JPH08306708A - Semiconductor device and its fabrication - Google Patents

Semiconductor device and its fabrication

Info

Publication number
JPH08306708A
JPH08306708A JP11088595A JP11088595A JPH08306708A JP H08306708 A JPH08306708 A JP H08306708A JP 11088595 A JP11088595 A JP 11088595A JP 11088595 A JP11088595 A JP 11088595A JP H08306708 A JPH08306708 A JP H08306708A
Authority
JP
Japan
Prior art keywords
layer
electrode
pair
semiconductor device
recess
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11088595A
Other languages
Japanese (ja)
Inventor
Hisaaki Tominaga
久昭 富永
Hiroshige Touno
太栄 東野
Yasoo Harada
八十雄 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP11088595A priority Critical patent/JPH08306708A/en
Publication of JPH08306708A publication Critical patent/JPH08306708A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE: To provide a semiconductor device having low parasitic capacity, and its fabrication method, in which a self-aligned electrode can be formed while monitoring the magnitude of source-drain current. CONSTITUTION: A resist pattern having inverse trapezoidal cross-section is formed on a working layer 2 followed by formation of an insulating film on the entire surface. The insulating film is then removed from the upper surface of the working layer 2 and resist pattern thus forming a pair of inclining side wall parts 4a, 4b of insulating film. Subsequently, a first electrode layer is formed on the upper surface of the working layer 2 and resist pattern, the first electrode layer on the resist pattern is removed together with the resist pattern, and heat treatment is effected thus forming ohmic electrodes 5a, 5b. While monitoring the magnitude of current flowing between the ohmic electrodes 5a, 5b, a recess is made in the region of working layer 2 exposed between the pair of side wall parts 4a, 4b and a gate electrode, i.e., a second electrode layer 7c, is formed in the recess and on the inner face at the side wall parts 4a, 4b.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ゲート電極およびオー
ミック電極を有する半導体装置およびその製造方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device having a gate electrode and an ohmic electrode and a method of manufacturing the same.

【0002】[0002]

【従来の技術】GaAsを用いたMES−FET(金属
−半導体電界効果トランジスタ)、HEMT(高電子移
動度トランジスタ)等の電界効果トランジスタの製造の
際には、ソース電極およびドレイン電極となるオーミッ
ク電極をゲート電極に対して常に一定の距離に保つ必要
がある。そこで、オーミック電極をゲート電極に対して
所定の位置に形成するために、セルフアライメント(自
己整合的)オーミック電極形成法が用いられている。
2. Description of the Related Art In manufacturing field effect transistors such as MES-FET (metal-semiconductor field effect transistor) and HEMT (high electron mobility transistor) using GaAs, ohmic electrodes to be a source electrode and a drain electrode are manufactured. Must always be kept at a constant distance from the gate electrode. Therefore, a self-aligned ohmic electrode forming method is used to form the ohmic electrode at a predetermined position with respect to the gate electrode.

【0003】図9〜図14はセルフアライメントオーミ
ック電極形成法を用いた従来の半導体装置の製造方法を
示す工程断面図である。ここでは、一例としてGaAs
HEMTの製造方法を説明する。
9 to 14 are process sectional views showing a conventional method for manufacturing a semiconductor device using the self-alignment ohmic electrode forming method. Here, as an example, GaAs
A method of manufacturing the HEMT will be described.

【0004】まず、図9に示すように、GaAs半導体
基板11上にn−AlGaAs層12aおよびn+ −G
aAs層12bからなる動作層12を形成する。次に、
図10に示すように、動作層12上に所定間隔を隔てて
絶縁膜13を形成し、絶縁膜13上にレジストパターン
14を形成する。そして、図11に示すように、絶縁膜
13間の動作層12の領域をエッチングすることにより
リセス部(凹部)15を形成する。
First, as shown in FIG. 9, an n-AlGaAs layer 12a and n + -G are formed on a GaAs semiconductor substrate 11.
The operation layer 12 including the aAs layer 12b is formed. next,
As shown in FIG. 10, the insulating film 13 is formed on the operating layer 12 at a predetermined interval, and the resist pattern 14 is formed on the insulating film 13. Then, as shown in FIG. 11, the region of the operating layer 12 between the insulating films 13 is etched to form a recess portion (recess) 15.

【0005】次に、レジストパターン14をマスクとし
て、図12に示すように、リセス部15内およびその周
縁の絶縁膜13上にゲート電極16を形成する。その
後、図13に示すように、ゲート電極16の領域を除く
絶縁膜13を除去する。最後に、図14に示すように、
動作層12上およびゲート電極16上にオーミック電極
17a,17b,17cを形成する。ゲート電極16の
両側方のオーミック電極17a,17bがそれぞれソー
ス電極およびドレイン電極となる。
Next, using the resist pattern 14 as a mask, as shown in FIG. 12, a gate electrode 16 is formed in the recess 15 and on the insulating film 13 at the periphery thereof. After that, as shown in FIG. 13, the insulating film 13 except the region of the gate electrode 16 is removed. Finally, as shown in FIG.
Ohmic electrodes 17a, 17b and 17c are formed on the operating layer 12 and the gate electrode 16. The ohmic electrodes 17a and 17b on both sides of the gate electrode 16 serve as a source electrode and a drain electrode, respectively.

【0006】上記のように、セルフアライメントオーミ
ック電極形成法を用いると、ゲート電極16に対してオ
ーミック電極17a,17bの位置を自己制御すること
ができるので、ゲート電極16とオーミック電極17
a,17bとの距離を常に所定の値に保つことができ
る。それにより、半導体装置の特性が安定化する。
As described above, when the self-alignment ohmic electrode forming method is used, the positions of the ohmic electrodes 17a and 17b with respect to the gate electrode 16 can be self-controlled, so that the gate electrode 16 and the ohmic electrode 17 can be controlled.
The distance between a and 17b can always be kept at a predetermined value. As a result, the characteristics of the semiconductor device are stabilized.

【0007】[0007]

【発明が解決しようとする課題】上記の従来の半導体装
置の製造方法では、ソース電極とドレイン電極との間の
電流の値を制御するために、ゲート電極16が形成され
る動作層12の領域をエッチングすることによりリセス
部15を形成する。
In the conventional method of manufacturing a semiconductor device described above, in order to control the value of the current between the source electrode and the drain electrode, the region of the operating layer 12 in which the gate electrode 16 is formed is formed. The recess 15 is formed by etching.

【0008】このリセス部15の形成時には、オーミッ
ク電極が形成されていないので、電流値をモニタしなが
らエッチング量を制御することができない。そのため、
リセス部15を形成するために、n−GaAs層12a
およびn+ −GaAs層12bのエッチング速度の差を
利用した高度な選択エッチング技術を用いる必要がある
が、この選択エッチング技術を用いても、リセス部15
を正確に所定の深さにエッチングすることは困難であ
る。その結果、製造された半導体装置の特性が均一にな
らず、歩留りが低いという問題がある。
Since the ohmic electrode is not formed when the recess 15 is formed, the etching amount cannot be controlled while monitoring the current value. for that reason,
In order to form the recess portion 15, the n-GaAs layer 12a
It is necessary to use an advanced selective etching technique that utilizes the difference in etching rate between the n + -GaAs layer 12b and the n + -GaAs layer 12b.
It is difficult to accurately etch to a predetermined depth. As a result, the characteristics of the manufactured semiconductor device are not uniform, and the yield is low.

【0009】また、上記の従来の半導体装置において
は、ゲート電極16がほぼT字状に形成され、ゲート電
極16の笠部と動作層12との間に厚い絶縁膜13が存
在するため、寄生容量が大きくなり、高周波特性を向上
させることができないという問題がある。
In the conventional semiconductor device described above, the gate electrode 16 is formed in a substantially T shape, and the thick insulating film 13 exists between the cap portion of the gate electrode 16 and the operating layer 12. There is a problem that the capacitance becomes large and the high frequency characteristics cannot be improved.

【0010】本発明の目的は、ソース・ドレイン間電流
の値をモニタしながら自己整合的に電極形成を行うこと
ができ、かつ寄生容量の小さい半導体装置およびその製
造方法を提供することである。
An object of the present invention is to provide a semiconductor device in which electrodes can be formed in a self-aligned manner while monitoring the value of a source-drain current and which has a small parasitic capacitance, and a manufacturing method thereof.

【0011】[0011]

【課題を解決するための手段】本発明に係る半導体装置
は、半導体層上に絶縁膜からなる1対の側壁部を上端間
の距離が下端間の距離に比べて大きくなるように互いに
逆方向に傾斜させて形成し、1対の側壁部の外方の半導
体層の領域上にそれぞれ第1の電極層を形成し、1対の
側壁部間の半導体層の領域に凹部を形成し、凹部内およ
び1対の側壁部の内面に第2の電極層を形成してなる。
In a semiconductor device according to the present invention, a pair of side wall portions made of an insulating film are formed on a semiconductor layer in opposite directions so that a distance between upper ends is larger than a distance between lower ends. The first electrode layers are formed on the regions of the semiconductor layer outside the pair of side wall portions, and the recesses are formed in the region of the semiconductor layer between the pair of side wall portions. A second electrode layer is formed inside and on the inner surfaces of the pair of side wall portions.

【0012】本発明に係る半導体装置の製造方法は、半
導体層上に断面逆台形状のレジスト膜を形成し、半導体
層およびレジスト膜の全面に絶縁膜を形成した後、半導
体層の上面およびレジスト膜の上面の絶縁膜を除去し、
半導体層の上面およびレジスト膜の上面に第1の電極層
を形成し、レジスト膜上の第1の電極層をレジスト膜と
ともに除去することにより絶縁膜からなる傾斜した1対
の側壁部を形成し、1対の側壁部間の半導体層の領域に
凹部を形成し、凹部内および1対の側壁部の内面に第2
の電極層を形成するものである。
According to the method of manufacturing a semiconductor device of the present invention, a resist film having an inverted trapezoidal cross section is formed on a semiconductor layer, an insulating film is formed on the entire surface of the semiconductor layer and the resist film, and then the upper surface of the semiconductor layer and the resist are formed. Remove the insulating film on the upper surface of the film,
A first electrode layer is formed on the upper surface of the semiconductor layer and the upper surface of the resist film, and the first electrode layer on the resist film is removed together with the resist film to form a pair of inclined side wall portions made of an insulating film. A recess is formed in the region of the semiconductor layer between the pair of sidewalls, and a second recess is formed in the recess and on the inner surface of the pair of sidewalls.
To form the electrode layer.

【0013】[0013]

【作用】本発明に係る半導体装置およびその製造方法に
おいては、半導体層上に絶縁膜からなる1対の側壁部が
互いに逆方向に傾斜して形成され、その1対の側壁部の
外方の半導体層の領域上に1対のオーミック電極となる
第1の電極層が自己整合的に形成された後、1対の側壁
部間の半導体層の領域に凹部が形成される。したがっ
て、1対のオーミック電極間に電流を流しつつその電流
値をモニタしながら凹部の深さを調整することが可能と
なる。
In the semiconductor device and the method of manufacturing the same according to the present invention, a pair of side wall portions made of an insulating film are formed on the semiconductor layer so as to be inclined in mutually opposite directions. After a pair of first electrode layers to be ohmic electrodes are formed in a self-aligned manner on the region of the semiconductor layer, a recess is formed in the region of the semiconductor layer between the pair of side wall portions. Therefore, it becomes possible to adjust the depth of the recess while applying a current between the pair of ohmic electrodes and monitoring the current value.

【0014】実際には、凹部の形成過程の適当な時点
で、ウエハの一部領域またはモニタ用のチップのオーミ
ック電極間に電流を流して電流値を測定し、所定の電流
値が得られない場合には、さらに凹部の深さを深くす
る。これを所定の電流値が得られるまで繰り返す。
In practice, a current value is measured by flowing a current between a partial region of the wafer or the ohmic electrode of the monitor chip at an appropriate point in the process of forming the recess, and a predetermined current value cannot be obtained. In some cases, the depth of the recess is further increased. This is repeated until a predetermined current value is obtained.

【0015】また、凹部内および1対の側壁部の内面に
ゲート電極となる第2の電極層が形成される。このと
き、1対の側壁部の存在によりゲート電極とオーミック
電極とが接触することはない。また、ゲート電極がほぼ
V字状に形成されるので、ゲート電極と半導体層との間
の寄生容量が小さくなる。
A second electrode layer serving as a gate electrode is formed in the recess and on the inner surfaces of the pair of side wall portions. At this time, the gate electrode and the ohmic electrode do not come into contact with each other due to the existence of the pair of sidewall portions. Moreover, since the gate electrode is formed in a substantially V shape, the parasitic capacitance between the gate electrode and the semiconductor layer is reduced.

【0016】[0016]

【実施例】以下、本発明の実施例を図面を参照しながら
詳細に説明する。図1〜図8は本発明の一実施例による
半導体装置の製造方法を示す工程断面図である。本実施
例では、半導体装置の一例としてGaAsHEMTにつ
いて説明する。
Embodiments of the present invention will now be described in detail with reference to the drawings. 1 to 8 are process sectional views showing a method for manufacturing a semiconductor device according to an embodiment of the present invention. In this embodiment, a GaAs HEMT will be described as an example of a semiconductor device.

【0017】まず、図1に示すように、GaAs半導体
基板1上に厚さ500Åのn−AlGaAs層2aおよ
び厚さ500Åのn+ −GaAs層2bからなる動作層
2を形成する。次に、図2に示すように、動作層2上に
ポジ型のフォトレジストを用いて厚さ1.9μmのレジ
ストパターン3を形成する。レジストパターン3の断面
形状は逆台形状となる。フォトレジストとしては、たと
えばヘキストジャパン社製の商品名AZ5214Eを用
いる。レジストパターン3の上面の長さL1はたとえば
1.5μmであり、下面の長さL2にはたとえば0.5
μmである。
First, as shown in FIG. 1, an operating layer 2 composed of an n-AlGaAs layer 2a having a thickness of 500Å and an n + -GaAs layer 2b having a thickness of 500Å is formed on a GaAs semiconductor substrate 1. Next, as shown in FIG. 2, a resist pattern 3 having a thickness of 1.9 μm is formed on the operation layer 2 by using a positive photoresist. The cross-sectional shape of the resist pattern 3 is an inverted trapezoid. As the photoresist, for example, trade name AZ5214E manufactured by Hoechst Japan Ltd. is used. The length L1 of the upper surface of the resist pattern 3 is, for example, 1.5 μm, and the length L2 of the lower surface thereof is, for example, 0.5.
μm.

【0018】その後、図3に示すように、ECR−CV
D法(電子サイクロトロン共鳴化学的気相成長法)を用
いて、動作層2およびレジストパターン3の全面に厚さ
2000Åの窒化シリコンからなる絶縁膜4を形成す
る。さらに、図4に示すように、四フッ化炭素(C
4 )を用いたRIE法(反応性イオンエッチング法)
により絶縁膜4を除去する。このとき、レジストパター
ン3の笠部がエッチングマスクとなるため、レジストパ
ターン3の傾斜した両側面およびその下方の領域の絶縁
膜4は除去されずに残る。それにより、レジストパター
ン3の両側面にそれぞれ絶縁膜からなる傾斜した側壁部
4a,4bが設けられる。
Then, as shown in FIG. 3, ECR-CV
Using the D method (electron cyclotron resonance chemical vapor deposition method), an insulating film 4 made of silicon nitride and having a thickness of 2000 Å is formed on the entire surface of the operating layer 2 and the resist pattern 3. Further, as shown in FIG. 4, carbon tetrafluoride (C
RIE method using F 4 (reactive ion etching method)
The insulating film 4 is removed by. At this time, since the cap portion of the resist pattern 3 serves as an etching mask, the insulating films 4 on both inclined side surfaces of the resist pattern 3 and the area therebelow remain without being removed. As a result, inclined sidewall portions 4a and 4b made of an insulating film are provided on both side surfaces of the resist pattern 3, respectively.

【0019】その後、図5に示すように、動作層2の上
面およびレジストパターン3の上面に、厚さ700Åの
AuGe、厚さ70ÅのNiおよび厚さ1300ÅのA
uの積層構造からなる第1の電極層5を抵抗加熱蒸着法
により形成する。次いで、GaAs半導体基板1をアセ
トン等の剥離剤中に浸漬してレジストパターン3を溶解
させることにより、図6に示すように、レジストパター
ン3をその上部の第1の電極層5とともに取り除く(リ
フトオフエ程)。その後、温度450℃で2分間の熱処
理を施すことにより、オーミック電極5a,5bを形成
する。
Thereafter, as shown in FIG. 5, AuGe having a thickness of 700Å, Ni having a thickness of 70Å and A having a thickness of 1300Å are formed on the upper surface of the operation layer 2 and the upper surface of the resist pattern 3.
The first electrode layer 5 having a laminated structure of u is formed by the resistance heating vapor deposition method. Then, the GaAs semiconductor substrate 1 is immersed in a stripping agent such as acetone to dissolve the resist pattern 3, so that the resist pattern 3 is removed together with the first electrode layer 5 above it (lift-off effect), as shown in FIG. Degree). Then, heat treatment is performed at a temperature of 450 ° C. for 2 minutes to form ohmic electrodes 5a and 5b.

【0020】次に、図7に示すように、リン酸系GaA
sエッチング液を用いて、絶縁膜からなる1対の側壁部
4a,4b間に露出している動作層2の領域をエッチン
グし、リセス部6を形成する(リセスエッチング)。こ
のとき、ウエハ上の一部の領域においてまたは同時に作
製されているモニタ用のチップにおいて、オーミック電
極5a,5b間に電流を流しつつその電流値をモニタし
ながらエッチング量を制御し、所望のソース・ドレイン
間飽和電流値が得られるようにリセス部6の深さを調整
する。実際には、ある程度エッチングした時点でエッチ
ングを中止し、ウエハの一部領域またはモニタ用のチッ
プの電極5a,5b間に電流を流して電流値を測定し、
所定の電流値が得られない場合には、さらにエッチング
を行う。これを所定の電流値が得られるまで繰り返す。
Next, as shown in FIG. 7, phosphoric acid GaA
The region of the operating layer 2 exposed between the pair of side wall portions 4a and 4b made of an insulating film is etched with an s etching solution to form a recess portion 6 (recess etching). At this time, in a monitoring chip that is manufactured in a partial region of the wafer or at the same time, the etching amount is controlled while flowing a current between the ohmic electrodes 5a and 5b and monitoring the current value to obtain a desired source. The depth of the recess 6 is adjusted so that the saturation current value between drains can be obtained. Actually, the etching is stopped at a point of time when the etching is performed to some extent, and a current value is measured by applying a current between the electrodes 5a and 5b of a partial region of the wafer or the chip for monitoring.
When the predetermined current value cannot be obtained, further etching is performed. This is repeated until a predetermined current value is obtained.

【0021】最後に、図8に示すようにオーミック電極
5a,5bの上面、リセス部6内および側壁部4a,4
bの内面に、抵抗加熱蒸着法により厚さ200ÅのT
i、厚さ400ÅのPd層および厚さ3000ÅのAu
からなる積層構造の第2の電極層7a,7b,7cを形
成する。
Finally, as shown in FIG. 8, the upper surfaces of the ohmic electrodes 5a and 5b, the inside of the recess 6 and the side walls 4a and 4 are formed.
On the inner surface of b, T of thickness 200 Å was formed by resistance heating evaporation method.
i, Pd layer with a thickness of 400Å and Au with a thickness of 3000Å
The second electrode layers 7a, 7b, 7c having a laminated structure are formed.

【0022】1対の側壁部4a,4bの外方に形成され
たオーミック電極5a,5bがソース電極およびドレイ
ン電極となり、リセス部6内および1対の側壁部4a,
4bの内面に形成された第2の電極層7cがゲート電極
となる。このとき、絶縁膜からなる1対の側壁部4a,
4bの存在により、ゲート電極となる第2の電極層7c
がオーミック電極5a,5bと接触することはない。
The ohmic electrodes 5a, 5b formed outside the pair of side wall portions 4a, 4b serve as the source electrode and the drain electrode, and are formed in the recess 6 and the pair of side wall portions 4a, 4b.
The second electrode layer 7c formed on the inner surface of 4b serves as a gate electrode. At this time, the pair of side wall portions 4a made of an insulating film,
The second electrode layer 7c serving as a gate electrode due to the presence of 4b
Does not come into contact with the ohmic electrodes 5a and 5b.

【0023】このように、本実施例の半導体装置および
その製造方法によれば、リセス部6の形成前にオーミッ
ク電極5a,5bが形成されるので、リセス部6の形成
時にオーミック電極5a,5b間に電流を流しつつその
電流値をモニタしながらエッチング量を制御することに
より、所望のソース・ドレイン間飽和電流値が得られる
ようにリセス部6の深さを調整することが可能となる。
したがって、製造された半導体装置の特性が均一にな
り、歩留りが向上する。
As described above, according to the semiconductor device and the method of manufacturing the same of the present embodiment, since the ohmic electrodes 5a and 5b are formed before the recess portion 6 is formed, the ohmic electrodes 5a and 5b are formed when the recess portion 6 is formed. It is possible to adjust the depth of the recess 6 so that a desired saturation current value between the source and drain can be obtained by controlling the etching amount while monitoring the current value while passing a current therethrough.
Therefore, the characteristics of the manufactured semiconductor device become uniform and the yield is improved.

【0024】また、リセス部6内および1対の側壁部4
a,4bの内面にゲート電極となる第2の電極層7cが
ほぼV字状に形成されるので、ゲート電極と半導体基板
1との間の寄生容量が小さくなる。したがって、半導体
装置の高周波特性が向上する。
In the recess portion 6 and the pair of side wall portions 4
Since the second electrode layer 7c serving as a gate electrode is formed in a substantially V shape on the inner surfaces of a and 4b, the parasitic capacitance between the gate electrode and the semiconductor substrate 1 is reduced. Therefore, the high frequency characteristics of the semiconductor device are improved.

【0025】なお、本発明はGaAsHEMTに限ら
ず、ゲート電極およびオーミック電極を有する種々の半
導体装置に適用することができる。例えば、本発明をIE
EE ELECTRON DEVICE LETTERS, VOL. 14, NO.7, JULY 19
93, pp.354-356に報告されているTMT(Two-Mode cha
nnel FET)に適用してもよい。
The present invention is not limited to GaAs HEMTs, but can be applied to various semiconductor devices having a gate electrode and an ohmic electrode. For example, the invention in IE
EE ELECTRON DEVICE LETTERS, VOL. 14, NO.7, JULY 19
93, pp.354-356, TMT (Two-Mode cha
nFET (FET) may be applied.

【0026】[0026]

【発明の効果】以上のように本発明によれば、互いに逆
方向に傾斜した絶縁膜からなる側壁部の外方に1対のオ
ーミック電極となる第1の電極層を自己整合的に形成し
た後に、1対の側壁部間の半導体層の領域に凹部を形成
することができるので、1対のオーミック電極間に電流
を流しつつその電流値をモニタしながら凹部の深さを調
整することが可能となる。したがって、オーミック電極
をゲート電極に対して自己整合的に形成しつつ、所望の
ソース・ドレイン間飽和電流値を得ることができる。そ
の結果、半導体装置の特性が均一となり、歩留りが向上
する。
As described above, according to the present invention, a pair of first electrode layers, which are ohmic electrodes, are formed in a self-aligned manner on the outer sides of side wall portions made of insulating films inclined in opposite directions. After that, since the recess can be formed in the region of the semiconductor layer between the pair of side wall portions, it is possible to adjust the depth of the recess while applying a current between the pair of ohmic electrodes and monitoring the current value. It will be possible. Therefore, the desired source-drain saturation current value can be obtained while forming the ohmic electrode in a self-aligned manner with respect to the gate electrode. As a result, the characteristics of the semiconductor device are made uniform and the yield is improved.

【0027】また、凹部内および1対の側壁部の内面に
ゲート電極となる第2の電極層がほぼV字状に形成され
るので、ゲート電極と半導体層との間の寄生容量が小さ
くなる。したがって、半導体装置の高周波特性が向上す
る。
Further, since the second electrode layer serving as the gate electrode is formed in a substantially V shape in the recess and on the inner surfaces of the pair of side wall portions, the parasitic capacitance between the gate electrode and the semiconductor layer is reduced. . Therefore, the high frequency characteristics of the semiconductor device are improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例による半導体装置の製造方法
を示す第1の工程断面図である。
FIG. 1 is a first process sectional view showing a method for manufacturing a semiconductor device according to an embodiment of the present invention.

【図2】本発明の一実施例による半導体装置の製造方法
を示す第2の工程断面図である。
FIG. 2 is a second process sectional view showing the method for manufacturing the semiconductor device according to the embodiment of the present invention.

【図3】本発明の一実施例による半導体装置の製造方法
を示す第3の工程断面図である。
FIG. 3 is a third process sectional view showing the method for manufacturing the semiconductor device according to the embodiment of the present invention.

【図4】本発明の一実施例による半導体装置の製造方法
を示す第4の工程断面図である。
FIG. 4 is a fourth process sectional view showing the method of manufacturing the semiconductor device according to the embodiment of the present invention.

【図5】本発明の一実施例による半導体装置の製造方法
を示す第5の工程断面図である。
FIG. 5 is a fifth process sectional view showing the method for manufacturing the semiconductor device according to the embodiment of the present invention.

【図6】本発明の一実施例による半導体装置の製造方法
を示す第6の工程断面図である。
FIG. 6 is a sixth process sectional view showing the method for manufacturing the semiconductor device according to the embodiment of the present invention.

【図7】本発明の一実施例による半導体装置の製造方法
を示す第7の工程断面図である。
FIG. 7 is a seventh process sectional view showing the method of manufacturing the semiconductor device according to the embodiment of the present invention.

【図8】本発明の一実施例による半導体装置の製造方法
を示す第8の工程断面図である。
FIG. 8 is an eighth process sectional view showing the method for manufacturing the semiconductor device according to the embodiment of the present invention.

【図9】従来の半導体装置の製造方法を示す第1の工程
断面図である。
FIG. 9 is a first process sectional view showing the method of manufacturing the conventional semiconductor device.

【図10】従来の半導体装置の製造方法を示す第2の工
程断面図である。
FIG. 10 is a second process sectional view showing the method of manufacturing the conventional semiconductor device.

【図11】従来の半導体装置の製造方法を示す第3の工
程断面図である。
FIG. 11 is a third process sectional view showing the method of manufacturing the conventional semiconductor device.

【図12】従来の半導体装置の製造方法を示す第4の工
程断面図である。
FIG. 12 is a fourth process sectional view showing the method of manufacturing the conventional semiconductor device.

【図13】従来の半導体装置の製造方法を示す第5の工
程断面図である。
FIG. 13 is a fifth process sectional view showing the method of manufacturing the conventional semiconductor device.

【図14】従来の半導体装置の製造方法を示す第6の工
程断面図である。
FIG. 14 is a sixth process sectional view showing the method of manufacturing the conventional semiconductor device.

【符号の説明】[Explanation of symbols]

1 GaAs半導体基板 2 動作層 3 レジストパターン 4 絶縁膜 4a,4b 側壁部 5 第1の電極層 5a,5b オーミック電極 6 リセス部 7a,7b,7c 第2の電極層 DESCRIPTION OF SYMBOLS 1 GaAs semiconductor substrate 2 operation layer 3 resist pattern 4 insulating film 4a, 4b side wall part 5 first electrode layer 5a, 5b ohmic electrode 6 recess part 7a, 7b, 7c second electrode layer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 半導体層上に絶縁膜からなる1対の側壁
部を上端間の距離が下端間の距離に比べて大きくなるよ
うに互いに逆方向に傾斜させて形成し、前記1対の側壁
部の外方の前記半導体層の領域上にそれぞれ第1の電極
層を形成し、前記1対の側壁部間の前記半導体層の領域
に凹部を形成し、前記凹部内および前記1対の側壁部の
内面に第2の電極層を形成したことを特徴とする半導体
装置。
1. A pair of sidewalls made of an insulating film are formed on a semiconductor layer so as to be inclined in mutually opposite directions so that a distance between upper ends is larger than a distance between lower ends. First electrode layers are formed on the regions of the semiconductor layer outside the parts, and recesses are formed in the regions of the semiconductor layer between the pair of side wall parts. Inside the recesses and the pair of side walls. A semiconductor device having a second electrode layer formed on the inner surface of the portion.
【請求項2】 半導体層上に断面逆台形状のレジスト膜
を形成し、前記半導体層および前記レジスト膜の全面に
絶縁膜を形成した後、前記半導体層の上面および前記レ
ジスト膜の上面の絶縁膜を除去し、前記半導体層の上面
および前記レジスト膜の上面に第1の電極層を形成し、
前記レジスト膜上の前記第1の電極層を前記レジスト膜
とともに除去することにより絶縁膜からなる傾斜した1
対の側壁部を形成し、前記1対の側壁部間の前記半導体
層の領域に凹部を形成し、前記凹部内および前記1対の
側壁部の内面に第2の電極層を形成することを特徴とす
る半導体装置の製造方法。
2. A resist film having an inverted trapezoidal cross section is formed on a semiconductor layer, an insulating film is formed on the entire surfaces of the semiconductor layer and the resist film, and then insulation is performed on the upper surface of the semiconductor layer and the upper surface of the resist film. The film is removed, and a first electrode layer is formed on the upper surface of the semiconductor layer and the upper surface of the resist film,
The first electrode layer on the resist film is removed together with the resist film to form an inclined film made of an insulating film.
Forming a pair of sidewalls, forming a recess in a region of the semiconductor layer between the pair of sidewalls, and forming a second electrode layer in the recess and on an inner surface of the pair of sidewalls. A method for manufacturing a characteristic semiconductor device.
JP11088595A 1995-05-09 1995-05-09 Semiconductor device and its fabrication Pending JPH08306708A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11088595A JPH08306708A (en) 1995-05-09 1995-05-09 Semiconductor device and its fabrication

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11088595A JPH08306708A (en) 1995-05-09 1995-05-09 Semiconductor device and its fabrication

Publications (1)

Publication Number Publication Date
JPH08306708A true JPH08306708A (en) 1996-11-22

Family

ID=14547168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11088595A Pending JPH08306708A (en) 1995-05-09 1995-05-09 Semiconductor device and its fabrication

Country Status (1)

Country Link
JP (1) JPH08306708A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001009952A3 (en) * 1999-07-30 2001-11-15 Formfactor Inc Interconnect assemblies and methods
US6713374B2 (en) 1999-07-30 2004-03-30 Formfactor, Inc. Interconnect assemblies and methods
US6727580B1 (en) 1993-11-16 2004-04-27 Formfactor, Inc. Microelectronic spring contact elements
US6759311B2 (en) 2001-10-31 2004-07-06 Formfactor, Inc. Fan out of interconnect elements attached to semiconductor wafer
US6780001B2 (en) 1999-07-30 2004-08-24 Formfactor, Inc. Forming tool for forming a contoured microelectronic spring mold
US6888362B2 (en) 2000-11-09 2005-05-03 Formfactor, Inc. Test head assembly for electronic components with plurality of contoured microelectronic spring contacts
US6939474B2 (en) 1999-07-30 2005-09-06 Formfactor, Inc. Method for forming microelectronic spring structures on a substrate
US7189077B1 (en) 1999-07-30 2007-03-13 Formfactor, Inc. Lithographic type microelectronic spring structures with improved contours
US7579269B2 (en) 1993-11-16 2009-08-25 Formfactor, Inc. Microelectronic spring contact elements

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6727580B1 (en) 1993-11-16 2004-04-27 Formfactor, Inc. Microelectronic spring contact elements
US7579269B2 (en) 1993-11-16 2009-08-25 Formfactor, Inc. Microelectronic spring contact elements
WO2001009952A3 (en) * 1999-07-30 2001-11-15 Formfactor Inc Interconnect assemblies and methods
US6713374B2 (en) 1999-07-30 2004-03-30 Formfactor, Inc. Interconnect assemblies and methods
US6780001B2 (en) 1999-07-30 2004-08-24 Formfactor, Inc. Forming tool for forming a contoured microelectronic spring mold
US6939474B2 (en) 1999-07-30 2005-09-06 Formfactor, Inc. Method for forming microelectronic spring structures on a substrate
US7189077B1 (en) 1999-07-30 2007-03-13 Formfactor, Inc. Lithographic type microelectronic spring structures with improved contours
US7524194B2 (en) 1999-07-30 2009-04-28 Formfactor, Inc. Lithographic type microelectronic spring structures with improved contours
US7675301B2 (en) 1999-07-30 2010-03-09 Formfactor, Inc. Electronic components with plurality of contoured microelectronic spring contacts
US6888362B2 (en) 2000-11-09 2005-05-03 Formfactor, Inc. Test head assembly for electronic components with plurality of contoured microelectronic spring contacts
US7245137B2 (en) 2000-11-09 2007-07-17 Formfactor, Inc. Test head assembly having paired contact structures
US6759311B2 (en) 2001-10-31 2004-07-06 Formfactor, Inc. Fan out of interconnect elements attached to semiconductor wafer

Similar Documents

Publication Publication Date Title
JPS59229876A (en) Manufacture of schottky gate type field effect transistor
JPH03292744A (en) Compound semiconductor device and manufacture thereof
JPH08306708A (en) Semiconductor device and its fabrication
JPH08172102A (en) Manufacture of semiconductor device
KR0179116B1 (en) Method for manufacturing self-aligned t-type gate
JPS6253953B2 (en)
JPH08274118A (en) Field-effect semiconductor device and its manufacture
JPS61240684A (en) Schottky-type field effect transistor and manufacture thereof
JPH10125695A (en) Semiconductor device and its manufacture
JPS6112079A (en) Manufacture of semiconductor element
JPS6258154B2 (en)
JP2893776B2 (en) Method for manufacturing semiconductor device
JPS6239834B2 (en)
JPS5833714B2 (en) Method for manufacturing gallium arsenide Schottky barrier gate field effect transistor
JP3373676B2 (en) Method of manufacturing field effect transistor device
KR0150487B1 (en) Fabrication method of t-shape metal electrode
JPH09298203A (en) Manufacture of field-effect transistor
JPH0574814A (en) Manufacture of schottky-gate type field-effect transistor
JPS6070772A (en) Manufacture of field-effect transistor
JPH02271540A (en) Manufacture of field-effect transistor
JPH01133373A (en) Manufacture of field effect transistor
JPH0595004A (en) Manufacture of field-effect transistor
JPH1070138A (en) Manufacture of semiconductor device
JPH07335668A (en) Manufacture of field effect transistor
JPS59224178A (en) Manufacture of field effect transistor