JPH08316470A - Power semiconductor device - Google Patents

Power semiconductor device

Info

Publication number
JPH08316470A
JPH08316470A JP7123309A JP12330995A JPH08316470A JP H08316470 A JPH08316470 A JP H08316470A JP 7123309 A JP7123309 A JP 7123309A JP 12330995 A JP12330995 A JP 12330995A JP H08316470 A JPH08316470 A JP H08316470A
Authority
JP
Japan
Prior art keywords
region
groove
semiconductor substrate
gate
main surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7123309A
Other languages
Japanese (ja)
Inventor
Katsunori Ueno
勝典 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP7123309A priority Critical patent/JPH08316470A/en
Publication of JPH08316470A publication Critical patent/JPH08316470A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7827Vertical transistors
    • H01L29/7828Vertical transistors without inversion channel, e.g. vertical ACCUFETs, normally-on vertical MISFETs

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE: To provide a power semiconductor device, which maintains a withstand voltage higher than a static withstand voltage for a long time, by a method wherein a semiconductor material having a band gap of 1.5eV or larger, such as a silicon carbide, is used for a semiconductor substrate in a structure, wherein a P-N junction is not included in the whole region of the substrate. CONSTITUTION: A gate groove 13 is formed in a surface layer in the first main surface of an n-type semiconductor substrate 1, a gate electrode 2 is formed on the surface of this groove 13 via a gate inuslating film 3, an n<+> source region 4 is formed in the surface layer, which is surrounded with this groove 13, in the substrate 1 and a source electrode 8 is formed on the region 4. A semiconductor material having a band gap of 1.5eV or larger, such as silicon carbide, is used for this substrate 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、炭化ケイ素等のバン
ドギャップの大きな半導体材料で製作した高耐圧、大電
流を制御する電力用半導体素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power semiconductor element for controlling a high withstand voltage and a large current, which is manufactured from a semiconductor material having a large band gap such as silicon carbide.

【0002】[0002]

【従来の技術】電力用半導体素子は、現在半導体材料と
してシリコンが最も多く使用され、また用途に応じて様
々な構造が適用されている。その一つに、Tsengyau Sya
u et al IEEE TRANSACTION ON ERECTRON DEVICES.VOL.4
1,NO.5,MAY (1994) pp.800〜808 や特開平2−1567
7で開示されている構造があり、その構造について以下
に説明する。
2. Description of the Related Art In power semiconductor devices, silicon is currently most often used as a semiconductor material, and various structures are applied depending on the application. One of them is Tsengyau Sya
u et al IEEE TRANSACTION ON ERECTRON DEVICES.VOL.4
1, NO.5, MAY (1994) pp.800-808 and JP-A-2-1567.
7 is disclosed, and the structure will be described below.

【0003】図4は従来素子の断面構造図を示す。n形
の半導体基板1の一方の主面(第1主面)の表面層にゲ
ート溝13が形成され、このゲート溝13の表面上にゲ
ート絶縁膜3を介してゲート電極2が形成される。この
ゲート溝13に囲まれた半導体基板1の表面層にn+
ース領域4が形成される。半導体基板1でゲート溝13
に囲まれた領域は第1ドリフト領域5となり、その下の
領域は第2ドリフト領域6となる。半導体基板1の他方
の主面(第2主面)の表面層にn+ ドレイン領域7が形
成され、n+ ドレイン領域7上にドレイン電極10が形
成される。第1ドリフト領域5の幅Wが極めて狭いた
め、n+ ソース電極8は各セル(単位素子)に設けられ
ず、セルを構成していない半導体基板1上に設ける。そ
の場合、同図の右側にあるように、半導体基板1のn層
から電気的に分離するために、p領域21を形成しその
表面層にn+ ソース領域4を形成し、その表面にソース
電極8を形成する。
FIG. 4 is a sectional view showing the structure of a conventional device. A gate groove 13 is formed in the surface layer of one main surface (first main surface) of the n-type semiconductor substrate 1, and a gate electrode 2 is formed on the surface of this gate groove 13 via a gate insulating film 3. . An n + source region 4 is formed in the surface layer of the semiconductor substrate 1 surrounded by the gate groove 13. Gate groove 13 in semiconductor substrate 1
The region surrounded by becomes the first drift region 5, and the region thereunder becomes the second drift region 6. An n + drain region 7 is formed on the surface layer of the other main surface (second main surface) of the semiconductor substrate 1, and a drain electrode 10 is formed on the n + drain region 7. Since the width W of the first drift region 5 is extremely narrow, the n + source electrode 8 is not provided in each cell (unit element) but is provided on the semiconductor substrate 1 that does not form a cell. In that case, as shown on the right side of the figure, in order to electrically isolate from the n layer of the semiconductor substrate 1, the p region 21 is formed, the n + source region 4 is formed in the surface layer thereof, and the source is formed on the surface thereof. The electrode 8 is formed.

【0004】つぎにこの素子の動作を説明する。ゲート
電極2に正、ソース電極8に負のゲート電圧を印加する
と、第1ドリフト領域5に空乏層11が拡がり、その空
乏層端12が接すると、つまり空乏層11が閉じた段階
でn+ ソース領域4からn+ドレイン領域7へ流れる電
子電流路が絶れる。従って、ソース電極8に負、ドレイ
ン電極10に正の電圧を印加すると、空乏層11が閉じ
るまではドレイン電流が流れ、空乏層11が閉じた段階
でドレイン電流は遮断する。
Next, the operation of this element will be described. When a positive gate voltage is applied to the gate electrode 2 and a negative gate voltage is applied to the source electrode 8, the depletion layer 11 spreads to the first drift region 5 and its depletion layer end 12 contacts, that is, when the depletion layer 11 is closed, n + The electron current path from the source region 4 to the n + drain region 7 is cut off. Therefore, when a negative voltage is applied to the source electrode 8 and a positive voltage is applied to the drain electrode 10, a drain current flows until the depletion layer 11 is closed, and the drain current is cut off when the depletion layer 11 is closed.

【0005】[0005]

【発明が解決しようとする課題】前記の構造において
は、ソース電極8下のp領域21から少数キャリアであ
る正孔が瞬時にn形の第一ドリフト領域5に第2ドリフ
ト領域6を介して注入されるので、ゲート電圧を印加し
た直後から空乏層端12は、静的状態つまり反転層が正
孔によって形成された状態と、同一の伸びとなり、その
ためゲート電圧を印加した直後に空乏層端12を、静的
状態より一時的に拡げて、静的耐圧より高い耐圧を保持
させることはできない。
In the above structure, holes, which are minority carriers, are instantaneously transferred from the p region 21 under the source electrode 8 to the n-type first drift region 5 through the second drift region 6. Immediately after the gate voltage is applied, the depletion layer end 12 has the same extension as that in the static state, that is, the state in which the inversion layer is formed by holes. Therefore, the depletion layer end 12 immediately after the gate voltage is applied. 12 cannot be temporarily expanded from the static state to maintain a withstand voltage higher than the static withstand voltage.

【0006】この発明は、前記課題を解決するために、
pn接合を含まない構造にして、さらに半導体基板にバ
ンドギャップの大きい半導体材料を使用することによっ
て、静的耐圧より高い耐圧を確保し、かつこの耐圧を保
持する時間を増大させることができる電力用半導体素子
を提供することを目的とする。
[0006] The present invention, in order to solve the above problems,
By using a structure that does not include a pn junction and using a semiconductor material with a large bandgap for the semiconductor substrate, a withstand voltage higher than the static withstand voltage can be secured and the time for holding this withstand voltage can be increased. An object is to provide a semiconductor device.

【0007】[0007]

【課題を解決するための手段】前記目的を達成するため
に、半導体基板の第一主面の表面層に選択的に溝を形成
し、該溝で囲まれた第一主面上にソース電極を形成し、
該溝の表面上に絶縁膜を介してゲート電極を形成し、第
二主面上にドレイン電極を形成して、トレンチ構造のM
OSFETを構成し、前記半導体基板に1.5eV以上
のバンドギャップを有する半導体材料を使用する。この
半導体基板の材料が炭化ケイ素であるとよい。また溝で
囲まれた第一主面の表面層と、第二主面の表面層とに半
導体基板と同一導電形の高濃度のソース領域と、ドレイ
ン領域とをそれぞれ形成し、ソース領域上にソース電極
と、ドレイン領域上にドレイン電極とをそれぞれ形成す
る。
To achieve the above object, a groove is selectively formed in a surface layer of a first main surface of a semiconductor substrate, and a source electrode is formed on the first main surface surrounded by the groove. To form
A gate electrode is formed on the surface of the groove via an insulating film, and a drain electrode is formed on the second main surface to form an M-shaped trench structure.
A semiconductor material having a bandgap of 1.5 eV or more is used to form the OSFET. The material of this semiconductor substrate is preferably silicon carbide. In addition, a high-concentration source region and a drain region of the same conductivity type as the semiconductor substrate are formed on the surface layer of the first main surface and the surface layer of the second main surface, which are surrounded by the groove, respectively. A source electrode and a drain electrode are formed on the drain region, respectively.

【0008】[0008]

【作用】絶縁膜直下の半導体中の空乏層の拡がりは2種
類の条件で異なる。一つは熱平衡状態で、絶縁膜と半導
体の界面に少数キャリアである正孔が蓄積し、反転層
(inversion)が形成される静的な状態と、も
う一つは深層空乏層(deep−depletion:
少数キャリアである正孔による反転層が形成されない状
態での空乏層のことをいう)とよばれる現象で、急激に
ゲートに電圧を印加したとき、正孔の蓄積がそれに応答
できず空乏層が反転層より一時的に拡がる過渡的な状態
がある。しかし正孔の熱的発生やp領域からの注入によ
り、通常極めて短時間で空乏層は反転層の幅になる。
The spread of the depletion layer in the semiconductor immediately below the insulating film differs depending on the two kinds of conditions. One is a thermal equilibrium state, a static state in which holes, which are minority carriers, are accumulated at the interface between the insulating film and the semiconductor to form an inversion layer, and the other is a deep depletion layer (depletion-depletion layer). :
This is a phenomenon called a depletion layer in which an inversion layer due to holes which are minority carriers is not formed.) When a voltage is suddenly applied to the gate, the accumulation of holes cannot respond to it and the depletion layer is There is a transient condition that extends temporarily beyond the inversion layer. However, due to thermal generation of holes and injection from the p region, the depletion layer usually has the width of the inversion layer in an extremely short time.

【0009】図3は空乏層の拡がりを計算した図であ
る。ここではゲート絶縁膜は酸化膜(SiO2 )とし、
厚さは0.1μmである。この図から深層空乏層(de
ep−depletion)の空乏層端12の拡がり
は、正孔が蓄積した状態の空乏層端12の拡がり(図で
inversion limit:限界反転層)より、
数倍以上になることが分かる。このことから、pn接合
のある従来構造より、第1ドリフト領域の幅を広くして
も、耐圧を保持でき、従って各セルごとにソース電極を
形成でき、pn接合を含まない構造にすることができ
る。また同図でWは深層空乏層(deep deple
tion)の幅、Wm は限界反転層(inversio
n limit)の幅を示し、所謂空乏層の伸びを示
す。
FIG. 3 is a diagram in which the spread of the depletion layer is calculated. Here, the gate insulating film is an oxide film (SiO 2 ),
The thickness is 0.1 μm. From this figure, the deep depletion layer (de
The spread of the depletion layer end 12 of ep-depletion) is based on the spread of the depletion layer end 12 in the state where holes are accumulated (inversion limit in the figure).
You can see that it will be several times more. Therefore, compared with the conventional structure having a pn junction, even if the width of the first drift region is widened, the breakdown voltage can be maintained, so that the source electrode can be formed for each cell and a structure not including the pn junction can be obtained. it can. In the figure, W is a deep depletion layer.
width, Wm is the limit inversion layer (inversio)
n limit), which is the extension of the so-called depletion layer.

【0010】またシリコンで製作したpn接合を含まな
い構造の素子では、耐圧を保持する状態つまり前記の過
渡的状態は、数10秒に亘って保持することができる
が、従来技術で述べたTsengyou Syau 等が開示した構
造、つまりpn接合を含む構造ではこの過渡的状態がな
く、耐圧を保持できない。その理由は前記した通りで、
ソース電極を設けるn+ ソース領域4を半導体基板1の
n層から電気的に分離するためのp領域21から正孔が
第2ドリフト領域6を介して第1ドリフト領域5に注入
され、ゲート電圧の印加と同時に反転層が形成され、空
乏層が第1ドリフト領域5を閉じることができなくな
り、耐圧が保持できない。
In a device made of silicon and having a structure not including a pn junction, the state of maintaining the withstand voltage, that is, the transient state can be maintained for several tens of seconds. The structure disclosed by Syau et al., That is, the structure including the pn junction, does not have this transient state and cannot maintain the breakdown voltage. The reason is as described above,
Holes are injected from the p region 21 for electrically separating the n + source region 4 provided with the source electrode from the n layer of the semiconductor substrate 1 into the first drift region 5 through the second drift region 6, and the gate voltage is increased. The inversion layer is formed at the same time when the voltage is applied, the depletion layer cannot close the first drift region 5, and the breakdown voltage cannot be maintained.

【0011】ところで、耐圧保持時間は、空乏層中で発
生する少数キャリアである正孔で決まり、その発生率は
真性キャリア濃度ni とライフタイムによって決まる。
ライフタイムは結晶性などによって決まる2次的なもの
であるが、ni は半導体に固有の物理量であるために、
半導体材料を決めると次式で決まる。
By the way, the breakdown voltage holding time is determined by holes, which are minority carriers generated in the depletion layer, and the generation rate thereof is determined by the intrinsic carrier concentration ni and the lifetime.
The lifetime is a secondary one determined by crystallinity and the like, but since ni is a physical quantity peculiar to a semiconductor,
When the semiconductor material is decided, it is decided by the following formula.

【0012】[0012]

【数1】 ここで、Nc V は伝導帯および価電子帯の状態密度、
Eg、k、Tはバンドギャップ、ボルツマン定数および
絶対温度である。耐圧を長時間保持させるためには、n
i を小さくする必要があり、従って、上式から大きなバ
ンドギャップの半導体材料を使用する必要がある。この
半導体材料として、GaAs(ガリウムヒ素)やSiC
(炭化ケイ素)がある。
[Equation 1] Where N c N V is the density of states of the conduction band and the valence band,
Eg, k, and T are band gaps, Boltzmann constants, and absolute temperatures. To maintain the breakdown voltage for a long time, n
It is necessary to make i small, and therefore it is necessary to use a semiconductor material having a large bandgap from the above formula. As the semiconductor material, GaAs (gallium arsenide) or SiC
(Silicon carbide).

【0013】[0013]

【実施例】図1はこの発明の一実施例の素子の要部断面
構造を示す。ソース電極8は各セルのn+ ソース領域4
上に設けられているため、従来構造のようにp領域21
(図4参照)の形成は不要であり全領域でpn接合を含
まないトレンチ構造のMOSFETである。図4とソー
ス電極8部以外は同一構造であり、また符号も同一のた
め、本構造の説明は省略する。同図において、第1ドリ
フト領域5の幅Wを両側からの空乏層端12の伸びLが
凌駕することで耐圧を確保することができる。半導体基
板1にシリコン(Si)を使用してこの素子を製作した
場合、pn接合を含む従来構造ではデバイスシミュレー
ションの結果せいぜい20V以下しか静的耐圧を確保で
きないものが、pn接合を含まない本発明の構造では第
1ドリフト領域5の幅Wを従来構造より拡げても、40
V以上の電圧を、数10秒間保持できた。このように、
pn接合を含まない構造にすることで、第1ドリフト領
域5の幅Wを従来構造より拡げることができ、そのため
各セルのn+ ソース領域4上にソース電極8を設けるこ
とができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a cross-sectional structure of an essential part of an element of an embodiment of the present invention. The source electrode 8 is the n + source region 4 of each cell
Since it is provided above, the p region 21 is formed like the conventional structure.
This is a MOSFET having a trench structure in which the formation of (see FIG. 4) is unnecessary and the pn junction is not included in the entire region. Since the structure is the same as that of FIG. 4 except for the source electrode 8 and the reference numerals are the same, the description of this structure is omitted. In the figure, the breakdown voltage can be ensured by the width L of the first drift region 5 being exceeded by the extension L of the depletion layer edge 12 from both sides. When this element is manufactured by using silicon (Si) for the semiconductor substrate 1, the conventional structure including the pn junction can secure a static breakdown voltage of 20 V or less at most as a result of the device simulation, but the present invention does not include the pn junction. In the structure of No. 4, even if the width W of the first drift region 5 is expanded from that of the conventional structure,
A voltage of V or higher could be maintained for several tens of seconds. in this way,
With the structure not including the pn junction, the width W of the first drift region 5 can be widened as compared with the conventional structure, and thus the source electrode 8 can be provided on the n + source region 4 of each cell.

【0014】図2はバンドギャップと耐圧保持時間の関
係図を示す。同図において、耐圧保持時間を実用レベル
の数10時間以上にするためには、バンドギャップは
1.5eV以上が必要であり、ガリウムヒ素(GaA
s)は比較的その値に近い。また炭化ケイ素(SiC)
はバンドギャップが3eV近くもあり、殆ど無限の保持
時間となり極めて有用な素材である。ここでバンドギャ
ップとは、電子エネルギーで表したときの価電子帯と伝
導帯の間のエネルギーギャップをいう。
FIG. 2 shows the relationship between the band gap and the breakdown voltage holding time. In the figure, the bandgap needs to be 1.5 eV or more in order to keep the breakdown voltage holding time at a practical level of several tens of hours or more, and gallium arsenide (GaA
s) is relatively close to that value. Also silicon carbide (SiC)
Has a band gap of about 3 eV and has an almost infinite holding time, and is a very useful material. Here, the band gap refers to an energy gap between a valence band and a conduction band when expressed by electron energy.

【0015】またSiCはバンドギャップが大きく、化
学的にも安定な材料であるため、シリコンと比較すると
高温や放射線下でも使用可能な各種の半導体素子が期待
されて、研究されている。またSiCは現在のところ、
p形の不純物としてアルミニウム(Al)やホウ素
(B)があるが、その不純物準位は0.2〜0.3eV
と深く、そのために室温での活性化率(価電子帯に正孔
を与える確立)は低く、pn接合を形成したとしても、
正孔の注入は極めて低く、耐圧保持時間は長くできる。
さらに、図1の構造ではp領域は形成されないため、よ
り一層耐圧保持時間を長くできる。以上の点から、半導
体基板1として、SiCは最適の半導体材料である。
Further, since SiC has a large band gap and is a chemically stable material, various semiconductor elements that can be used even at high temperatures and under irradiation are expected and studied as compared with silicon. Also, SiC is currently
Aluminum (Al) and boron (B) are used as p-type impurities, but the impurity level is 0.2 to 0.3 eV.
And therefore the activation rate at room temperature (the probability of giving holes to the valence band) is low, and even if a pn junction is formed,
The injection of holes is extremely low, and the breakdown voltage holding time can be lengthened.
Further, since the p region is not formed in the structure of FIG. 1, the breakdown voltage holding time can be further lengthened. From the above points, SiC is the most suitable semiconductor material for the semiconductor substrate 1.

【0016】[0016]

【発明の効果】この発明によれば、トレンチ構造の電圧
駆動型素子で、全領域においてpn接合を含まない構造
にし、半導体基板に炭化ケイ素などバンドギャップが
1.5eV以上の半導体材料を用いることで、静的耐圧
より高い耐圧をほぼ無限の時間維持することができる電
力用半導体素子を得ることができる。
According to the present invention, a voltage-driven device having a trench structure is formed without a pn junction in the entire region, and a semiconductor material such as silicon carbide having a band gap of 1.5 eV or more is used. Thus, it is possible to obtain a power semiconductor element capable of maintaining a withstand voltage higher than the static withstand voltage for an almost infinite time.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例の素子の要部断面構造図FIG. 1 is a cross-sectional structural view of an essential part of an element according to an embodiment of the present invention.

【図2】バンドギャップと耐圧保持時間の関係図[Fig. 2] Relationship between bandgap and withstand voltage holding time

【図3】空乏層の拡がりを計算した図FIG. 3 is a diagram in which the spread of the depletion layer is calculated.

【図4】従来素子の断面構造図FIG. 4 is a sectional structural view of a conventional element.

【符号の説明】[Explanation of symbols]

1 半導体基板 2 ゲート電極 3 ゲート絶縁膜 4 n+ ソース領域 5 第1ドリフト領域 6 第2ドリフト領域 7 n+ ドレイン領域 8 ソース電極 9 ゲート電極 10 ドレイン電極 11 空乏層 12 空乏層端 13 ゲート溝 21 p領域 L 空乏層端の伸び W 第1ドリフト領域の幅1 semiconductor substrate 2 gate electrode 3 gate insulating film 4 n + source region 5 first drift region 6 second drift region 7 n + drain region 8 source electrode 9 gate electrode 10 drain electrode 11 depletion layer 12 depletion layer edge 13 gate groove 21 p region L extension of depletion layer edge W width of first drift region

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】半導体基板の第一主面の表面層に選択的に
溝が形成され、該溝で囲まれた第一主面上にソース電極
が形成され、該溝の表面上に絶縁膜を介してゲート電極
が形成され、第二主面上にドレイン電極が形成されるト
レンチ構造のMOSFETを構成し、前記半導体基板が
1.5eV以上のバンドギャップを有する半導体である
ことを特徴とする電力用半導体素子。
1. A groove is selectively formed in a surface layer of a first main surface of a semiconductor substrate, a source electrode is formed on the first main surface surrounded by the groove, and an insulating film is formed on the surface of the groove. And a drain electrode is formed on the second main surface of the MOSFET having a trench structure, wherein the semiconductor substrate is a semiconductor having a band gap of 1.5 eV or more. Power semiconductor device.
【請求項2】半導体基板の材料が炭化ケイ素であること
を特徴とする請求項1記載の電力用半導体素子。
2. The power semiconductor device according to claim 1, wherein the material of the semiconductor substrate is silicon carbide.
【請求項3】溝で囲まれた第一主面の表面層と、第二主
面の表面層とに半導体基板と同一導電形の高濃度のソー
ス領域と、ドレイン領域とがそれぞれ形成され、ソース
領域上にソース電極と、ドレイン領域上にドレイン電極
とがそれぞれ形成されることを特徴とする請求項1記載
の電力用半導体素子。
3. A high-concentration source region and a drain region of the same conductivity type as the semiconductor substrate are formed on the surface layer of the first main surface and the surface layer of the second main surface, which are surrounded by the groove, respectively. 2. The power semiconductor device according to claim 1, wherein a source electrode is formed on the source region and a drain electrode is formed on the drain region.
JP7123309A 1995-05-23 1995-05-23 Power semiconductor device Pending JPH08316470A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7123309A JPH08316470A (en) 1995-05-23 1995-05-23 Power semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7123309A JPH08316470A (en) 1995-05-23 1995-05-23 Power semiconductor device

Publications (1)

Publication Number Publication Date
JPH08316470A true JPH08316470A (en) 1996-11-29

Family

ID=14857357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7123309A Pending JPH08316470A (en) 1995-05-23 1995-05-23 Power semiconductor device

Country Status (1)

Country Link
JP (1) JPH08316470A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003517725A (en) * 1999-08-10 2003-05-27 イノベイティブ・テクノロジー・ライセンシング・エルエルシー Unipolar field-effect transistor
US6787848B2 (en) 2001-06-29 2004-09-07 Kabushiki Kaisha Toshiba Vertical type power mosfet having trenched gate structure
US6855983B1 (en) 1998-11-10 2005-02-15 Toyota Jidosha Kabushiki Kaisha Semiconductor device having reduced on resistance
JP2006100365A (en) * 2004-09-28 2006-04-13 Nissan Motor Co Ltd Semiconductor device
WO2008153142A1 (en) * 2007-06-15 2008-12-18 Rohm Co., Ltd. Semiconductor device
JP2012182508A (en) * 2012-06-29 2012-09-20 Nissan Motor Co Ltd Semiconductor device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6855983B1 (en) 1998-11-10 2005-02-15 Toyota Jidosha Kabushiki Kaisha Semiconductor device having reduced on resistance
JP2003517725A (en) * 1999-08-10 2003-05-27 イノベイティブ・テクノロジー・ライセンシング・エルエルシー Unipolar field-effect transistor
US6787848B2 (en) 2001-06-29 2004-09-07 Kabushiki Kaisha Toshiba Vertical type power mosfet having trenched gate structure
US7045426B2 (en) 2001-06-29 2006-05-16 Kabushiki Kaisha Toshiba Vertical type power MOSFET having trenched gate structure
JP2006100365A (en) * 2004-09-28 2006-04-13 Nissan Motor Co Ltd Semiconductor device
WO2008153142A1 (en) * 2007-06-15 2008-12-18 Rohm Co., Ltd. Semiconductor device
US8217419B2 (en) 2007-06-15 2012-07-10 Rohm Co., Ltd. Semiconductor device
US8729605B2 (en) 2007-06-15 2014-05-20 Rohm Co., Ltd. Semiconductor switch device
US9419127B2 (en) 2007-06-15 2016-08-16 Rohm Co., Ltd. Semiconductor device including switching devices in an epitaxial layer
JP2012182508A (en) * 2012-06-29 2012-09-20 Nissan Motor Co Ltd Semiconductor device

Similar Documents

Publication Publication Date Title
JP3751976B2 (en) Silicon carbide thyristor
US4223328A (en) Field controlled thyristor with dual resistivity field layer
US5963807A (en) Silicon carbide field effect transistor with increased avalanche withstand capability
JP3471823B2 (en) Insulated gate semiconductor device and method of manufacturing the same
JP4972267B2 (en) Charge carrier extraction transistor
JP6066219B2 (en) Field effect transistor device with low source resistance
JP3201410B2 (en) Silicon carbide Schottky diode and method of manufacturing the same
US20040104429A1 (en) SiC-MISFET and method for fabricating the same
JP2005303027A (en) Semiconductor device
US11444155B2 (en) Silicon carbide semiconductor device
KR20110134486A (en) Silicon carbide bipolar junction transistor
EP0184827A2 (en) A high speed and high power transistor
JP2003318413A (en) High breakdown voltage silicon carbide diode and manufacturing method therefor
JPH08316470A (en) Power semiconductor device
JP2006066770A (en) Semiconductor device
US3398334A (en) Semiconductor device having regions of different conductivity types wherein current is carried by the same type of carrier in all said regions
JP3496509B2 (en) Method for manufacturing silicon carbide semiconductor device
US4569118A (en) Planar gate turn-off field controlled thyristors and planar junction gate field effect transistors, and method of making same
JPS6042624B2 (en) Field effect switching element
JP6930113B2 (en) Semiconductor devices and manufacturing methods for semiconductor devices
JP2576173B2 (en) Insulated gate semiconductor device
JPS639386B2 (en)
JP7276407B2 (en) Silicon carbide semiconductor device
JPH08241993A (en) Power switching device
JPH05275453A (en) Junction fet and manufacture thereof