体として有益である。
INDUSTRIAL APPLICABILITY The phosphor of the present invention has high brightness and can achieve sufficiently high brightness without being irradiated with a high-density electron beam, and is useful as an orange phosphor.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の蛍光体の67Znシグナルの半値幅(Δ
ν1/2 (Zn))とMn濃度の関係、及び標準線との関
係を示したグラフ。
FIG. 1 is a full width at half maximum of a 67 Zn signal of the phosphor of the present invention (Δ
The graph which showed the relationship of (nu) 1/2 (Zn)) and Mn concentration, and the relationship with a standard line.

【図2】標準物質の67Znシグナルの半値幅(Δν1/2
(Mn)ST)と、Mn濃度の関係を示すグラフ。
FIG. 2 Full width at half maximum of 67 Zn signal of standard substance (Δν 1/2
The graph which shows the relationship between (Mn) ST ) and Mn concentration.

【図3】実施例2のZnS:Mn蛍光体のNMRチャー
ト図。
FIG. 3 is an NMR chart of the ZnS: Mn phosphor of Example 2.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 安達 隆二 神奈川県小田原市成田1060番地 化成オプ トニクス株式会社小田原工場内 (72)発明者 長谷 堯 神奈川県小田原市成田1060番地 化成オプ トニクス株式会社小田原工場内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Ryuji Adachi 1060 Narita, Odawara-shi, Kanagawa Kasei Optonix Co., Ltd. Odawara Plant (72) Inventor, Hase Ko, 1060 Narita, Odawara-shi, Kanagawa Odawara Plant Within

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ZnS:Mnで示されるMn賦活ZnS
蛍光体であって、スタティックNMRによる380pp
m近傍の67Znシグナルの半値幅(Δν1/2(Zn))
をMn濃度に対してプロットし、標準となるZnS:M
n蛍光体のMn濃度とスタティックNMRによる380
ppm近傍の67Znシグナルの半値幅(Δν1/2 (Z
n)ST)をプロットした際、同一Mn濃度で、Δν1/2
(Mn)>Δν1/2 (Mn)STであることを特徴とする
硫化亜鉛蛍光体。
1. A Mn-activated ZnS represented by ZnS: Mn.
Phosphor, 380 pp by static NMR
FWHM of 67 Zn signal near m (Δν 1/2 (Zn))
Is plotted against Mn concentration, and standard ZnS: M
Mn concentration of n phosphor and 380 by static NMR
Full width at half maximum of 67 Zn signal in the vicinity of ppm (Δν 1/2 (Z
n) When ST ) is plotted, at the same Mn concentration, Δν 1/2
A zinc sulfide phosphor characterized in that (Mn)> Δν 1/2 (Mn) ST .
JP13530295A 1995-06-01 1995-06-01 Zinc sulfide phosphor Pending JPH08325566A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13530295A JPH08325566A (en) 1995-06-01 1995-06-01 Zinc sulfide phosphor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13530295A JPH08325566A (en) 1995-06-01 1995-06-01 Zinc sulfide phosphor

Publications (1)

Publication Number Publication Date
JPH08325566A true JPH08325566A (en) 1996-12-10

Family

ID=15148540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13530295A Pending JPH08325566A (en) 1995-06-01 1995-06-01 Zinc sulfide phosphor

Country Status (1)

Country Link
JP (1) JPH08325566A (en)

Similar Documents

Publication Publication Date Title
US6447698B1 (en) Method for producing light-emitting substance
JP2000073053A (en) Phosphor and cathode-ray tube using the same
US6753099B2 (en) Phosphor and imaging device using the same
JPH10310770A (en) Production of luminophor
JP2003013059A (en) Color cathode ray tube and red phosphor to be used therein
US6617788B2 (en) Phosphor and display device or light source using the same
US3939377A (en) Penetration phosphors and display devices
US6696782B2 (en) Green-emitting phosphor and image display device using the same
JP2979984B2 (en) Afterglow phosphor
Karel et al. The luminescence properties of AlN with manganese and rare earth activators under ultraviolet and cathode-ray excitation
US3623996A (en) Strontium thiogallate phosphors coactivated by cerium and neodymium
EP0109676B1 (en) Color projection type video device
US2447448A (en) Magnesium germanate phosphors
JPH08325566A (en) Zinc sulfide phosphor
Do et al. Preparation and Optical Properties of $ SrGa_2S_4 $: Eu Phosphor
JPH08325569A (en) Yttrium oxysulfide phosphor
US3639932A (en) Rare earth oxide phosphor having a controlled decay time
JPH08325565A (en) Zinc sulfide phosphor
Yang et al. Characterization of potential low-voltage phosphors for field emission devices
JPH08325568A (en) Zinc sulfide phosphor
JPH08127773A (en) Yttrium oxide phosphor
JP2006335778A (en) Image display device
JP2000290649A (en) Fluorescent substance, its production, and color cathode ray tube
JPH09176631A (en) Production of luminescent material
JPH10110166A (en) Fluorescent yttrium oxysulfide