JPH08316586A - Method for measuring dislocation density of ii-vi compound semiconductor single crystal - Google Patents

Method for measuring dislocation density of ii-vi compound semiconductor single crystal

Info

Publication number
JPH08316586A
JPH08316586A JP14392395A JP14392395A JPH08316586A JP H08316586 A JPH08316586 A JP H08316586A JP 14392395 A JP14392395 A JP 14392395A JP 14392395 A JP14392395 A JP 14392395A JP H08316586 A JPH08316586 A JP H08316586A
Authority
JP
Japan
Prior art keywords
single crystal
znse
dislocation density
substrate
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14392395A
Other languages
Japanese (ja)
Other versions
JP3661801B2 (en
Inventor
Shuji Otaka
修司 大高
Eiji Shimizu
栄二 清水
Kazuyuki Umetsu
一之 梅津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co Ltd filed Critical Dowa Mining Co Ltd
Priority to JP14392395A priority Critical patent/JP3661801B2/en
Publication of JPH08316586A publication Critical patent/JPH08316586A/en
Application granted granted Critical
Publication of JP3661801B2 publication Critical patent/JP3661801B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Recrystallisation Techniques (AREA)
  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

PURPOSE: To obtain a method for directly measuring the dislocation density on the (100) face of a II-VI compound semiconductor crystal including ZnSe being expected as a material of blue light emission device. CONSTITUTION: A II-VI compound semi-conductor crystal is sliced on the (100) face thereof to obtain a single crystal substrate of ZnSe, for example, which is then subjected to surface polishing and mirror face etching. The ZnSe substrate 5 is placed in a Teflon basket 2 which is then set into 0.1vol.% bromine methanol solution 6 in the reaction bath 1 of a single crystal substrate etching system. Subsequently, etching is performed by turning a stirrer 3 disposed on the bottom of the reaction bath for a predetermined time by means of a magnetic stirrer 4. The ZnSe substrate is then observed by means of a Nomarski microscope and the dislocation density is measured from a clear etching image thus obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、青色発光デバイスの材
料として期待されるセレン化亜鉛(ZnSe)等のII-V
I 族化合物半導体単結晶中の転位密度を測定する方法に
関する。
The present invention relates to II-V such as zinc selenide (ZnSe), which is expected as a material for blue light emitting devices.
The present invention relates to a method for measuring dislocation density in a Group I compound semiconductor single crystal.

【0002】[0002]

【従来の技術】II-VI 族化合物半導体の一種であるセレ
ン化亜鉛(ZnSe)は、従来、気相成長法や高圧溶融
法により製造されているが、これら製造法によって得ら
れた単結晶は結晶学的には不完全であり転位と呼ばれる
結晶内の不完全部分を含んでいる。この転位の単位面積
当りの数を転位密度と呼ぶが、これは青色発光デバイス
の発光寿命等と密接な関係を持ち、エピタキシャル成長
用基板として適当であるか否かを判断する上で非常に重
要な特性の一つである。
2. Description of the Related Art Zinc selenide (ZnSe), which is one of the II-VI group compound semiconductors, has been conventionally manufactured by a vapor phase growth method or a high pressure melting method. It is crystallographically incomplete and contains an incomplete part in the crystal called a dislocation. The number of dislocations per unit area is called a dislocation density, which is closely related to the emission lifetime of blue light emitting devices and is very important in determining whether or not it is suitable as a substrate for epitaxial growth. It is one of the characteristics.

【0003】これまでZnSe単結晶の転位密度を計測
する方法は、単結晶体の(111)面および(110)
面を計測する方法が知られているが、まだ(100)面
に対する計測方法は知られておらず、エピタキシャル成
長する結晶方位が(100)面である場合でも、その方
位に配位した単結晶基板から転位密度に関する情報を直
接知ることができなかった。
Up to now, the methods for measuring the dislocation density of ZnSe single crystals have been (111) planes and (110) planes of single crystals.
Although a method for measuring the plane is known, a method for measuring the (100) plane is not yet known, and even when the crystal orientation for epitaxial growth is the (100) plane, a single crystal substrate coordinated to the orientation is known. It was not possible to directly obtain information on dislocation density from.

【0004】このため、例えば高圧溶融法で得られた大
口径で長尺のバルク結晶体からエピタキシャル成長用基
板の方位面出しと、転位密度調査用単結晶の方位面出し
との2種類のスライスが必要であった。
Therefore, for example, there are two kinds of slices, that is, the orientation of the epitaxial growth substrate and the orientation of the single crystal for dislocation density investigation from the large diameter and long bulk crystal obtained by the high pressure melting method. Was needed.

【0005】[0005]

【発明が解決しようとする課題】前述のように従来の転
位密度計測方法では、直接的に(100)面での転位密
度を測定できないため、例えばZnSe単結晶基板(1
00)面上にエピタキシャル成長を行う場合に、基板自
体として使用可能な基板であるか否かの判断を短時間で
行えないという欠点を有していた。
As described above, since the conventional dislocation density measuring method cannot directly measure the dislocation density on the (100) plane, for example, a ZnSe single crystal substrate (1
In the case of performing epitaxial growth on the (00) plane, there is a drawback that it cannot be determined in a short time whether or not the substrate can be used as the substrate itself.

【0006】したがって本発明の目的は、青色発光デバ
イスの材料として期待されるZnSeを含めて、II-VI
族化合物半導体結晶体の(100)面上の転位密度を直
接計測する方法を提供することにある。
Therefore, an object of the present invention, including ZnSe expected as a material for a blue light emitting device, is II-VI.
It is another object of the present invention to provide a method for directly measuring the dislocation density on the (100) plane of a group compound semiconductor crystal.

【0007】[0007]

【課題を解決するための手段】本発明者らは上記目的を
達成すべく鋭意研究した結果、希薄臭素メタノール溶液
を用いてZnSe単結晶基板の(100)面を食刻すれ
ば、転位部分が鮮明な食刻像として得られるので、転位
密度が測定でき、しかもこの方法がZnSe単結晶以外
のII-VI 族化合物半導体単結晶体にも適用できることを
見いだし本発明に到達した。
DISCLOSURE OF THE INVENTION As a result of intensive studies to achieve the above object, the inventors of the present invention have found that when a (100) plane of a ZnSe single crystal substrate is etched using a dilute bromine methanol solution, dislocation portions are generated. Since a clear etched image can be obtained, the dislocation density can be measured, and further, the present invention was found to be applicable to II-VI group compound semiconductor single crystals other than ZnSe single crystals, and the present invention was reached.

【0008】すなわち本発明は、II-VI 族化合物半導体
単結晶体の(100)面をスライスして得た基板に、表
面研磨および鏡面エッチング処理を施した後、臭素メタ
ノール溶液に浸漬することによって食刻せしめ、得られ
た食刻像から該(100)面上の転位を計測することを
特徴とするII-VI 族化合物半導体単結晶体の転位密度測
定方法を提供するものである。
That is, according to the present invention, a substrate obtained by slicing the (100) plane of a II-VI group compound semiconductor single crystal is subjected to surface polishing and mirror surface etching, and then immersed in a bromine methanol solution. The present invention provides a method for measuring dislocation density of a II-VI group compound semiconductor single crystal body, which comprises etching and measuring dislocations on the (100) plane from the obtained etched image.

【0009】[0009]

【作用】本発明において原料として用いるZnSe単結
晶基板は、まず垂直ブリッジマン炉または垂直徐冷炉を
用いて高圧溶融法によるZnSe多結晶を種結晶として
該種結晶上に育成することにより単結晶を得る。すなわ
ち前者では溶融体の入ったるつぼを温度勾配のついた電
気炉中を降下させて結晶を育成し、後者では上下方向に
温度勾配のついた電気炉中にるつぼを置き温度勾配のつ
いたまま徐冷してるつぼ下面より結晶を析出成長させ
る。
A ZnSe single crystal substrate used as a raw material in the present invention is obtained by first growing a ZnSe polycrystal by a high pressure melting method as a seed crystal on the seed crystal using a vertical Bridgman furnace or a vertical annealing furnace to obtain a single crystal. . That is, in the former, the crucible containing the melt was lowered in an electric furnace with a temperature gradient to grow crystals, and in the latter, the crucible was placed in an electric furnace with a vertical temperature gradient and the temperature gradient was maintained. Gradually cool and grow crystals from the bottom of the crucible.

【0010】次いでこの単結晶をスライサーで(10
0)方位に切り出したものを遊離砥粒を介在させて行う
ラッピングにより研磨し、さらに表面を鏡面仕上げする
ために鏡面エッチングして所定形状に切り出したもので
ある。
Next, this single crystal was sliced with a slicer (10
It is obtained by polishing the product cut in the 0) direction by lapping performed by interposing free abrasive grains, and then mirror-finishing the surface for mirror-finishing and cutting the product into a predetermined shape.

【0011】本発明では、単結晶基板を0.1容積%の
臭素メタノール溶液に浸漬することにより基板表面を食
刻させるが、食刻条件としては室温で溶液を攪拌しなが
ら80〜150秒程度浸漬すれば鮮明な食刻像が得られ
るので、これから転位密度を計測することができる。
In the present invention, the surface of the substrate is etched by immersing the single crystal substrate in a 0.1% by volume bromine-methanol solution. The etching condition is room temperature for about 80 to 150 seconds while stirring the solution. Since a clear etched image can be obtained by immersion, the dislocation density can be measured from this.

【0012】[0012]

【実施例】図1は本実施例に用いられた単結晶基板食刻
装置を示す模式断面図、図2はZnSe単結晶基板を食
刻した後の腐食部分を示す顕微鏡写真で同図(a)は4
00倍、同図(b)は1000倍に拡大したものであっ
て、これらを参照して以下説明する。
EXAMPLE FIG. 1 is a schematic sectional view showing a single crystal substrate etching apparatus used in this example, and FIG. 2 is a micrograph showing a corroded portion after etching a ZnSe single crystal substrate. ) Is 4
00 times and FIG. 10B are magnified 1000 times, which will be described below with reference to these figures.

【0013】あらかじめ高圧溶融法によって得られたZ
nSe単結晶体から(100)面をスライスして5mm角
×1mm厚の基板を切り取り、該基板の表面を研磨した
後、鏡面エッチング処理を施したものを供試基板とし
た。
Z previously obtained by the high pressure melting method
A (100) plane was sliced from the nSe single crystal to cut a 5 mm square × 1 mm thick substrate, the surface of the substrate was polished, and then mirror-etched.

【0014】図1に示す単結晶基板食刻装置の反応槽1
に入れられた常温(約20℃)の1容積%臭素メタノー
ル溶液6に上記ZnSe基板5が浸漬するようにテフロ
ン製バスケット2に入れて反応槽中にセットした。
Reaction tank 1 of the single crystal substrate etching apparatus shown in FIG.
The ZnSe substrate 5 was placed in a Teflon basket 2 so that it was immersed in a 1 vol% bromine methanol solution 6 at room temperature (about 20 ° C.) and placed in a reaction tank.

【0015】反応槽底部にはあらかじめ攪拌子3が設け
られてあり、反応槽下部にあるマグネチックスターラー
4で撹拌子3を250rpm の速度で120秒回転させ、
食刻処理を行った。
A stirrer 3 is previously provided at the bottom of the reaction tank, and the stirrer 3 is rotated at a speed of 250 rpm for 120 seconds by a magnetic stirrer 4 at the bottom of the reaction tank.
The etching process was performed.

【0016】上記食刻処理を施したZnSe基板を反応
槽より取り出し、メタノール中で超音波洗浄し乾燥した
後、ノマルスキー微分干渉顕微鏡で腐食部分(転位部
分)を観察した。
The etched ZnSe substrate was taken out from the reaction tank, ultrasonically washed in methanol and dried, and then the corroded portion (dislocation portion) was observed with a Nomarski differential interference microscope.

【0017】観察したZnSe基板上の転位部分を図2
(a)の400倍、同図(b)の1000倍の写真とし
て示したが、これらから単位面積当りの転位密度を容易
に計測することができた。
The observed dislocations on the ZnSe substrate are shown in FIG.
The dislocation density per unit area can be easily measured from these photographs, which are shown as photographs of 400 times of (a) and 1000 times of (b).

【0018】なお、ZnSe以外のII-VI 族化合物半導
体単結晶についても食刻処理を試みたが、ZnSeの場
合とほぼ同様の結果が得られた。
An etching treatment was also attempted on II-VI group compound semiconductor single crystals other than ZnSe, but almost the same results as in the case of ZnSe were obtained.

【0019】[0019]

【発明の効果】以上説明したように、従来II-VI 族化合
物半導体単結晶の(100)面における転位密度を直接
計測する手段がなかったが、本発明の方法によれば、簡
易な装置を用いて(100)面に食刻処理を施すことに
より明確鮮明になった転位を計測できるので、短時間で
(100)面の転位密度が測定され、II-VI 族半導体の
エピタキシャル成長基板としての適否が容易に判断でき
るようになった。
As described above, there is no conventional means for directly measuring the dislocation density on the (100) plane of a II-VI group compound semiconductor single crystal, but the method of the present invention provides a simple apparatus. The dislocation density on the (100) plane can be measured in a short time because it is possible to measure the dislocations that are clearly defined by etching the (100) plane with the use of the II-VI semiconductor as an epitaxial growth substrate. Can be judged easily.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例に用いられた単結晶基板食刻装置を示す
模式断面図である。
FIG. 1 is a schematic cross-sectional view showing a single crystal substrate etching apparatus used in Examples.

【図2】ZnSe単結晶基板を食刻した後の腐食部分を
示す顕微鏡写真で(a)は400倍、(b)は1000
倍の拡大写真である。
FIG. 2 is a micrograph showing a corroded portion after etching a ZnSe single crystal substrate, (a) is 400 times and (b) is 1000 times.
It is a double magnified photo.

【符号の説明】[Explanation of symbols]

1 反応槽 2 バスケット 3 攪拌子 4 マグネチックスターラー 5 ZnSe基板 6 臭素メタノール溶液 1 Reactor 2 Basket 3 Stirrer 4 Magnetic Stirrer 5 ZnSe Substrate 6 Bromine Methanol Solution

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 II-VI 族化合物半導体単結晶体の(10
0)面をスライスして得た基板に、表面研磨および鏡面
エッチング処理を施した後、臭素メタノール溶液に浸漬
することによって食刻せしめ、得られた食刻像から該
(100)面上の転位を計測することを特徴とするII-V
I 族化合物半導体単結晶体の転位密度測定方法。
1. A group II-VI compound semiconductor single crystal (10
The substrate obtained by slicing the (0) plane was subjected to surface polishing and mirror-etching treatment, and then etched by immersing it in a bromine-methanol solution. From the obtained etched image, dislocations on the (100) plane were obtained. II-V characterized by measuring
Method for measuring dislocation density of group I compound semiconductor single crystals.
JP14392395A 1995-05-18 1995-05-18 Dislocation density measurement method for II-VI group compound semiconductor single crystal Expired - Fee Related JP3661801B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14392395A JP3661801B2 (en) 1995-05-18 1995-05-18 Dislocation density measurement method for II-VI group compound semiconductor single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14392395A JP3661801B2 (en) 1995-05-18 1995-05-18 Dislocation density measurement method for II-VI group compound semiconductor single crystal

Publications (2)

Publication Number Publication Date
JPH08316586A true JPH08316586A (en) 1996-11-29
JP3661801B2 JP3661801B2 (en) 2005-06-22

Family

ID=15350249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14392395A Expired - Fee Related JP3661801B2 (en) 1995-05-18 1995-05-18 Dislocation density measurement method for II-VI group compound semiconductor single crystal

Country Status (1)

Country Link
JP (1) JP3661801B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002161399A (en) * 2000-08-28 2002-06-04 Snecma Moteurs Structure analysis method for monocrystal superalloy
EP2502263A2 (en) * 2009-11-18 2012-09-26 3M Innovative Properties Company Novel wet etching agent for ii-vi semiconductors and method
CN114184613A (en) * 2021-12-07 2022-03-15 江苏天鼎检测科技有限公司 Method capable of clearly displaying carbide

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002161399A (en) * 2000-08-28 2002-06-04 Snecma Moteurs Structure analysis method for monocrystal superalloy
JP4495888B2 (en) * 2000-08-28 2010-07-07 スネクマ Structural analysis methods for single crystal superalloys
EP2502263A2 (en) * 2009-11-18 2012-09-26 3M Innovative Properties Company Novel wet etching agent for ii-vi semiconductors and method
EP2502263B1 (en) * 2009-11-18 2014-09-03 3M Innovative Properties Company Wet etching method for ii-vi semiconductors
CN114184613A (en) * 2021-12-07 2022-03-15 江苏天鼎检测科技有限公司 Method capable of clearly displaying carbide

Also Published As

Publication number Publication date
JP3661801B2 (en) 2005-06-22

Similar Documents

Publication Publication Date Title
EP2733239B1 (en) Sic single crystal and manufacturing process therefor
KR102372706B1 (en) β-Ga₂O₃-BASED-SINGLE CRYSTAL SUBSTRATE
Lo et al. Ingot‐nucleated Pb1− x Sn x Te diode lasers
EP1420440B1 (en) An epitaxial wafer and a method for producing it
JP3491429B2 (en) Method for producing silicon carbide single crystal
JP3661801B2 (en) Dislocation density measurement method for II-VI group compound semiconductor single crystal
JPH0797299A (en) Method for growing sic single crystal
US11319646B2 (en) Gallium arsenide single crystal substrate
JPH07267795A (en) Growth method of silicon carbide single crystal
JP2002293686A (en) Method of growing compound semiconductor signal crystal and substrate cut out of the same
JP2003068744A (en) Silicon wafer manufacturing method, silicon wafer, and soi wafer
JP7046242B1 (en) Method for manufacturing indium phosphide single crystal ingot and method for manufacturing indium phosphide substrate
JPH04362084A (en) Wafer preparation of semiconductor material
JP2002274995A (en) Method of manufacturing silicon carbide single crystal ingot
JP2004099390A (en) Method of manufacturing compound semiconductor single crystal and compound semiconductor single crystal
JP3210840B2 (en) Semiconductor liquid phase epitaxial equipment
JP3560180B2 (en) Method for producing ZnSe homoepitaxial single crystal film
JPH10297997A (en) Formation of silicon carbide singe crystal
JP3876488B2 (en) Method for producing silicon carbide single crystal
JPH09199559A (en) Crystal defect evaluation of semiconductor single crystal film
JP3477292B2 (en) Semiconductor liquid phase epitaxy equipment
WO1990011391A1 (en) Wafer of compound semiconductor
JPH0240640B2 (en)
JP2811902B2 (en) Liquid phase epitaxial growth equipment
JPH0755880B2 (en) Method for producing compound semiconductor single crystal

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040127

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040206

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040318

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050316

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080401

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080401

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090401

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090401

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100401

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110401

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees