JPH08299951A - Ultraviolet ray irradiating device - Google Patents

Ultraviolet ray irradiating device

Info

Publication number
JPH08299951A
JPH08299951A JP7105746A JP10574695A JPH08299951A JP H08299951 A JPH08299951 A JP H08299951A JP 7105746 A JP7105746 A JP 7105746A JP 10574695 A JP10574695 A JP 10574695A JP H08299951 A JPH08299951 A JP H08299951A
Authority
JP
Japan
Prior art keywords
quartz glass
laser
gas
ultraviolet rays
discharged
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7105746A
Other languages
Japanese (ja)
Inventor
Tatsuo Hara
龍雄 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Pantec Co Ltd
Original Assignee
Shinko Pantec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Pantec Co Ltd filed Critical Shinko Pantec Co Ltd
Priority to JP7105746A priority Critical patent/JPH08299951A/en
Publication of JPH08299951A publication Critical patent/JPH08299951A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Physical Water Treatments (AREA)

Abstract

PURPOSE: To obtain an ultraviolet rays irradiating device with high discharge efficiency utilizing energy of a laser as a substitute for the conventional large- scaled AC power source device by arranging a gas-filled vessel consisting of an ultraviolet rays transmission material in a route of laser rays discharged from a laser device. CONSTITUTION: In an excimer laser device 1, thermoelectrons discharged from a cathode 2 are accelerated by an accelerating electrode 3, and are converged by magnetic field generated by a deflecting coil 4, a focusing coil 5 and a deflecting coil 6 to forms electron beams, which irradiate gas in the device to make an excimer state. By the way, gaseous Xe is sealed in a quartz glass vessel 11 from a line 13, and a raw water containing organic matter is fed into a water tank 15 from a line 16. Laser beams discharged through an outlet side mirror 9 are reflected by a reflecting mirror 10, and are made incident into the quartz glass vessel 11 through a route 18 and a quartz glass lens 12. Then, ultraviolet rays are allowed to pass through the quartz glass vessel 11 and irradiate the water to be treated to effectively perform chemical change of organic matter.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、紫外線を用いて超純水
装置や排水処理回収装置や原子力発電所一次冷却水等の
中の有機物質(TOC)を分解するのに好適な紫外線照
射装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultraviolet irradiation device suitable for decomposing organic substances (TOC) in ultrapure water devices, wastewater treatment and recovery devices, nuclear power plant primary cooling water, etc. using ultraviolet rays. Regarding

【0002】[0002]

【従来の技術、背景および発明が解決しようとする課
題】紫外線の一般的な光源としては、水素、希ガス、水
銀などの放電管が用いられており、例えば水素放電管で
は560nmから168nmの範囲の範囲の強い連続ス
ペクトルと100nm付近の多数の線スペクトルが得ら
れ、希ガスとしてXeガスを用いた場合、172nmの
単一波長の紫外線が発生する。
2. Description of the Related Art Discharge tubes of hydrogen, rare gas, mercury, etc. are used as a general light source of ultraviolet rays. For example, in the case of hydrogen discharge tubes, the range of 560 nm to 168 nm is used. A strong continuous spectrum in the range of 1 and many line spectra around 100 nm are obtained, and when Xe gas is used as a rare gas, ultraviolet rays having a single wavelength of 172 nm are generated.

【0003】ところで、誘電体である媒質中に電流が流
れる現象である放電を起こすためには、絶縁破壊を起こ
すために一定の電場を生成する必要がある。例えば、空
気中で放電を起こすためには、平等電界では1cm当たり
およそ30kVの電位差が必要であると言われている。
しかし、そのためには高電圧を発生させるための大規模
な交流電源設備が必要であり、かかる電極による放電方
式のみではエネルギー密度が低いため、効率もあまり高
くない。
By the way, in order to cause discharge, which is a phenomenon in which a current flows in a medium which is a dielectric, it is necessary to generate a constant electric field in order to cause dielectric breakdown. For example, it is said that a potential difference of about 30 kV per cm is required in a uniform electric field to cause a discharge in air.
However, for that purpose, a large-scale AC power supply facility for generating a high voltage is required, and since the energy density is low only by the discharge method using such electrodes, the efficiency is not so high.

【0004】この点に関してレーザ光は、「単色光で
ある。指向性がよい。集光性がよい。エネルギー
密度が高い。干渉性がよい。光エネルギーを短時間
に集中できる。」等の自然光では得られない特性を有す
るため、計測・レーダー用として、あるいは切断・溶接
・表面処理用として多方面に応用されており、このよう
に優れた特性を有するレーザ光の高密度エネルギーを放
電に利用すれば、極めて高効率で放電を行いうることが
期待できる。
In this respect, the laser light is natural light such as "monochromatic light. Good directivity. Good condensing property. High energy density. Good coherence. Light energy can be concentrated in a short time." Since it has characteristics that cannot be obtained by various methods, it has been applied in various fields for measurement / radar, cutting / welding / surface treatment, etc. If so, it can be expected that discharge can be performed with extremely high efficiency.

【0005】本発明はこのような現況に鑑みてなされた
ものであって、その目的は、従来の大規模交流電源設備
に代えてレーザ装置で励起・発振させたレーザ光の高密
度エネルギーを放電のための主たるエネルギーとして利
用した高放電効率の紫外線照射装置を提供することにあ
る。
The present invention has been made in view of the above circumstances, and its object is to discharge high-density energy of laser light excited and oscillated by a laser device in place of conventional large-scale AC power supply equipment. It is an object of the present invention to provide an ultraviolet irradiation device having high discharge efficiency, which is used as a main energy for

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に本発明の要旨は、レーザ装置から放出されるレーザ光
の経路中に、ガスを封入した紫外線透過材料からなる容
器を配置したことを特徴とする紫外線照射装置を第一の
発明とし、上記第一の発明において、容器内に一対のグ
ラスライニング電極を配置したことを特徴とする紫外線
照射装置を第二の発明とする。
In order to achieve the above object, the gist of the present invention is to arrange a container made of an ultraviolet-transparent material in which a gas is enclosed in the path of laser light emitted from a laser device. A characteristic ultraviolet ray irradiation device is a first invention, and in the above first invention, an ultraviolet ray irradiation device characterized in that a pair of glass lining electrodes is arranged in a container is a second invention.

【0007】封入ガスとしては、N2 、H2 、D2 (重
水素)、He、Ne、Ar、Kr、Xe、F2 、C
2 、Br2 、HCl、SF6 等の単独のものまたは複
数を混合したものを使用することができる。好ましく
は、希ガスまたは希ガスとハロゲンガスとの混合ガスを
封入するのがよい。
The enclosed gas is N 2 , H 2 , D 2 (deuterium), He, Ne, Ar, Kr, Xe, F 2 , C
Any one of l 2 , Br 2 , HCl, SF 6 and the like or a mixture of a plurality thereof may be used. It is preferable to fill a rare gas or a mixed gas of a rare gas and a halogen gas.

【0008】紫外線透過材料としては、例えば、石英ガ
ラスまたはCaF2 を使用することができる。
As the ultraviolet transmitting material, for example, quartz glass or CaF 2 can be used.

【0009】[0009]

【作用】レーザ装置から放出されるレーザ光により紫外
線透過材料からなる容器内のガスはいわゆるプラズマ状
態となる。そのエネルギーにより、封入ガスとして希ガ
スまたは希ガスとハロゲンガスとの混合ガスを用いた場
合、これらのガスが励起されて2量体(いわゆる「エキ
シマ」)が生成し、そのエキシマが分解するとき、単一
波長の紫外線が発生する。この場合、容器内に一対のグ
ラスライニング電極を配置し、容器内にレーザ光を照射
するとともにグラスライニング電極による放電エネルギ
ーを補助的に利用すれば、より強力な紫外線照射装置と
なる。このようにして発生した紫外線は、有機物の分解
等に利用することができる。
The laser light emitted from the laser device causes the gas in the container made of the ultraviolet transparent material to be in a so-called plasma state. When a rare gas or a mixed gas of a rare gas and a halogen gas is used as a sealed gas due to the energy, when these gases are excited to form a dimer (so-called “excimer”) and the excimer decomposes. , Ultraviolet rays with a single wavelength are generated. In this case, by arranging a pair of glass lining electrodes in the container, irradiating the inside of the container with a laser beam and supplementarily utilizing discharge energy from the glass lining electrodes, a more powerful ultraviolet irradiation device can be obtained. The ultraviolet rays thus generated can be used for decomposition of organic substances and the like.

【0010】[0010]

【実施例】以下に本発明の実施例を説明する。図1は、
レーザ装置として、気体レーザ装置の1種であるエキシ
マレーザ装置を使用した場合の一例を示す概略構成図で
ある。エキシマレーザ装置には電子ビーム励起方式と放
電励起方式があり、本実施例では電子ビーム励起方式の
構造例を示す。図1において、エキシマレーザ装置1は
カソード2から放出される熱電子を加速電極3で加速
し、偏向コイル4、集束コイル5および偏向コイル6に
よって作られる磁界で収束して電子ビームを作り、これ
を装置内のガスに照射(電子衝突)してエキシマ状態を
作るものである。8は反射側ミラー、9は出力側ミラー
である。電子ビームを使っての励起の特徴は、通常の放
電状態では得ることのできないハイパワーな励起が可能
で、励起効率がよいことである。もちろん、エキシマレ
ーザ装置以外の他の気体レーザ装置、例えばHe−Ne
レーザ装置やArレーザ装置やCO2 レーザ装置を使用
することも可能であり、さらに、固体レーザ装置であ
る、ルビーレーザ装置やNd−YAGレーザ装置やNd
−ガラスレーザ装置等を使用することも可能であり、さ
らには半導体レーザ素子や液体レーザ装置を使用するこ
とも可能である。
Embodiments of the present invention will be described below. Figure 1
It is a schematic block diagram which shows an example at the time of using the excimer laser apparatus which is 1 type of a gas laser apparatus as a laser apparatus. The excimer laser device has an electron beam excitation method and a discharge excitation method, and this embodiment shows an example of the structure of the electron beam excitation method. In FIG. 1, an excimer laser device 1 accelerates thermoelectrons emitted from a cathode 2 with an accelerating electrode 3 and converges them with a magnetic field created by a deflection coil 4, a focusing coil 5 and a deflection coil 6 to form an electron beam. The gas inside the device is irradiated (electron collision) to create an excimer state. Reference numeral 8 is a reflection side mirror, and 9 is an output side mirror. A characteristic of excitation using an electron beam is that high-power excitation, which cannot be obtained in a normal discharge state, is possible and the excitation efficiency is good. Of course, a gas laser device other than the excimer laser device, for example, He-Ne
It is also possible to use a laser device, an Ar laser device, or a CO 2 laser device, and further, a solid-state laser device such as a ruby laser device, an Nd-YAG laser device, or an Nd laser device.
-A glass laser device or the like can be used, and further, a semiconductor laser element or a liquid laser device can also be used.

【0011】図1において、10は出力側ミラー9から
放出されるレーザ光を反射する反射ミラー、11は石英
ガラス製容器、12は石英ガラス製レンズである。石英
ガラス製容器11内には管路13を経てガスが封入さ
れ、管路14を経て封入ガスは排出される。15は被処
理水を貯留する水槽である。
In FIG. 1, 10 is a reflection mirror for reflecting the laser beam emitted from the output side mirror 9, 11 is a quartz glass container, and 12 is a quartz glass lens. Gas is enclosed in the quartz glass container 11 via a pipe 13, and the enclosed gas is discharged via a pipe 14. Reference numeral 15 is a water tank for storing water to be treated.

【0012】以上のように構成される紫外線照射装置を
用いて紫外線照射実験を行ったので、以下に説明する。
管路13よりXeガスを石英ガラス製容器11内に封入
し、水槽15内には管路16から約200ppb濃度の
有機物を含有する原水を通入した。そして、エキシマレ
ーザ装置1において所定条件の下で励起・発振させ、出
力側ミラー9を経て放出されたレーザ光を反射ミラー1
0で反射し、経路18および石英ガラス製レンズ12を
経て石英ガラス製容器11内に入射させた。その結果、
容器11内のXeガスは励起されてエキシマが生成する
とともに速やかに分解して、172nmの単一波長の紫
外線が発生した。この紫外線は石英ガラス製容器11を
透過して水槽15内の被処理水に照射され、有機物の化
学変化が効率的に行われた結果、管路17から取り出し
た水の中の有機物濃度を調べると、約10ppbとなっ
ていた。
An ultraviolet irradiation experiment was carried out using the ultraviolet irradiation device constructed as described above, and will be described below.
Xe gas was sealed in the quartz glass container 11 through the pipe line 13, and raw water containing an organic substance having a concentration of about 200 ppb was introduced into the water tank 15 through the pipe line 16. Then, the excimer laser device 1 is excited and oscillated under a predetermined condition, and the laser light emitted through the output side mirror 9 is reflected by the reflection mirror 1.
It was reflected at 0 and was made incident on the inside of the quartz glass container 11 through the path 18 and the quartz glass lens 12. as a result,
The Xe gas in the container 11 was excited to generate excimers and rapidly decomposed to generate ultraviolet rays having a single wavelength of 172 nm. The ultraviolet rays pass through the quartz glass container 11 and are irradiated to the water to be treated in the water tank 15, and as a result of the efficient chemical change of the organic substances, the concentration of the organic substances in the water taken out from the pipeline 17 is examined. It was about 10 ppb.

【0013】図2は本発明の他の実施例を示し、図1の
装置との違いは石英ガラス製容器11内に一対のグラス
ライニング電極19を有する点であり、交流電源20か
ら絶縁被覆電線21を経て一対のグラスライニング電極
19、19間に所定電圧が印加される。グラスライニン
グ電極19は金属板の全面にグラスライニングを施した
ものである。
FIG. 2 shows another embodiment of the present invention, which is different from the apparatus of FIG. 1 in that a pair of glass lining electrodes 19 are provided in a quartz glass container 11 and an AC power source 20 to an insulation-coated electric wire. A predetermined voltage is applied between the pair of glass lining electrodes 19, 19 via 21. The glass lining electrode 19 is formed by subjecting the entire surface of a metal plate to glass lining.

【0014】このように構成される紫外線照射装置を用
いて紫外線照射実験を行ったので、以下に説明する。管
路13よりXeガスを石英ガラス製容器11内に封入
し、水槽15内には管路16から原子力発電所一次冷却
水を通入した。そして、エキシマレーザ装置1において
所定条件の下で励起・発振させ、出力側ミラー9を経て
放出されたレーザ光を反射ミラー10で反射し、経路1
8および石英ガラス製レンズ12を経て石英ガラス製容
器11内に入射させるとともに、交流電源20により電
極19、19間に5kV、20kHzの電圧を印加し
た。その結果、電極19、19間に放電が起こり、レー
ザ光の高密度エネルギーとの相乗効果により、容器11
内のXeガスは励起されてエキシマが生成するとともに
速やかに分解して、172nmの単一波長の強力な紫外
線が発生した。この紫外線は石英ガラス製容器11を透
過して水槽15内の被処理水に照射され、有機物の化学
変化が効率的に行われた結果、管路17から取り出した
水を調べると、原水中の有機物は炭酸ガス等に完全に変
化したことが確認できた。
An ultraviolet irradiation experiment was carried out using the ultraviolet irradiation device constructed as described above, and will be described below. Xe gas was sealed in the quartz glass container 11 from the pipe line 13, and the primary cooling water of the nuclear power plant was introduced into the water tank 15 from the pipe line 16. Then, the excimer laser device 1 is excited and oscillated under a predetermined condition, the laser light emitted through the output side mirror 9 is reflected by the reflection mirror 10, and the path 1
8 and the quartz glass lens 12 were made to enter the quartz glass container 11, and a voltage of 5 kV and 20 kHz was applied between the electrodes 19 by the AC power source 20. As a result, an electric discharge occurs between the electrodes 19 and 19, and the container 11 has a synergistic effect with the high-density energy of laser light.
The Xe gas in the inside was excited to generate excimers and rapidly decomposed to generate strong ultraviolet rays having a single wavelength of 172 nm. This ultraviolet light passes through the quartz glass container 11 and is applied to the water to be treated in the water tank 15, and as a result of the efficient chemical change of the organic substances, when the water taken out from the pipeline 17 is examined, It was confirmed that the organic matter was completely changed to carbon dioxide gas and the like.

【0015】上記した図1および図2の実施例では、水
槽15内に設置された石英ガラス製容器11は1個であ
るが、水槽15内に多数の石英ガラス製容器11を設置
することもできる。この場合、エキシマレーザ装置1か
ら放出されるレーザ光を分岐させ、各容器の石英ガラス
製レンズ12を経て石英ガラス製容器11内に入射させ
ることにより、複数の石英ガラス製容器11から紫外線
を発生させることができる。このような装置構成とする
ことで、より多量の被処理水を効率的に処理することが
可能となる。なお、レーザ光の分岐方法としては、『レ
ーザ光を10%程度反射し、90%程度透過する性質の
鏡を用いるビームスプリッタを各石英ガラス製容器11
上に配置してエキシマレーザ装置1から放出された単一
のレーザ光を各石英ガラス製容器11に向けて分岐させ
る方法』や『エキシマレーザは10mm×20mm程度の幅
を有するという性質を利用して、アパーチャー(多数の
小孔を有する板状体)を通してエキシマレーザ装置1か
ら放出された単一のレーザ光を複数に分割し、分割した
各レーザ光をミラーで反射して各石英ガラス製容器11
内に入射させる方法』などを採用することができる。
In the embodiment shown in FIGS. 1 and 2, the number of quartz glass containers 11 installed in the water tank 15 is one, but a large number of quartz glass containers 11 may be installed in the water tank 15. it can. In this case, the laser light emitted from the excimer laser device 1 is branched and is made to enter the quartz glass container 11 through the quartz glass lens 12 of each container to generate ultraviolet rays from the plurality of quartz glass containers 11. Can be made. With such a device configuration, it becomes possible to efficiently treat a large amount of water to be treated. As a method of branching laser light, “a beam splitter using a mirror having a property of reflecting about 10% of laser light and transmitting about 90% of laser light is used for each quartz glass container 11.
"A method of branching a single laser beam emitted from the excimer laser device 1 toward each quartz glass container 11" or "The excimer laser has a width of about 10 mm x 20 mm is used. , A single laser beam emitted from the excimer laser device 1 through an aperture (a plate having a large number of small holes) is divided into a plurality of laser beams, and each divided laser beam is reflected by a mirror to make a quartz glass container. 11
It is possible to adopt a method of making the light incident inside.

【0016】[0016]

【発明の効果】本発明によれば、従来の大規模交流電源
設備に代えてレーザ装置で励起・発振させたレーザ光の
高密度エネルギーを放電のための主たるエネルギーとし
て利用した高放電効率の紫外線照射装置を提供すること
ができる。
According to the present invention, ultraviolet rays of high discharge efficiency are used in which high density energy of laser light excited and oscillated by a laser device is used as a main energy for discharge in place of conventional large-scale AC power supply equipment. An irradiation device can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の紫外線照射装置の一実施例の断面図で
ある。
FIG. 1 is a cross-sectional view of an embodiment of an ultraviolet irradiation device of the present invention.

【図2】本発明の紫外線照射装置の別の実施例の断面図
である。
FIG. 2 is a cross-sectional view of another embodiment of the ultraviolet irradiation device of the present invention.

【符号の説明】[Explanation of symbols]

1…エキシマレーザ装置 8…反射側ミラー 9…出力側ミラー 11…石英ガラス製容器 12…石英ガラス製レンズ 15…水槽 19…グラスライニング電極 DESCRIPTION OF SYMBOLS 1 ... Excimer laser device 8 ... Reflection side mirror 9 ... Output side mirror 11 ... Quartz glass container 12 ... Quartz glass lens 15 ... Water tank 19 ... Glass lining electrode

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 レーザ装置から放出されるレーザ光の経
路中に、ガスを封入した紫外線透過材料からなる容器を
配置したことを特徴とする紫外線照射装置。
1. An ultraviolet irradiating device, characterized in that a container made of an ultraviolet permeable material enclosing a gas is arranged in the path of laser light emitted from the laser device.
【請求項2】 容器内に一対のグラスライニング電極を
配置したことを特徴とする請求項1記載の紫外線照射装
置。
2. The ultraviolet irradiation device according to claim 1, wherein a pair of glass lining electrodes are arranged in the container.
JP7105746A 1995-04-28 1995-04-28 Ultraviolet ray irradiating device Pending JPH08299951A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7105746A JPH08299951A (en) 1995-04-28 1995-04-28 Ultraviolet ray irradiating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7105746A JPH08299951A (en) 1995-04-28 1995-04-28 Ultraviolet ray irradiating device

Publications (1)

Publication Number Publication Date
JPH08299951A true JPH08299951A (en) 1996-11-19

Family

ID=14415827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7105746A Pending JPH08299951A (en) 1995-04-28 1995-04-28 Ultraviolet ray irradiating device

Country Status (1)

Country Link
JP (1) JPH08299951A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009532829A (en) * 2006-03-31 2009-09-10 エナジェティック・テクノロジー・インコーポレーテッド Laser-driven light source
US8525138B2 (en) 2006-03-31 2013-09-03 Energetiq Technology, Inc. Laser-driven light source
US9576785B2 (en) 2015-05-14 2017-02-21 Excelitas Technologies Corp. Electrodeless single CW laser driven xenon lamp
US9678262B2 (en) 2013-09-20 2017-06-13 Qloptiq Photonics GmbH & Co. KG Laser-operated light source
US9741553B2 (en) 2014-05-15 2017-08-22 Excelitas Technologies Corp. Elliptical and dual parabolic laser driven sealed beam lamps
US9748086B2 (en) 2014-05-15 2017-08-29 Excelitas Technologies Corp. Laser driven sealed beam lamp
US9984865B2 (en) 2013-12-06 2018-05-29 Hamamatsu Photonics K.K. Light-emitting sealed body
US10008378B2 (en) 2015-05-14 2018-06-26 Excelitas Technologies Corp. Laser driven sealed beam lamp with improved stability
US10057973B2 (en) 2015-05-14 2018-08-21 Excelitas Technologies Corp. Electrodeless single low power CW laser driven plasma lamp
US10078167B2 (en) 2013-09-20 2018-09-18 Asml Netherlands B.V. Laser-operated light source
US10109473B1 (en) 2018-01-26 2018-10-23 Excelitas Technologies Corp. Mechanically sealed tube for laser sustained plasma lamp and production method for same
US10186416B2 (en) 2014-05-15 2019-01-22 Excelitas Technologies Corp. Apparatus and a method for operating a variable pressure sealed beam lamp

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9048000B2 (en) 2006-03-31 2015-06-02 Energetiq Technology, Inc. High brightness laser-driven light source
JP2012230924A (en) * 2006-03-31 2012-11-22 Energetic Technology Inc Laser-driven light source and method
US8525138B2 (en) 2006-03-31 2013-09-03 Energetiq Technology, Inc. Laser-driven light source
KR20130135393A (en) * 2006-03-31 2013-12-10 에너제틱 테크놀로지 아이엔씨. Laser-driven light source
US8969841B2 (en) 2006-03-31 2015-03-03 Energetiq Technology, Inc. Light source for generating light from a laser sustained plasma in a above-atmospheric pressure chamber
KR101507617B1 (en) * 2006-03-31 2015-03-31 에너제틱 테크놀로지 아이엔씨. Laser-driven light source
US9185786B2 (en) 2006-03-31 2015-11-10 Energetiq Technology, Inc. Laser-driven light source
US9609732B2 (en) 2006-03-31 2017-03-28 Energetiq Technology, Inc. Laser-driven light source for generating light from a plasma in an pressurized chamber
JP2009532829A (en) * 2006-03-31 2009-09-10 エナジェティック・テクノロジー・インコーポレーテッド Laser-driven light source
US10845523B2 (en) 2013-09-20 2020-11-24 Asml Netherlands B.V. Laser-operated light source
US9678262B2 (en) 2013-09-20 2017-06-13 Qloptiq Photonics GmbH & Co. KG Laser-operated light source
US10078167B2 (en) 2013-09-20 2018-09-18 Asml Netherlands B.V. Laser-operated light source
US9984865B2 (en) 2013-12-06 2018-05-29 Hamamatsu Photonics K.K. Light-emitting sealed body
US9748086B2 (en) 2014-05-15 2017-08-29 Excelitas Technologies Corp. Laser driven sealed beam lamp
US9922814B2 (en) 2014-05-15 2018-03-20 Excelitas Technologies Corp. Apparatus and a method for operating a sealed beam lamp containing an ionizable medium
US9741553B2 (en) 2014-05-15 2017-08-22 Excelitas Technologies Corp. Elliptical and dual parabolic laser driven sealed beam lamps
US10186414B2 (en) 2014-05-15 2019-01-22 Excelitas Technologies Corp. Dual parabolic laser driven sealed beam lamps
US10186416B2 (en) 2014-05-15 2019-01-22 Excelitas Technologies Corp. Apparatus and a method for operating a variable pressure sealed beam lamp
US10504714B2 (en) 2014-05-15 2019-12-10 Excelitas Technologies Corp. Dual parabolic laser driven sealed beam lamp
US10008378B2 (en) 2015-05-14 2018-06-26 Excelitas Technologies Corp. Laser driven sealed beam lamp with improved stability
US10057973B2 (en) 2015-05-14 2018-08-21 Excelitas Technologies Corp. Electrodeless single low power CW laser driven plasma lamp
US10497555B2 (en) 2015-05-14 2019-12-03 Excelitas Technologies Corp. Laser driven sealed beam lamp with improved stability
US9576785B2 (en) 2015-05-14 2017-02-21 Excelitas Technologies Corp. Electrodeless single CW laser driven xenon lamp
US10109473B1 (en) 2018-01-26 2018-10-23 Excelitas Technologies Corp. Mechanically sealed tube for laser sustained plasma lamp and production method for same

Similar Documents

Publication Publication Date Title
Arai et al. Two‐photon processes in defect formation by excimer lasers in synthetic silica glass
Couairon et al. Light filaments in air for ultraviolet and infrared wavelengths
Eliasson et al. Modeling and applications of silent discharge plasmas
JPH08299951A (en) Ultraviolet ray irradiating device
Sosnin et al. A bactericidal barrier-discharge KrBr excilamp
Bollanti et al. Development and characterisation of an XeCl excimer laser-generated soft-X-ray plasma source and its applications
Gerasimov et al. UV emission from excited inert-gas molecules
JPH0716584B2 (en) Laser isotope separation device
US4201955A (en) Method of producing population inversion and lasing at short wavelengths by charge transfer
JP4481687B2 (en) Method and apparatus for simultaneously generating spin-polarized electrons and spin-polarized ions
Hasson Review of design concepts and diagnostics for 100-KW-class repetitively pulsed CO2 lasers
JPH0760654B2 (en) Ion beam generation method and device
JPH08266889A (en) Electric discharge chemical reactor
JPH08124540A (en) Xenon irradiation device and object surface reforming device using the irradiation device
JPH07288109A (en) Xenon radiation device and object surface quality improving device using it
USH66H (en) Pulsed plasma generation of extreme ultraviolet radiation
JPH08248199A (en) Ultraviolet irradiation device
Miley Nuclear pumping of the iodine laser revisited
JPH1145684A (en) Discharge lamp and treating device
JP2003243200A (en) Dc discharge generator by irradiation of laser beam and treatment method of environmentally contaminated gas
Eder et al. The optical-field and inner-shell ionization schemes for X-ray lasing
MIZUSHIMA et al. A Newly Developed Method of Direct Hydrogen Production from Seawater Using Femtosecond Pulse Laser
Grechukhin et al. Optical excitation and ionization of fast hydrogen atoms
JPH08243553A (en) Water treating process using ultraviolet ray irradiation device
JPH0648892A (en) Method for controlling lattice defect of diamond