JPH08292586A - Electrophotographic photoreceptor - Google Patents

Electrophotographic photoreceptor

Info

Publication number
JPH08292586A
JPH08292586A JP11906695A JP11906695A JPH08292586A JP H08292586 A JPH08292586 A JP H08292586A JP 11906695 A JP11906695 A JP 11906695A JP 11906695 A JP11906695 A JP 11906695A JP H08292586 A JPH08292586 A JP H08292586A
Authority
JP
Japan
Prior art keywords
chemical
compound
embedded image
formula
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11906695A
Other languages
Japanese (ja)
Inventor
Hiromitsu Tomiyama
裕光 富山
Ikuko Ihara
郁子 伊原
Takanobu Watanabe
隆信 渡邊
Mitsutoshi Anzai
光利 安西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hodogaya Chemical Co Ltd
Original Assignee
Hodogaya Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hodogaya Chemical Co Ltd filed Critical Hodogaya Chemical Co Ltd
Priority to JP11906695A priority Critical patent/JPH08292586A/en
Publication of JPH08292586A publication Critical patent/JPH08292586A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photoreceptors In Electrophotography (AREA)

Abstract

PURPOSE: To obtain an electrophotographic photoreceptor having superior electric charge transferring ability and exhibiting such photoreceptor characteristics as high sensitivity and high durability. CONSTITUTION: This electrophotographic photoreceptor has a photosensitive layer contg. a polyamine compd. represented by formula I or II on the electrically conductive substrate. In the formulae I, II, each of R1 -R3 , R6 and R7 is H, lower alkyl, lower alkoxy or optionally substd. phenyl, each of R4 , R5 and R8 is H, lower alkyl, lower alkoxy or Cl and each of A and B is a group represented by formula III, etc.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、特定のポリアミン化合
物を含有する感光層を有する電子写真用感光体に関す
る。
FIELD OF THE INVENTION The present invention relates to an electrophotographic photoreceptor having a photosensitive layer containing a specific polyamine compound.

【0002】[0002]

【従来の技術】電子写真方式とは、一般に光導電性材料
を用いた感光体の表面に暗所で、例えばコロナ放電によ
って帯電させ、これに露光を行い、露光部の電荷を選択
的に逸散させて静電潜像を得、これをトナーを用いて可
視化したのち紙等に転写、定着して画像を得る画像形成
方法の一種である。感光体としては、セレン、酸化亜
鉛、硫化カドミウム、シリコン等の無機光導電性化合物
を主成分とする無機感光体と、電荷発生剤と低分子量あ
るいは高分子量の電荷輸送剤を結着剤樹脂中に分散させ
た有機化合物を用いた有機感光体がある。無機感光体は
それぞれ多くの利点があり今まで広く使用されてきた
が、例えばセレンは製造する条件が難しく、製造コスト
が高く、熱や機械的衝撃に弱く、結晶化をおこし易いた
め性能が劣化してしまう。酸化亜鉛や硫化カドミウムは
耐湿性や機械的強度に問題があり、また増感剤として添
加された色素の帯電や露光による劣化がおこり、耐久性
がでない等の欠点がある。シリコンも製造する条件が難
しい事と刺激性の強いガスを使用するためコストが高
く、湿度に敏感であるため取扱いに注意を要する。
2. Description of the Related Art An electrophotographic method is generally a method in which the surface of a photoconductor made of a photoconductive material is charged in the dark, for example, by corona discharge, and then exposed to the light to selectively dissipate the charge in the exposed area. It is a kind of image forming method in which an electrostatic latent image is dispersed to obtain an electrostatic latent image, which is visualized with toner, and then transferred and fixed on paper or the like to obtain an image. As the photoconductor, an inorganic photoconductor containing an inorganic photoconductive compound such as selenium, zinc oxide, cadmium sulfide, or silicon as a main component, and a charge generating agent and a low-molecular weight or high-molecular weight charge transport agent in a binder resin There is an organic photoconductor using an organic compound dispersed in. Inorganic photoconductors have many advantages and have been widely used until now.For example, selenium is difficult to produce, its production cost is high, it is vulnerable to heat and mechanical shock, and its performance deteriorates because it easily crystallizes Resulting in. Zinc oxide and cadmium sulfide have problems in moisture resistance and mechanical strength, and the dye added as a sensitizer is deteriorated by electrification and exposure, resulting in poor durability. Silicon is also difficult to manufacture and uses a highly irritating gas, so it is expensive and sensitive to humidity.

【0003】近年、これら無機感光体の有する欠点を克
服する目的で種々の有機化合物を用いた有機感光体が研
究され、広く使用されるに至っている。有機感光体には
電荷発生剤と電荷輸送剤を結着剤樹脂中に分散させた単
層型感光体と、電荷発生層と電荷輸送層に機能分離した
積層型感光体がある。機能分離型有機感光体は、各々の
材料の選択肢が広いこと、組み合わせにより任意の性能
を有する感光体を比較的容易に作製できる事から多くの
研究がなされ広く使用されている。
In recent years, organic photoreceptors using various organic compounds have been studied and widely used for the purpose of overcoming the drawbacks of these inorganic photoreceptors. Organic photoreceptors include a single-layer photoreceptor in which a charge generating agent and a charge transporting agent are dispersed in a binder resin, and a laminated photoreceptor in which a charge generating layer and a charge transporting layer are functionally separated. The function-separated type organic photoconductor has been extensively researched and widely used because of its wide choice of materials and the fact that a photoconductor having any desired performance can be produced relatively easily by combining them.

【0004】電荷発生剤としては、例えばアゾ化合物、
ビスアゾ化合物、トリスアゾ化合物、テトラキスアゾ化
合物、チアピリリウム塩、スクアリリウム塩、アズレニ
ウム塩、シアニン色素、ペリレン化合物、無金属あるい
は金属フタロシアニン化合物、多環キノン化合物、チオ
インジゴ系化合物、またはキナクリドン系化合物等、多
くの有機顔料や色素が提案され実用に供されている。
Examples of the charge generating agent include azo compounds,
Many organic compounds such as bisazo compounds, trisazo compounds, tetrakisazo compounds, thiapyrylium salts, squarylium salts, azurenium salts, cyanine dyes, perylene compounds, metal-free or metal phthalocyanine compounds, polycyclic quinone compounds, thioindigo compounds, or quinacridone compounds. Pigments and dyes have been proposed and put into practical use.

【0005】電荷輸送剤としては、例えば特公昭34−
5466号公報のオキサジアゾール化合物、特開昭56
−123544号公報のオキサゾール化合物、特公昭5
2−41880号公報のピラゾリン化合物、特公昭55
−42380号公報や特公昭61−40104号公報、
特公昭62−35673号公報、特公昭63−3597
6号公報のヒドラゾン化合物、特公昭58−32372
号公報のジアミン化合物、特公昭63−18738号公
報や特公昭63−19867号公報、特公平3−393
06号公報のスチルベン化合物、特開昭62−3025
5号公報のブタジエン化合物等がある。これらの電荷輸
送剤を用いた有機感光体は優れた特性を有し、実用化さ
れているものがあるが、電子写真方式の感光体に要求さ
れる諸特性を十分に満たすものはまだ得られていないの
が現状である。
As the charge transfer agent, for example, Japanese Patent Publication No. 34-
Oxadiazole compounds described in JP-A-5466, JP-A-56
No. 123544, Oxazole Compound, Japanese Examined Patent Publication No. 5
JP-A 2-41880, Pyrazoline Compound, JP-B-55
-42380 gazette and Japanese Patent Publication No. 61-40104 gazette,
JP-B-62-35673, JP-B-63-3597
No. 6, hydrazone compound, Japanese Patent Publication No. 58-32372
Compounds disclosed in Japanese Patent Publication No. 63-18738, Japanese Patent Publication No. 63-19867, and Japanese Patent Publication No. 3-393.
No. 06 stilbene compound, JP-A-62-3025
For example, there is a butadiene compound disclosed in Japanese Patent No. Organic photoconductors using these charge-transporting materials have excellent properties and some have been put into practical use, but those that sufficiently satisfy the properties required for electrophotographic photoconductors have not yet been obtained. The current situation is not.

【0006】[0006]

【発明が解決しようとする課題】有機感光体に用いる電
荷輸送剤には、感度をはじめとする感光体としての諸特
性を満足する他、光やオゾン、電気的負荷に耐える化学
的安定性と繰り返し使用や長期使用によっても感度が低
下しない安定性や耐久性が要求される。本発明の目的
は、耐熱性、耐結晶化性が良好で、感光体特性を満足し
高感度、高耐久性を有する電子写真用感光体を提供する
ことにある。
The charge transfer agent used in the organic photoreceptor has not only the sensitivity and other characteristics as a photoreceptor, but also a chemical stability that withstands light, ozone, and electrical loads. Stability and durability are required so that the sensitivity does not decrease even after repeated use or long-term use. An object of the present invention is to provide an electrophotographic photoreceptor having excellent heat resistance and crystallization resistance, satisfying the characteristics of the photoreceptor and having high sensitivity and high durability.

【0007】[0007]

【課題を解決するための手段】本発明によれば下記一般
式(1)または下記一般式(2)で表されるポリアミン
化合物を含有する感光層を有することを特徴とする電子
写真用感光体が提供される。 一般式(1)
According to the present invention, an electrophotographic photoreceptor having a photosensitive layer containing a polyamine compound represented by the following general formula (1) or general formula (2) is provided. Will be provided. General formula (1)

【0008】[0008]

【化25】 [Chemical 25]

【0009】[式中、R1、R2、R3 は各々独立に水素
原子、低級アルキル基、低級アルコキシ基または置換あ
るいは無置換のフェニル基を表し、R4 は水素原子、低
級アルキル基、低級アルコキシ基または塩素原子を表
し、Aは下記式
[Wherein R 1 , R 2 and R 3 each independently represent a hydrogen atom, a lower alkyl group, a lower alkoxy group or a substituted or unsubstituted phenyl group, and R 4 is a hydrogen atom, a lower alkyl group, Represents a lower alkoxy group or chlorine atom, and A represents the following formula

【0010】[0010]

【化26】 [Chemical formula 26]

【化27】 [Chemical 27]

【化28】 [Chemical 28]

【化29】 [Chemical 29]

【化30】 Embedded image

【化31】 [Chemical 31]

【化32】 Embedded image

【化33】 [Chemical 33]

【化34】 Embedded image

【化35】 Embedded image

【化36】 Embedded image

【0011】で表され、R5 は水素原子、低級アルキル
基、低級アルコキシ基または塩素原子を表わす。] 一般式(2)
R 5 represents a hydrogen atom, a lower alkyl group, a lower alkoxy group or a chlorine atom. ] General formula (2)

【0012】[0012]

【化37】 Embedded image

【0013】[式中、R6、R7 は各々独立に水素原
子、低級アルキル基、低級アルコキシ基または置換ある
いは無置換のフェニル基を表し、R8 は水素原子、低級
アルキル基、低級アルコキシ基または塩素原子を表し、
Bは下記式
[Wherein R 6 and R 7 each independently represent a hydrogen atom, a lower alkyl group, a lower alkoxy group or a substituted or unsubstituted phenyl group, and R 8 represents a hydrogen atom, a lower alkyl group, a lower alkoxy group. Or represents a chlorine atom,
B is the following formula

【0014】[0014]

【化38】 [Chemical 38]

【化39】 [Chemical Formula 39]

【化40】 [Chemical 40]

【化41】 Embedded image

【化42】 Embedded image

【化43】 [Chemical 43]

【化44】 [Chemical 44]

【化45】 Embedded image

【化46】 Embedded image

【化47】 [Chemical 47]

【化48】 Embedded image

【0015】で表され、R9 は水素原子、低級アルキル
基、低級アルコキシ基または塩素原子を表わす。]
R 9 represents a hydrogen atom, a lower alkyl group, a lower alkoxy group or a chlorine atom. ]

【0016】本発明において、感光層に含有させる前記
一般式(1)または前記一般式(2)で表されるポリア
ミン化合物は新規化合物であり、これらの化合物は、基
本的にウルマン反応として知られるアリールアミンとア
リールハライドとの縮合反応の組み合わせにより合成す
ることができる。
In the present invention, the polyamine compound represented by the general formula (1) or the general formula (2) contained in the photosensitive layer is a novel compound, and these compounds are basically known as the Ullmann reaction. It can be synthesized by a combination of condensation reactions of arylamine and aryl halide.

【0017】前記一般式(1)で表されるテトラアミン
化合物について、合成方法を示す。例えば、下記式
A method for synthesizing the tetraamine compound represented by the general formula (1) will be described. For example, the following formula

【0018】[0018]

【化49】 [Chemical 49]

【0019】[式中、R4 は前記一般式(1)と同じ意
味を表し、Xは塩素原子、臭素原子または沃素原子を表
す。但し、R4 とXが同時に塩素原子ではない。]で表
される4,4’−ジハロゲン化ビフェニル化合物を下記
[In the formula, R 4 has the same meaning as in the general formula (1), and X represents a chlorine atom, a bromine atom or an iodine atom. However, R 4 and X are not chlorine atoms at the same time. ] The 4,4'- dihalogenated biphenyl compound represented by

【0020】[0020]

【化50】 Embedded image

【0021】[式中、R1 は前記一般式(1)と同じ意
味を表す。]で表されるアセトアニリド化合物と等モル
で縮合させ、下記式
[In the formula, R 1 has the same meaning as in the general formula (1). ] It is condensed with an acetanilide compound represented by

【0022】[0022]

【化51】 [Chemical 51]

【0023】[式中、R1、R4、Xは前記と同じ意味を
表す。但し、R4とXが同時に塩素原子ではない。]で
表される4’−ハロゲン化ビフェニリルアセトアニリド
化合物が得られる。この4’−ハロゲン化ビフェニリル
アセトアニリド化合物を、更に下記式
[In the formula, R 1 , R 4 and X have the same meanings as described above. However, R 4 and X are not chlorine atoms at the same time. ] The 4'-halogenated biphenylyl acetanilide compound represented by this is obtained. This 4'-halogenated biphenylyl acetanilide compound is further represented by the following formula

【0024】[0024]

【化52】 Embedded image

【0025】[式中、R2、R3 は前記一般式(1)と
同じ意味を表す。]で表されるジフェニルアミン化合物
と縮合反応した後、加水分解することにより、下記式
[In the formula, R 2 and R 3 have the same meanings as in the general formula (1). ] After the condensation reaction with the diphenylamine compound represented by

【0026】[0026]

【化53】 Embedded image

【0027】[式中、R1、R2、R3、R4 は前記と同
じ意味を表す。]で表されるトリフェニルベンジジン化
合物が得られる。このトリフェニルベンジジン化合物の
2モルを1モルの下記式
[In the formula, R 1 , R 2 , R 3 and R 4 have the same meanings as described above. ] The triphenyl benzidine compound represented by this is obtained. 2 mol of this triphenylbenzidine compound is replaced by 1 mol of the following formula

【0028】[0028]

【化54】 [Chemical 54]

【0029】[式中、Aは前記一般式(1)と同じ意味
を表し、Xは前記と同じ意味を表す。 ]で表されるジ
ハロゲン化物を作用させて縮合することにより、本発明
の一般式(1)で表されるテトラアミン化合物が得られ
る。一方、下記式
[In the formula, A represents the same meaning as in the general formula (1), and X represents the same meaning as described above. ] The tetraamine compound represented by the general formula (1) of the present invention is obtained by allowing the dihalide represented by the formula to act and condense. On the other hand, the following formula

【0030】[0030]

【化55】 [Chemical 55]

【0031】[式中、Aは前記と同じ意味を表す。]で
表されるジアミノ化合物を出発物質とする場合は、アミ
ノ基をアセチル化してジアセチル体とした後、下記式
[In the formula, A represents the same meaning as described above. ] When the starting material is a diamino compound represented by the following formula, after acetylating the amino group to give a diacetyl compound, the following formula

【0032】[0032]

【化56】 [Chemical 56]

【0033】[式中、R1 及びXは前記と同じ意味を表
す。]で表されるハロゲン化アリ−ルと縮合し、加水分
解して、下記式
[In the formula, R 1 and X have the same meanings as described above. ] It is condensed with a halogenated aryl represented by

【0034】[0034]

【化57】 [Chemical 57]

【0035】[式中、R1 及びAは前記と同じ意味を表
す。]で表されるジアリ−ルジアミノ化合物が得られ
る。これに、ジハロゲン化ビフェニル化合物とアセトア
ニリド化合物より前述したのと同様にして合成した下記
[In the formula, R 1 and A have the same meanings as described above. ] The diaryl diamino compound represented by this is obtained. The following formula synthesized from a dihalogenated biphenyl compound and an acetanilide compound in the same manner as described above

【0036】[0036]

【化58】 Embedded image

【0037】[式中、R2、R4 及びXは前記と同じ意
味を表す。但し、R4とXは同時に塩素原子ではな
い。]で表される4’−ハロゲン化ビフェニリルアセト
アニリド化合物を縮合させ、加水分解することにより、
下記式
[In the formula, R 2 , R 4 and X have the same meanings as described above. However, R 4 and X are not chlorine atoms at the same time. ] The 4'-halogenated biphenylyl acetanilide compound represented by
The following formula

【0038】[0038]

【化59】 Embedded image

【0039】[式中、R1、R2、R4 及びAは前記と同
じ意味を表す。]で表されるテトラアミン化合物が得ら
れる。更にこのテトラアミン化合物に、下記式
[In the formula, R 1 , R 2 , R 4 and A have the same meanings as described above. ] The tetraamine compound represented by this is obtained. Furthermore, this tetraamine compound has the following formula

【0040】[0040]

【化60】 Embedded image

【0041】[式中、R3 及びXは前記と同じ意味を表
す。]で表されるハロゲン化アリ−ルを縮合させること
によっても本発明の一般式(1)で示されるテトラアミ
ン化合物を得ることができる。また、前記縮合反応のう
ち、4,4’−ジハロゲン化ビフェニルとアセトアニリ
ド化合物との反応においては、アセトアニリド化合物の
代わりにベンズアニリド化合物を用いても良い。
[In the formula, R 3 and X have the same meanings as described above. ] The tetraamine compound represented by the general formula (1) of the present invention can also be obtained by condensing a halogenated aryl represented by: In addition, in the reaction of 4,4′-dihalogenated biphenyl with an acetanilide compound in the condensation reaction, a benzanilide compound may be used instead of the acetanilide compound.

【0042】次に、前記一般式(2)で表されるヘキサ
アミン化合物について、合成方法を示す。例えば、下記
Next, a method for synthesizing the hexaamine compound represented by the general formula (2) will be described. For example, the following formula

【0043】[0043]

【化61】 [Chemical formula 61]

【0044】[式中、R8 は前記一般式(2)と同じ意
味を表し、Xは塩素原子、臭素原子または沃素原子を表
す。但し、R8 とXは同時に塩素原子ではない。]で表
される4,4’−ジハロゲン化ビフェニル化合物を下記
[In the formula, R 8 has the same meaning as in the general formula (2), and X represents a chlorine atom, a bromine atom or an iodine atom. However, R 8 and X are not chlorine atoms at the same time. ] The 4,4'- dihalogenated biphenyl compound represented by

【0045】[0045]

【化62】 Embedded image

【0046】[式中、R6、R7 は前記一般式(2)と
同じ意味を表す。]で表されるジフェニルアミン化合物
と等モルで縮合させ、下記式
[In the formula, R 6 and R 7 have the same meaning as in the general formula (2). ] It is condensed with a diphenylamine compound represented by

【0047】[0047]

【化63】 [Chemical formula 63]

【0048】[式中、R6、R7、R8、Xは前記と同じ
意味を表す。但し、R8 とXは同時に塩素原子ではな
い。]で表される4’−ハロゲン化ビフェニリルジフェ
ニルアミン化合物が得られる。この4’−ハロゲン化ビ
フェニリルジフェニルアミン化合物4モルを下記式
[In the formula, R 6 , R 7 , R 8 and X have the same meanings as described above. However, R 8 and X are not chlorine atoms at the same time. ] The 4'-halogenated biphenylyl diphenylamine compound represented by these is obtained. 4 mol of this 4'-halogenated biphenylyldiphenylamine compound is represented by the following formula:

【0049】[0049]

【化64】 [Chemical 64]

【0050】[式中、Bは前記一般式(2)と同じ意味
を表す。]で表されるジアミン化合物1モルに作用させ
て縮合することにより、本発明の一般式(2)で表され
るヘキサアミン化合物が得られる。
[In the formula, B represents the same meaning as in the general formula (2). ] The hexaamine compound represented by the general formula (2) of the present invention is obtained by allowing 1 mole of the diamine compound represented by

【0051】一方、ジハロゲン化ビフェニル化合物とジ
フェニルアミン化合物より前述したのと同様にして合成
した下記式
On the other hand, the following formula synthesized from a dihalogenated biphenyl compound and a diphenylamine compound in the same manner as described above

【0052】[0052]

【化65】 Embedded image

【0053】[式中、R6、R7、R8 及びXは前記と同
じ意味を表す。但し、R8 とXは同時に塩素原子ではな
い。]で表される4’−ハロゲン化ビフェニリルジフェ
ニルアミン化合物2モルをアセトアミド1モルと縮合さ
せ、加水分解することにより、下記式
[In the formula, R 6 , R 7 , R 8 and X have the same meanings as described above. However, R 8 and X are not chlorine atoms at the same time. ] A 4'-halogenated biphenylyl diphenylamine compound represented by the following formula is condensed with 1 mol of acetamide and hydrolyzed to give the following formula:

【0054】[0054]

【化66】 [Chemical formula 66]

【0055】[式中、R6、R7、R8 は前記と同じ意味
を表す。]で表されるトリアミン化合物が得られる。更
にこのトリアミン化合物2モルを下記式
[In the formula, R 6 , R 7 and R 8 have the same meanings as described above. ] The triamine compound represented by this is obtained. Further, 2 mol of this triamine compound is added to the following formula

【0056】[0056]

【化67】 Embedded image

【0057】[式中、X及びBは前記と同じ意味を表
す。Bが前記と同じ意味を表すR9 を有する場合、Xと
9 は同時に塩素原子ではない。]で表されるジハロゲ
ン化物1モルに作用させ縮合することによっても本発明
の一般式(2)で表されるヘキサアミン化合物を得るこ
とができる。また、前記縮合反応のうち、4’−ハロゲ
ン化ビフェニリルジフェニルアミン化合物2モルとアセ
トアミド1モルとの縮合反応においては、アセトアミド
化合物の代わりにベンズアミド化合物を用いても良い。
前述のアリールアミンとアリールハライドなどの縮合反
応はウルマン反応として知られる反応であり、無溶媒下
または溶媒の存在下で行う。溶媒としてはニトロベンゼ
ンやジクロロベンゼンまたはジメチルスルホキシドなど
の高沸点溶媒が用いられる。また脱酸剤として炭酸カリ
ウム、炭酸ナトリウム、炭酸水素ナトリウム、水酸化カ
リウム、水酸化ナトリウムなどが用いられる。また、通
常、銅粉やハロゲン化銅などの触媒を用いて反応させ
る。反応温度は通常160〜230℃である。
[In the formula, X and B have the same meanings as described above. When B has R 9 having the same meaning as described above, X and R 9 are not chlorine atoms at the same time. ] The hexaamine compound represented by the general formula (2) of the present invention can also be obtained by allowing 1 mol of the dihalide represented by the formula to act and condense. In the condensation reaction of 2 mol of the 4′-halogenated biphenylyldiphenylamine compound and 1 mol of acetamide in the condensation reaction, a benzamide compound may be used instead of the acetamide compound.
The condensation reaction of the arylamine and the aryl halide described above is a reaction known as the Ullmann reaction, and is performed without a solvent or in the presence of a solvent. As the solvent, a high boiling point solvent such as nitrobenzene, dichlorobenzene or dimethyl sulfoxide is used. Further, potassium carbonate, sodium carbonate, sodium hydrogen carbonate, potassium hydroxide, sodium hydroxide and the like are used as a deoxidizing agent. Further, usually, the reaction is carried out using a catalyst such as copper powder or copper halide. The reaction temperature is usually 160 to 230 ° C.

【0058】前記一般式(1)において、R1 、R2
3 が置換基を有するフェニル基である場合、または前
記一般式(2)においてR6 、R7 が置換基を有するフ
ェニル基である場合、置換基としては、炭素数が1〜4
の低級アルキル基、炭素数が1〜4の低級アルコキシ
基、炭素数が5〜6のシクロアルキル基、ベンジル基、
フェニル基またはハロゲン原子などが挙げられ、置換基
がベンジル基あるいはフェニル基の場合は炭素数が1〜
4の低級アルキル基や炭素数が1〜4の低級アルコキシ
基またはハロゲン原子で更に置換されていても良い。ま
た、R1 、R2 、R3 、R6 、R7 のアルキル基として
は炭素数が1〜4の直鎖あるいは分枝アルキル基が挙げ
られ、アルコキシ基としては炭素数が1〜4の直鎖ある
いは分枝アルコキシ基が挙げられる。
In the general formula (1), R 1 , R 2 ,
When R 3 is a phenyl group having a substituent, or when R 6 and R 7 in the general formula (2) are phenyl groups having a substituent, the substituent has 1 to 4 carbon atoms.
Lower alkyl group, a lower alkoxy group having 1 to 4 carbon atoms, a cycloalkyl group having 5 to 6 carbon atoms, a benzyl group,
A phenyl group or a halogen atom is included, and when the substituent is a benzyl group or a phenyl group, the number of carbon atoms is 1 to 1.
It may be further substituted with a lower alkyl group having 4 carbon atoms, a lower alkoxy group having 1 to 4 carbon atoms or a halogen atom. Examples of the alkyl group represented by R 1 , R 2 , R 3 , R 6 and R 7 include linear or branched alkyl groups having 1 to 4 carbon atoms, and the alkoxy group having 1 to 4 carbon atoms. A straight chain or branched alkoxy group may be mentioned.

【0059】本発明に係る感光層に含有される前記一般
式(1)または前記一般式(2)で表されるポリアミン
化合物の具体的な例としては次のようなものが挙げられ
る。
The following are specific examples of the polyamine compound represented by the general formula (1) or the general formula (2) contained in the photosensitive layer according to the present invention.

【0060】化合物No.1Compound No. 1

【化68】 [Chemical 68]

【0061】化合物No.2Compound No. 2

【化69】 [Chemical 69]

【0062】化合物No.3Compound No. Three

【化70】 Embedded image

【0063】化合物No.4Compound No. 4

【化71】 Embedded image

【0064】化合物No.5Compound No. 5

【化72】 Embedded image

【0065】化合物No.6Compound No. 6

【化73】 Embedded image

【0066】化合物No.7Compound No. 7

【化74】 [Chemical 74]

【0067】化合物No.8Compound No. 8

【化75】 [Chemical 75]

【0068】化合物No.9Compound No. 9

【化76】 [Chemical 76]

【0069】化合物No.10Compound No. 10

【化77】 Embedded image

【0070】化合物No.11Compound No. 11

【化78】 Embedded image

【0071】化合物No.12Compound No. 12

【化79】 Embedded image

【0072】化合物No.13Compound No. 13

【化80】 Embedded image

【0073】化合物No.14Compound No. 14

【化81】 [Chemical 81]

【0074】化合物No.15Compound No. Fifteen

【化82】 [Chemical formula 82]

【0075】化合物No.16Compound No. 16

【化83】 [Chemical 83]

【0076】化合物No.17Compound No. 17

【化84】 [Chemical 84]

【0077】化合物No.18Compound No. 18

【化85】 Embedded image

【0078】化合物No.19Compound No. 19

【化86】 [Chemical 86]

【0079】化合物No.20Compound No. 20

【化87】 [Chemical 87]

【0080】化合物No.21Compound No. 21

【化88】 Embedded image

【0081】化合物No.22Compound No. 22

【化89】 [Chemical 89]

【0082】化合物No.23Compound No. 23

【化90】 [Chemical 90]

【0083】化合物No.24Compound No. 24

【化91】 Embedded image

【0084】化合物No.25Compound No. 25

【化92】 Embedded image

【0085】化合物No.26Compound No. 26

【化93】 Embedded image

【0086】化合物No.27Compound No. 27

【化94】 Embedded image

【0087】化合物No.28Compound No. 28

【化95】 Embedded image

【0088】化合物No.29Compound No. 29

【化96】 [Chemical 96]

【0089】化合物No.30Compound No. 30

【化97】 Embedded image

【0090】化合物No.31Compound No. 31

【化98】 Embedded image

【0091】化合物No.32Compound No. 32

【化99】 Embedded image

【0092】化合物No.33Compound No. 33

【化100】 [Chemical 100]

【0093】化合物No.34Compound No. 34

【化101】 [Chemical 101]

【0094】化合物No.35Compound No. 35

【化102】 Embedded image

【0095】化合物No.36Compound No. 36

【化103】 Embedded image

【0096】化合物No.37Compound No. 37

【化104】 [Chemical 104]

【0097】化合物No.38Compound No. 38

【化105】 Embedded image

【0098】化合物No.39Compound No. 39

【化106】 [Chemical formula 106]

【0099】化合物No.40Compound No. 40

【化107】 [Chemical formula 107]

【0100】化合物No.41Compound No. 41

【化108】 [Chemical 108]

【0101】化合物No.42Compound No. 42

【化109】 [Chemical 109]

【0102】化合物No.43Compound No. 43

【化110】 [Chemical 110]

【0103】化合物No.44Compound No. 44

【化111】 [Chemical 111]

【0104】化合物No.45Compound No. 45

【化112】 [Chemical 112]

【0105】本発明の電子写真用感光体は、上記のポリ
アミン化合物を1種または2種以上含有した感光層を有
するものである。感光層の形態としては種々のものが存
在し、本発明の電子写真用感光体の感光層としてはその
いずれであっても良い。代表例として図1〜図5にその
感光体を示した。
The electrophotographic photoreceptor of the present invention has a photosensitive layer containing one or more of the above polyamine compounds. There are various forms of the photosensitive layer, and any of them may be used as the photosensitive layer of the electrophotographic photosensitive member of the present invention. As a typical example, the photoreceptor is shown in FIGS.

【0106】図1の感光体は、導電性支持体1上にポリ
アミン化合物、増感色素および結着樹脂よりなる感光層
2を設けたものである。図2の感光体は、導電性支持体
1上にポリアミン化合物と結着樹脂よりなる電荷輸送媒
体3の中に電荷発生物質4を分散せしめた感光層21を
設けたものである。本感光体では電荷発生物質が光を吸
収することにより電荷担体を発生し、これを電荷輸送媒
体が輸送する。この場合、電荷輸送物質は電荷担体を発
生させる光に対して透明であることが望ましい。ポリア
ミン化合物は可視部波長域にほとんど吸収がないので、
電荷発生物質と吸収波長域が重ならないという条件を満
足している。
The photosensitive member shown in FIG. 1 comprises a conductive support 1 and a photosensitive layer 2 comprising a polyamine compound, a sensitizing dye and a binder resin. The photoconductor of FIG. 2 is such that a photoconductive layer 21 in which a charge generating substance 4 is dispersed in a charge transport medium 3 composed of a polyamine compound and a binder resin is provided on a conductive support 1. In this photoreceptor, the charge generating substance absorbs light to generate charge carriers, which are then transported by the charge transport medium. In this case, the charge transport material is preferably transparent to the light that generates the charge carriers. Since polyamine compounds have almost no absorption in the visible wavelength range,
The condition that the charge generation material and the absorption wavelength range do not overlap is satisfied.

【0107】図3の感光体は、導電性支持体1上に電荷
発生物質4を主体とする電荷発生層5とポリアミン化合
物と結着樹脂よりなる電荷輸送層3の積層からなる感光
層22を設けたものである。本感光体では電荷輸送層3
を透過した光が電荷発生層5に到達し、電荷発生物質4
に吸収され電荷担体が発生される。この電荷担体は電荷
輸送層3に注入され輸送される。図4の感光体は、図3
の感光体の電荷発生層5と電荷輸送層3の積層順を逆に
した感光層23を設けたものである。上記と同様の機構
によて電荷担体の発生と輸送が説明できる。図5の感光
体は、機械的強度の向上を目的として図4の感光体の電
荷発生層5の上に保護層6を更に積層した感光層24を
設けたものである。
The photoconductor of FIG. 3 has a photoconductive layer 22 formed by laminating a charge generation layer 5 mainly composed of a charge generation substance 4 and a charge transport layer 3 composed of a polyamine compound and a binder resin on a conductive support 1. It is provided. In this photoreceptor, the charge transport layer 3
The light that has passed through reaches the charge generation layer 5 and the charge generation substance 4
Are absorbed by the carrier and charge carriers are generated. The charge carriers are injected and transported in the charge transport layer 3. The photoreceptor of FIG.
The photosensitive layer 23 in which the charge generating layer 5 and the charge transporting layer 3 of the photoconductor of FIG. Generation and transport of charge carriers can be explained by the same mechanism as described above. The photosensitive member of FIG. 5 has a photosensitive layer 24 in which a protective layer 6 is further laminated on the charge generation layer 5 of the photosensitive member of FIG. 4 for the purpose of improving mechanical strength.

【0108】以上に例示したような本発明の感光体は常
法に従って製造される。例えば、前述した一般式(1)
または一般式(2)で表されるポリアミン化合物を結着
樹脂とともに適当な溶剤中に溶解し、必要に応じて電荷
発生物質、増感色素、電子吸引性化合物あるいは可塑
剤、顔料、その他添加剤を添加して調製される塗布液を
導電性支持体上に塗布、乾燥して数μから数十μの感光
層を形成させることにより製造することができる。電荷
発生層と電荷輸送層の二層よりなる感光層の場合は、電
荷発生層の上に上記塗布液を塗布するか、上記塗布液を
塗布して得られる電荷輸送層の上に電荷発生層を形成さ
せることにより製造できる。また、このようにして製造
される感光体には必要に応じ、接着層、中間層、バリヤ
ー層を設けても良い。
The photoconductor of the present invention as exemplified above is manufactured by a conventional method. For example, the above general formula (1)
Alternatively, the polyamine compound represented by the general formula (2) is dissolved in a suitable solvent together with a binder resin, and if necessary, a charge generating substance, a sensitizing dye, an electron-withdrawing compound or a plasticizer, a pigment, and other additives. Can be prepared by coating a coating solution prepared by adding the above on a conductive support and drying it to form a photosensitive layer of several μ to several tens μ. In the case of a photosensitive layer composed of two layers of a charge generation layer and a charge transport layer, the above-mentioned coating solution is applied onto the charge generation layer, or the charge generation layer is applied onto the charge transport layer obtained by applying the above-mentioned coating solution. It can be manufactured by forming. Further, the photoreceptor thus manufactured may be provided with an adhesive layer, an intermediate layer, and a barrier layer, if necessary.

【0109】塗布液調製用の溶剤としては、テトラヒド
ロフラン、1,4−ジオキサン、メチルエチルケトン、
シクロヘキサノン、アセトニトリル、N,N−ジメチル
ホルムアミド、酢酸エチル等の極性有機溶剤、トルエ
ン、キシレンのような芳香族有機溶剤やジクロロメタ
ン、ジクロロエタンのような塩素系炭化水素溶剤等があ
げられる。ポリアミン化合物と結着樹脂に対して溶解性
の高い溶剤が好適に使用される。
As the solvent for preparing the coating solution, tetrahydrofuran, 1,4-dioxane, methyl ethyl ketone,
Examples thereof include polar organic solvents such as cyclohexanone, acetonitrile, N, N-dimethylformamide and ethyl acetate, aromatic organic solvents such as toluene and xylene, and chlorinated hydrocarbon solvents such as dichloromethane and dichloroethane. A solvent having a high solubility for the polyamine compound and the binder resin is preferably used.

【0110】増感色素としては、例えばメチルバイオレ
ット、ブリリアントグリーン、クリスタルバイオレッ
ト、アシッドバイオレットのようなトリアリールメタン
染料、ローダミンB、エオシンS、ローズベンガルのよ
うなキサンテン染料、メチレンブルーのようなチアジン
染料、ベンゾピリリウム塩のようなピリリウム染料やチ
アピリリウム染料、またはシアニン染料等があげられ
る。
Examples of the sensitizing dye include triarylmethane dyes such as methyl violet, brilliant green, crystal violet and acid violet, xanthene dyes such as rhodamine B, eosin S and rose bengal, and thiazine dyes such as methylene blue. Examples thereof include pyrylium dyes such as benzopyrylium salts, thiapyrylium dyes, and cyanine dyes.

【0111】また、ポリアミン化合物と電荷移動錯体を
形成する電子吸引性化合物としては例えば、クロラニ
ル、2,3−ジクロロ−1,4−ナフトキノン、1−ニ
トロアントラキノン、2−クロロアントラキノン、フェ
ナントレンキノン等のキノン類、4−ニトロベンズアル
デヒド等のアルデヒド類、9−ベンゾイルアントラセ
ン、インダンジオン、3,5−ジニトロベンゾフェノ
ン、2,4,7−トリニトロフルオレノン、2,4,
5,7−テトラニトロフルオレノン等のケトン類、無水
フタル酸、4−クロロナフタル酸無水物等の酸無水物、
テトラシアノエチレン、テレフタラルマレノニトリル、
9−アントリルメチリデンマレノニトリル等のシアノ化
合物、3−ベンザルフタリド、3−(α−シアノ−p−
ニトロベンザル)−4,5,6,7−テトラクロロフタ
リド等のフタリド類があげられる。
Examples of the electron withdrawing compound which forms a charge transfer complex with a polyamine compound include chloranil, 2,3-dichloro-1,4-naphthoquinone, 1-nitroanthraquinone, 2-chloroanthraquinone and phenanthrenequinone. Quinones, aldehydes such as 4-nitrobenzaldehyde, 9-benzoylanthracene, indandione, 3,5-dinitrobenzophenone, 2,4,7-trinitrofluorenone, 2,4,4.
Ketones such as 5,7-tetranitrofluorenone, acid anhydrides such as phthalic anhydride and 4-chloronaphthalic anhydride,
Tetracyanoethylene, terephthalalmalenonitrile,
Cyano compounds such as 9-anthrylmethylidenemalenonitrile, 3-benzalphthalide, 3- (α-cyano-p-
Nitrobenzal) -4,5,6,7-tetrachlorophthalide and other phthalides.

【0112】結着樹脂としては、スチレン、酢酸ビニ
ル、塩化ビニル、アクリル酸エステル、メタクリル酸エ
ステル、ブタジエン等のビニル化合物の重合体および共
重合体、ポリビニルアセタール、ポリカーボネート、ポ
リエステル、ポリフェニレンオキサイド、ポリウレタ
ン、セルロースエステル、フェノキシ樹脂、ケイ素樹
脂、エポキシ樹脂等、ポリアミン化合物と相溶性のある
各種樹脂があげられる。結着樹脂の使用量は、通常ポリ
アミン化合物に対して0.4〜10重量倍好ましくは
0.5〜3重量倍の範囲である。
Examples of the binder resin include polymers and copolymers of vinyl compounds such as styrene, vinyl acetate, vinyl chloride, acrylic acid ester, methacrylic acid ester and butadiene, polyvinyl acetal, polycarbonate, polyester, polyphenylene oxide, polyurethane, Various resins that are compatible with the polyamine compound, such as cellulose ester, phenoxy resin, silicon resin, epoxy resin and the like can be mentioned. The amount of the binder resin used is usually in the range of 0.4 to 10 times by weight, preferably 0.5 to 3 times by weight, of the polyamine compound.

【0113】また、本発明の感光層には成膜性、可とう
性、機械的強度を向上させる目的で周知の可塑剤を含有
しても良い。可塑剤としては、例えばフタル酸エステ
ル、リン酸エステル、塩素化パラフィン、メチルナフタ
リン、エポキシ化合物、塩素化脂肪酸エステル等があげ
られる。
Further, the photosensitive layer of the present invention may contain a well-known plasticizer for the purpose of improving film-forming property, flexibility and mechanical strength. Examples of the plasticizer include phthalic acid ester, phosphoric acid ester, chlorinated paraffin, methylnaphthalene, epoxy compound, chlorinated fatty acid ester and the like.

【0114】更に、感光層が形成される導電性支持体と
しては、周知の電子写真用感光体に使用されている材料
が使用できる。例えば、アルミニウム、ステンレス、銅
等の金属ドラム、シートあるいはこれらの金属のラミネ
ート物、蒸着物、また金属粉末、カーボンブラック、よ
う化銅、高分子電解質の導電性物質を適当なバインダー
とともに塗布して導電処理したプラスチックフィルム、
プラスチックドラム、紙、紙管、あるいは導電性物質を
含有さすことにより導電性を付与したプラスチックフィ
ルムやプラスチックドラム等があげられる。
Further, as the electroconductive support on which the photosensitive layer is formed, the materials used in known electrophotographic photoconductors can be used. For example, a metal drum such as aluminum, stainless steel or copper, a sheet or a laminate of these metals, a vapor deposition product, a metal powder, carbon black, copper iodide or a conductive substance such as a polymer electrolyte is applied together with an appropriate binder. Conductive treated plastic film,
Examples thereof include a plastic drum, paper, a paper tube, and a plastic film and a plastic drum which are made conductive by containing a conductive substance.

【0115】[0115]

【実施例】以下、実施例により本発明を具体的に説明す
る。実施例中の部は重量部を表わし、濃度はWt%を表
す。
The present invention will be described below in detail with reference to examples. Parts in the examples represent parts by weight, and the concentration represents Wt%.

【0116】合成実施例1(化合物No.7の合成例) アセトアニリド20.3g(0.15モル)と4,4’
−ジヨ−ドビフェニル73.1g(0.18モル)、無
水炭酸カリウム22.1g(0.16モル)、銅粉2.
16g(0.034モル)、ニトロベンゼン35mlを
混合し、190〜205゜Cで10時間反応させた。反
応生成物をトルエン200mlで抽出し、不溶分をろ別
除去後、濃縮乾固した。これをカラムクロマトにより精
製して(担体;シリカゲル、溶離液;トルエン/酢酸エ
チル=6/1)、N−(4’−ヨ−ド−4−ビフェニリ
ル)アセトアニリド40.2g(収率64.8%)を得
た。融点は、135.0〜136.0゜Cであった。続
いてN−(4’−ヨ−ド−4−ビフェニリル)アセトア
ニリド13.2g(0.032モル)、ジフェニルアミ
ン6.60g(0.039モル)、無水炭酸カリウム
5.53g(0.040モル)及び銅粉0.45g
(0.007モル)、ニトロベンゼン10mlを混合
し、200〜212゜Cで15時間反応させた。反応生
成物をトルエン100mlで抽出し、不溶分をろ別除去
後、濃縮してオイル状物とした。オイル状物はイソアミ
ルアルコ−ル60mlに溶解し、水1ml、85%水酸
化カリウム2.64g(0.040モル)を加え、13
0゜Cで加水分解した。水蒸気蒸留でイソアミルアルコ
−ルを留去後、トルエン250mlで抽出し、水洗、乾
燥して濃縮した。濃縮物はカラムクロマトにより精製し
て(担体;シリカゲル、溶離液;トルエン/n−ヘキサ
ン=1/2)、N,N,N’−トリフェニルベンジジン
10.5g(収率72.2%)を得た。融点は167.
5〜168.5゜Cであった。
Synthesis Example 1 (Synthesis Example of Compound No. 7) 20.3 g (0.15 mol) of acetanilide and 4,4 ′
73.1 g (0.18 mol) of diiodobiphenyl, 22.1 g (0.16 mol) of anhydrous potassium carbonate, copper powder 2.
16 g (0.034 mol) and 35 ml of nitrobenzene were mixed and reacted at 190 to 205 ° C for 10 hours. The reaction product was extracted with 200 ml of toluene, the insoluble matter was removed by filtration, and the mixture was concentrated to dryness. This was purified by column chromatography (carrier; silica gel, eluent: toluene / ethyl acetate = 6/1), and 40.2 g of N- (4'-iodo-4-biphenylyl) acetanilide (yield 64.8). %) Was obtained. The melting point was 135.0 to 136.0 ° C. Then, N- (4'-iodo-4-biphenylyl) acetanilide 13.2 g (0.032 mol), diphenylamine 6.60 g (0.039 mol), anhydrous potassium carbonate 5.53 g (0.040 mol) And copper powder 0.45g
(0.007 mol) and 10 ml of nitrobenzene were mixed and reacted at 200 to 212 ° C for 15 hours. The reaction product was extracted with 100 ml of toluene, the insoluble matter was removed by filtration, and the mixture was concentrated to give an oily substance. The oily substance was dissolved in 60 ml of isoamyl alcohol, 1 ml of water and 2.64 g (0.040 mol) of 85% potassium hydroxide were added thereto, and 13
Hydrolyzed at 0 ° C. After distilling off isoamyl alcohol by steam distillation, it was extracted with 250 ml of toluene, washed with water, dried and concentrated. The concentrate was purified by column chromatography (carrier; silica gel, eluent: toluene / n-hexane = 1/2) to obtain 10.5 g of N, N, N'-triphenylbenzidine (yield 72.2%). Obtained. The melting point is 167.
It was 5 to 168.5 ° C.

【0117】更に、N,N,N’−トリフェニルベンジ
ジン8.66g(0.021モル)、4,4’−ジヨ−
ドビフェニル4.06g(0.01モル)、無水炭酸カ
リウム2.90g(0.021モル)、銅粉0.32g
(0.005モル)、ニトロベンゼン10mlを混合
し、195〜210゜Cで20時間反応させた。反応生
成物をトルエン140mlで抽出し、不溶分をろ別、濃
縮後、n−ヘキサン120mlを加えて粗結晶を取りだ
した。粗結晶は、カラムクロマトにより精製して(担
体;シリカゲル、溶離液;トルエン/n−ヘキサン=1
/2)、N,N’−ビス(4’−ジフェニルアミノ−4
−ビフェニリル)−N,N’−ジフェニルベンジジン
4.73g(収率;48.5%)を得た。融点は24
2.5〜243.5゜Cであった。元素分析値はC72
544 として次に示す通りであった。炭素:88.75
%(88.67%)、水素:5.70%(5.58
%)、窒素:5.68%(5.75%)(計算値をかっ
こ内に示す。)赤外線吸収スペクトル(KBr錠剤法)
の特性基振動数(cm-1)は3028、1591、14
88、1323、1273等であった。
Furthermore, 8.66 g (0.021 mol) of N, N, N'-triphenylbenzidine, 4,4'-diiodine
Dobiphenyl 4.06 g (0.01 mol), anhydrous potassium carbonate 2.90 g (0.021 mol), copper powder 0.32 g
(0.005 mol) and 10 ml of nitrobenzene were mixed and reacted at 195 to 210 ° C for 20 hours. The reaction product was extracted with 140 ml of toluene, the insoluble matter was filtered off, and after concentration, 120 ml of n-hexane was added to take out crude crystals. The crude crystals were purified by column chromatography (carrier; silica gel, eluent; toluene / n-hexane = 1).
/ 2), N, N'-bis (4'-diphenylamino-4)
-Biphenylyl) -N, N'-diphenylbenzidine (4.73 g, yield: 48.5%) was obtained. Melting point is 24
The temperature was 2.5 to 243.5 ° C. Elemental analysis value is C 72 H
It was as shown below for 54 N 4 . Carbon: 88.75
% (88.67%), hydrogen: 5.70% (5.58)
%), Nitrogen: 5.68% (5.75%) (calculated value is shown in parentheses) Infrared absorption spectrum (KBr tablet method)
The characteristic fundamental frequency (cm -1 ) of 3028, 1591, 14
It was 88, 1323, 1273 and so on.

【0118】合成実施例2(化合物No.17の合成
例) アセトアニリド16.2g(0.12モル)と3,3’
−ジメチル−4,4’−ジヨ−ドビフェニル56.4g
(0.13モル)、無水炭酸カリウム18.0g(0.
13モル)、銅粉1.71g(0.027モル)、ニト
ロベンゼン30mlを混合し、192〜203゜Cで1
3時間反応させた。反応生成物をトルエン160mlで
抽出し、不溶分をろ別除去後、濃縮乾固した。これをカ
ラムクロマトにより精製して(担体;シリカゲル、溶離
液;トルエン/酢酸エチル=7/1)、N−(3,3’
−ジメチル−4’−ヨ−ド−4−ビフェニリル)アセト
アニリド36.7g(収率69.3%)を得た。一方、
1,1−ビス(4−アミノフェニル)シクロヘキサン3
2.0g(0.12モル)を氷酢酸100mlに溶解
し、40゜Cで無水酢酸26.6g(0.26モル)を
滴下した。滴下後60゜Cで2時間反応し、反応液を氷
水600ml中へ注加して、析出した結晶をろ過、水
洗、乾燥した。この結晶を酢酸エチル80mlとメタノ
−ル300mlの混合溶媒で再結晶し、1,1−ビス
(4−アセチルアミノフェニル)シクロヘキサン27.
0g(収率;64.3%)を得た。融点は270.0〜
271.0゜Cであった。得られた1,1−ビス(4−
アセチルアミノフェニル)シクロヘキサン21.0g
(0.06モル)、ブロモベンゼン20.8g(0.1
32モル)、無水炭酸カリウム17.4g(0.125
モル)、銅粉1.9g(0.03モル)を混合し、17
0〜200゜Cで16時間反応させた。反応生成物をト
ルエン300mlで抽出し、不溶分をろ別除去後、濃縮
してオイル状物とした。オイル状物はイソアミルアルコ
−ル100mlに溶解し、水1ml、85%水酸化カリ
ウム8.32g(0.125モル)を加え、130゜C
で加水分解した。水蒸気蒸留でイソアミルアルコ−ルを
留去後、トルエン400mlで抽出し、水洗、乾燥して
濃縮した。濃縮物はカラムクロマトにより精製して(担
体;シリカゲル、溶離液;トルエン/n−ヘキサン=3
/2)、1,1−ビス(4−アニリノフェニル)シクロ
ヘキサン18.6g(収率74.1%)を得た。
Synthesis Example 2 (Synthesis Example of Compound No. 17) 16.2 g (0.12 mol) of acetanilide and 3,3 ′
-Dimethyl-4,4'-diiodobiphenyl 56.4 g
(0.13 mol), anhydrous potassium carbonate 18.0 g (0.
13 mol), 1.71 g (0.027 mol) of copper powder, and 30 ml of nitrobenzene are mixed, and 1 at 192 to 203 ° C is added.
The reaction was carried out for 3 hours. The reaction product was extracted with 160 ml of toluene, the insoluble matter was removed by filtration, and the mixture was concentrated to dryness. This was purified by column chromatography (carrier; silica gel, eluent; toluene / ethyl acetate = 7/1) and N- (3,3 ′).
36.7 g (yield 69.3%) of -dimethyl-4'-iodo-4-biphenylyl) acetanilide was obtained. on the other hand,
1,1-bis (4-aminophenyl) cyclohexane 3
2.0 g (0.12 mol) was dissolved in 100 ml of glacial acetic acid, and 26.6 g (0.26 mol) of acetic anhydride was added dropwise at 40 ° C. After dropping, the mixture was reacted at 60 ° C. for 2 hours, the reaction solution was poured into 600 ml of ice water, and the precipitated crystals were filtered, washed with water and dried. The crystals were recrystallized with a mixed solvent of 80 ml of ethyl acetate and 300 ml of methanol to give 1,1-bis (4-acetylaminophenyl) cyclohexane 27.
0 g (yield; 64.3%) was obtained. Melting point is 270.0 ~
It was 271.0 ° C. The obtained 1,1-bis (4-
Acetylaminophenyl) cyclohexane 21.0 g
(0.06 mol), bromobenzene 20.8 g (0.1
32 mol), anhydrous potassium carbonate 17.4 g (0.125
17) and copper powder 1.9 g (0.03 mol) are mixed,
The reaction was carried out at 0 to 200 ° C for 16 hours. The reaction product was extracted with 300 ml of toluene, the insoluble matter was removed by filtration, and the mixture was concentrated to give an oily substance. The oily substance was dissolved in 100 ml of isoamyl alcohol, added with 1 ml of water and 8.32 g (0.125 mol) of 85% potassium hydroxide, and added at 130 ° C.
It was hydrolyzed. After distilling off isoamyl alcohol by steam distillation, it was extracted with 400 ml of toluene, washed with water, dried and concentrated. The concentrate was purified by column chromatography (carrier; silica gel, eluent; toluene / n-hexane = 3.
/ 2), 1-bis (4-anilinophenyl) cyclohexane 18.6 g (yield 74.1%) was obtained.

【0119】次に、1,1−ビス(4−アニリノフェニ
ル)シクロヘキサン10.5g(0.025モル)とN
−(3,3’−ジメチル−4’−ヨ−ド−4−ビフェニ
リル)アセトアニリド22.9g(0.052モル)、
及び無水炭酸カリウム7.19g(0.052モル)、
銅粉0.76g(0.012モル)、ニトロベンゼン2
0mlを混合し、200〜208゜Cで18時間反応さ
せた。反応生成物をトルエン180mlで抽出し、不溶
分をろ別除去後、濃縮してオイル状物とした。オイル状
物はイソアミルアルコ−ル80mlに溶解し、水1m
l、85%水酸化カリウム2.77g(0.042モ
ル)を加え、130゜Cで加水分解した。水蒸気蒸留で
イソアミルアルコ−ルを留去後、トルエン180mlで
抽出し、水洗、乾燥して濃縮した。濃縮物はカラムクロ
マトにより精製して(担体;シリカゲル、溶離液;トル
エン/n−ヘキサン=1/1)、1,1−ビス{p−
[N−(4’−アニリノ−3,3’−ジメチル−4−ビ
フェニリル)アニリノ]フェニル}シクロヘキサン1
3.3g(収率55.1%)を得た。
Next, 10.5 g (0.025 mol) of 1,1-bis (4-anilinophenyl) cyclohexane and N were added.
-(3,3'-dimethyl-4'-iodo-4-biphenylyl) acetanilide 22.9 g (0.052 mol),
And 7.19 g (0.052 mol) of anhydrous potassium carbonate,
Copper powder 0.76g (0.012mol), nitrobenzene 2
0 ml was mixed and reacted at 200 to 208 ° C for 18 hours. The reaction product was extracted with 180 ml of toluene, the insoluble matter was removed by filtration, and the mixture was concentrated to give an oily substance. The oily substance was dissolved in 80 ml of isoamyl alcohol, and 1 m of water was added.
1, and 2.77 g (0.042 mol) of 85% potassium hydroxide was added, and the mixture was hydrolyzed at 130 ° C. After distilling off isoamyl alcohol by steam distillation, it was extracted with 180 ml of toluene, washed with water, dried and concentrated. The concentrate was purified by column chromatography (carrier; silica gel, eluent; toluene / n-hexane = 1/1) and 1,1-bis {p-
[N- (4'-anilino-3,3'-dimethyl-4-biphenylyl) anilino] phenyl} cyclohexane 1
3.3 g (yield 55.1%) was obtained.

【0120】この1,1−ビス{p−[N−(4’−ア
ニリノ−3,3’−ジメチル−4−ビフェニリル)アニ
リノ]フェニル}シクロヘキサン11.5g(0.01
2モル)を、ヨ−ドベンゼン5.30g(0.026モ
ル)、無水炭酸カリウム3.46g(0.025モ
ル)、銅粉0.38g(0.006モル)、ニトロベン
ゼン15mlと混合し、198〜213゜Cで19時間
反応させた。反応生成物をトルエン150mlで抽出
し、不溶分をろ別除去後、濃縮した。濃縮物にn−ヘキ
サン120mlを加えて、粗結晶を取り出した。粗結晶
は、カラムクロマトにより精製して(担体;シリカゲ
ル、溶離液;トルエン/n−ヘキサン=1/3)、1,
1−ビス{p−[N−(4’−ジフェニルアミノ−3,
3’−ジメチル−4−ビフェニリル)アニリノ]フェニ
ル}シクロヘキサン5.57g(収率;41.7%)を
得た。明瞭な融点は見られなかった。元素分析値はC82
724 として次に示す通りであった。炭素:88.3
7%(88.45%)、水素:6.55%(6.52
%)、窒素:5.19%(5.03%)(計算値をかっ
こ内に示す。)、赤外線吸収スペクトル(KBr錠剤
法)の特性基振動数(cm-1)は2924、1509、
1486、1269等であった。
11.5 g of this 1,1-bis {p- [N- (4'-anilino-3,3'-dimethyl-4-biphenylyl) anilino] phenyl} cyclohexane
2 mol) was mixed with 5.30 g (0.026 mol) of iodobenzene, 3.46 g (0.025 mol) of anhydrous potassium carbonate, 0.38 g (0.006 mol) of copper powder, and 15 ml of nitrobenzene, and mixed with 198. The reaction was allowed to proceed at ~ 213 ° C for 19 hours. The reaction product was extracted with 150 ml of toluene, the insoluble matter was removed by filtration, and the mixture was concentrated. 120 ml of n-hexane was added to the concentrate, and crude crystals were taken out. The crude crystals were purified by column chromatography (carrier; silica gel, eluent; toluene / n-hexane = 1/3),
1-bis {p- [N- (4'-diphenylamino-3,
5.57 g (yield; 41.7%) of 3'-dimethyl-4-biphenylyl) anilino] phenyl} cyclohexane was obtained. No clear melting point was seen. Elemental analysis value is C 82
It was as shown below as H 72 N 4 . Carbon: 88.3
7% (88.45%), hydrogen: 6.55% (6.52)
%), Nitrogen: 5.19% (5.03%) (calculated value is shown in parentheses), and the characteristic group frequency (cm −1 ) of infrared absorption spectrum (KBr tablet method) is 2924, 1509,
It was 1486, 1269 and so on.

【0121】合成実施例3(化合物No.32の合成
例) ジフェニルアミン20.3g(0.12モル)と3,
3’−ジメチル−4,4’−ジヨ−ドビフェニル65.
1g(0.15モル)、無水炭酸カリウム19.3g
(0.14モル)、銅粉1.52g(0.024モ
ル)、ニトロベンゼン20mlを混合し、190〜20
5゜Cで21時間反応させた。反応生成物をトルエン2
00mlで抽出し、不溶分をろ別除去後、濃縮乾固し
た。これをカラムクロマトにより精製して(担体;シリ
カゲル、溶離液;トルエン/n−ヘキサン=2/7)、
N−(3,3’−ジメチル−4’−ヨ−ド−4−ビフェ
ニリル)−N ,N−ジフェニルアミン32.6g(収
率57.2%)を得た。
Synthesis Example 3 (Synthesis Example of Compound No. 32) 20.3 g (0.12 mol) of diphenylamine and 3,
3'-dimethyl-4,4'-diiodobiphenyl 65.
1 g (0.15 mol), anhydrous potassium carbonate 19.3 g
(0.14 mol), 1.52 g (0.024 mol) of copper powder, and 20 ml of nitrobenzene are mixed to obtain 190-20
The reaction was carried out at 5 ° C for 21 hours. The reaction product is toluene 2
The mixture was extracted with 00 ml, the insoluble matter was removed by filtration, and the mixture was concentrated to dryness. This was purified by column chromatography (carrier; silica gel, eluent; toluene / n-hexane = 2/7),
32.6 g (yield 57.2%) of N- (3,3'-dimethyl-4'-iodo-4-biphenylyl) -N, N-diphenylamine was obtained.

【0122】続いてN−(3,3’−ジメチル−4’−
ヨ−ド−4−ビフェニリル)−N,N−ジフェニルアミ
ン24.2g(0.051モル)、o−トリジン2.5
5g(0.012モル)、無水炭酸カリウム6.91g
(0.050モル)及び銅粉0.64g(0.001モ
ル)、ニトロベンゼン10mlを混合し、200〜21
2゜Cで30時間反応させた。反応生成物をトルエン1
50mlで抽出し、不溶分をろ別除去後、濃縮乾固し
た。得られた固形物はカラムクロマトにより精製して
(担体;シリカゲル、溶離液;トルエン/n−ヘキサン
=3/4)、N,N,N’,N’−テトラキス(3,
3’−ジメチル−4’−ジフェニルアミノ−4−ビフェ
ニリル)−o−トリジン9.48g(収率;49.3
%)を得た。得られた物は196〜212゜Cで融解
し、明瞭な融点を示さなかった。元素分析値はC118
1006 として次に示す通りであった。炭素:88.5
3%(88.46%)、水素:6.24%(6.29
%)、窒素:5.21%(5.25%)(計算値をかっ
こ内に示す。)、赤外線吸収スペクトル(KBr錠剤
法)の特性基振動数(cm-1)は3026、1589、
1486、1314、1270等であった。
Then, N- (3,3'-dimethyl-4'-
Iodo-4-biphenylyl) -N, N-diphenylamine 24.2 g (0.051 mol), o-tolidine 2.5
5 g (0.012 mol), anhydrous potassium carbonate 6.91 g
(0.050 mol), copper powder 0.64 g (0.001 mol), and nitrobenzene 10 ml are mixed, and 200-21
The reaction was carried out at 2 ° C for 30 hours. The reaction product is toluene 1
The mixture was extracted with 50 ml, the insoluble matter was removed by filtration, and the mixture was concentrated to dryness. The obtained solid is purified by column chromatography (carrier; silica gel, eluent: toluene / n-hexane = 3/4) to give N, N, N ', N'-tetrakis (3,3).
9.48 g of 3'-dimethyl-4'-diphenylamino-4-biphenylyl) -o-tolidine (yield; 49.3)
%) Was obtained. The obtained product melted at 196 to 212 ° C and did not show a clear melting point. Elemental analysis value is C 118 H
It was as shown below as 100 N 6 . Carbon: 88.5
3% (88.46%), hydrogen: 6.24% (6.29)
%), Nitrogen: 5.21% (5.25%) (calculated value is shown in parentheses), and the characteristic group frequency (cm −1 ) of infrared absorption spectrum (KBr tablet method) is 3026, 1589,
1486, 1314, 1270 and so on.

【0123】実施例1 電荷発生剤として下記クロロダイアンブルー(電荷発生
剤No.1)
Example 1 Chlorodian blue (charge generating agent No. 1) shown below as a charge generating agent

【0124】[0124]

【化113】 [Chemical 113]

【0125】1.5部をポリエステル樹脂(バイロン2
00、東洋紡(株)製)の8%THF溶液18.5部に
加え、メノウ球入りのメノウポットに入れ、遊星型微粒
粉砕機(フリッツ社製)で1時間回転し、分散した。得
られた分散液を導電性支持体であるアルミ蒸着PETフ
ィルムのアルミ面上にワイヤーバーを用いて塗布し、常
圧下60℃で2時間、更に減圧下で2時間乾燥して膜厚
0.3μmの電荷発生層を形成した。一 方、電荷輸送
剤として化合物No.7のテトラアミン化合物1.5部
をポリカーボネート樹脂(ユーピロンZ−300、三菱
ガス化学(株)製)の8%トルエン溶液18.75部に
加え超音波をかけてテトラアミン化合物を完全に溶解さ
せた。この溶液を前記の電荷発生層上にワイヤーバーで
塗布し、常圧下60℃で2時間、更に減圧下で2時間乾
燥して膜厚約20μmの電荷輸送層を形成せしめて、感
光体No.1を作製した。この感光体について静電複写
紙試験装置(商品名「EPA−8100」川口電機製作
所(株)製)を用いて感度を測定した。まず、感光体を
暗所で−8kVのコロナ放電により帯電させ、次いで
3.0ルックスの白色光で露光し、表面電位が初期表面
電位の半分に減少するまでの時間(秒)を測定し、半減
露光量E1/2(ルックス・秒)を求めた。この感光体
の初期表面電位は−887Vで、E1/2は0.89ル
ックス・秒であった。
1.5 parts of polyester resin (Byron 2
00, manufactured by Toyobo Co., Ltd.) (18.5 parts of 8% THF solution), placed in an agate pot containing agate balls, and spun for 1 hour with a planetary fine pulverizer (Frits) to disperse. The obtained dispersion liquid was applied onto the aluminum surface of an aluminum vapor-deposited PET film which is a conductive support using a wire bar, and dried under normal pressure at 60 ° C. for 2 hours and further under reduced pressure for 2 hours to give a film thickness of 0. A 3 μm charge generation layer was formed. On the other hand, as a charge transport agent, compound No. 1.5 parts of the tetraamine compound of 7 was added to 18.75 parts of an 8% toluene solution of a polycarbonate resin (Upilon Z-300, manufactured by Mitsubishi Gas Chemical Co., Inc.), and ultrasonic waves were applied to completely dissolve the tetraamine compound. This solution was coated on the charge generation layer with a wire bar and dried under normal pressure at 60 ° C. for 2 hours and further under reduced pressure for 2 hours to form a charge transport layer having a thickness of about 20 μm. 1 was produced. The sensitivity of this photoconductor was measured using an electrostatic copying paper test device (trade name "EPA-8100" manufactured by Kawaguchi Electric Co., Ltd.). First, the photoreceptor is charged by a corona discharge of −8 kV in the dark, and then exposed to 3.0 lux of white light, and the time (seconds) until the surface potential is reduced to half of the initial surface potential is measured. The half-exposure amount E1 / 2 (lux · sec) was determined. The initial surface potential of this photoreceptor was −887 V, and E1 / 2 was 0.89 lux · second.

【0126】実施例2〜20 実施例1で用いた電荷発生剤および電荷輸送剤(ポリア
ミン化合物)を表1に示したものに代えた以外は実施例
1と同様にして感光体No.2〜20を作製した。尚、
表1中に示した電荷発生剤No.2〜No.4の構造を
下記に示す。
Examples 2 to 20 In the same manner as in Example 1 except that the charge generating agent and the charge transporting agent (polyamine compound) used in Example 1 were replaced with those shown in Table 1, the photoconductor No. 2 to 20 were produced. still,
The charge generating agent No. shown in Table 1 2 to No. The structure of 4 is shown below.

【0127】電荷発生剤No.2Charge Generating Agent No. 2

【化114】 [Chemical 114]

【0128】電荷発生剤No.3Charge Generating Agent No. Three

【化115】 [Chemical 115]

【0129】電荷発生剤No.4Charge Generating Agent No. 4

【化116】 [Chemical formula 116]

【0130】感光体No.2〜20を実施例1と同様に
して感度測定を行った。その結果について表2に示し
た。
Photoreceptor No. Sensitivity measurement was performed for 2 to 20 in the same manner as in Example 1. The results are shown in Table 2.

【0131】[0131]

【表1】 [Table 1]

【0132】[0132]

【表2】 [Table 2]

【0133】実施例21 電荷発生剤としてα−TiOPc1.5部をポリビニル
ブチラール樹脂(エスレックBX−L、積水化学工業
(株)製)の3%THF溶液50部に加え、超音波分散
機で45分間分散した。得られた分散液を導電性支持体
のアルミ蒸着PETフィルムのアルミ面上にワイヤーバ
ーを用いて塗布し、常圧下60℃で2時間、更に減圧下
で2時間乾燥して膜厚0.2μmの電荷発生層を形成し
た。一方、電荷輸送剤として化合物No.7のテトラア
ミン化合物1.5部をポリカーボネート樹脂(ユーピロ
ンZ−300、三菱ガス化学(株)製)の8%トルエン
溶液18.75部に加え超音波をかけてテトラミンアミ
ン化合物を完全に溶解させた。この溶液を前記の電荷発
生層上にワイヤーバーで塗布し、常圧下60℃で2時
間、更に減圧下で2時間乾燥して膜厚約20μmの電荷
輸送層を形成せしめて、感光体No.21を作製した。
この感光体について静電複写紙試験装置(商品名「EP
A−8100」)を用いて感度を測定した。まず、感光
体を暗所で−8kVのコロナ放電により帯電させ、次い
で光量1.0μW/cm2 の800nmの単色光で露光
し、表面電位が初期表面電位の半分に減少するまでのエ
ネルギー量を求め、半減露光量E1/2(μJ/cm
2 )を測定した。この感光体の初期表面電位は−736
Vで、E1/2は0.45μJ/cm2 であった。
Example 21 1.5 parts of α-TiOPc as a charge generating agent was added to 50 parts of a 3% THF solution of polyvinyl butyral resin (S-REC BX-L, manufactured by Sekisui Chemical Co., Ltd.), and an ultrasonic disperser 45 Dispersed for minutes. The obtained dispersion liquid was applied onto the aluminum surface of the aluminum vapor-deposited PET film of the conductive support using a wire bar, dried under normal pressure at 60 ° C. for 2 hours, and further dried under reduced pressure for 2 hours to give a film thickness of 0.2 μm. The charge generation layer of was formed. On the other hand, Compound No. 1.5 parts of the tetraamine compound of 7 was added to 18.75 parts of an 8% toluene solution of a polycarbonate resin (Upilon Z-300, manufactured by Mitsubishi Gas Chemical Co., Inc.) and ultrasonic waves were applied to completely dissolve the tetramine amine compound. . This solution was coated on the charge generation layer with a wire bar and dried under normal pressure at 60 ° C. for 2 hours and further under reduced pressure for 2 hours to form a charge transport layer having a thickness of about 20 μm. 21 was produced.
About this photoconductor Electrostatic copying paper tester (trade name "EP
A-8100 ") was used to measure the sensitivity. First, the photoconductor is charged in the dark by a corona discharge of -8 kV, and then exposed to a monochromatic light of 800 nm with a light amount of 1.0 μW / cm 2 , and the amount of energy until the surface potential is reduced to half of the initial surface potential. Obtained, half exposure amount E1 / 2 (μJ / cm
2 ) was measured. The initial surface potential of this photoconductor is -736.
At V, E1 / 2 was 0.45 μJ / cm 2 .

【0134】実施例22 電荷発生剤として、α−TiOPcの代わりに下記トリ
スアゾ化合物
Example 22 As a charge generating agent, the following trisazo compound was used instead of α-TiOPc.

【0135】[0135]

【化117】 [Chemical 117]

【0136】を用いる以外は実施例21と同様に行って
感光体No22を作製した。この感光体を実施例21と
同様にして感度測定を行ったところ、初期表面電位は−
863Vで、E1/2は0.49μJ/cm2 であっ
た。
A photoconductor No. 22 was prepared in the same manner as in Example 21 except that was used. When the sensitivity of this photosensitive member was measured in the same manner as in Example 21, the initial surface potential was −
At 863 V, E1 / 2 was 0.49 μJ / cm 2 .

【0137】実施例23 電荷発生剤として下記チアピリリウム塩Example 23 The following thiapyrylium salt as a charge generating agent

【0138】[0138]

【化118】 [Chemical 118]

【0139】0.1部、電荷輸送層として化合物No.
32のヘキサアミン化合物10部をポリカーボネート樹
脂(ユーピロンZ−300、三菱ガス化学(株)製)の
8%トルエン溶液125部に加え、超音波をかけてチア
ピリリウム塩とヘキサアミン化合物を完全に溶解させ
た。この溶液を導電性支持体であるアルミ蒸着PETフ
ィルムのアルミ面上にワイヤーバーを用いて塗布し、常
圧下60℃で2時間、更に減圧下で2時間乾燥して膜厚
20μmの感光層を形成せしめて感光体No.23を作
製した。この感光体について静電複写紙試験装置(商品
名「EPA−8100」)を用いて感度を測定した。ま
ず、感光体を暗所で+8kVのコロナ放電により帯電さ
せ、次いで3.0ルックスの白色光で露光し、表面電位
が初期表面電位の半分に減少するまでの時間(秒)を測
定し、半減露光量E1/2(ルックス・秒)を求めた。
この感光体の初期表面電位は+869Vで、E1/2は
1.4ルックス・秒であった。
0.1 part, Compound No.
32 parts of the hexaamine compound of 32 was added to 125 parts of an 8% toluene solution of a polycarbonate resin (Upilon Z-300, manufactured by Mitsubishi Gas Chemical Co., Inc.), and ultrasonic waves were applied to completely dissolve the thiapyrylium salt and the hexaamine compound. This solution is applied on the aluminum surface of an aluminum vapor-deposited PET film which is a conductive support using a wire bar, and dried under normal pressure at 60 ° C. for 2 hours and further under reduced pressure for 2 hours to form a photosensitive layer having a film thickness of 20 μm. Form the photoconductor No. 23 was produced. The sensitivity of this photoconductor was measured using an electrostatic copying paper tester (trade name "EPA-8100"). First, the photoreceptor is charged by +8 kV corona discharge in the dark, then exposed to 3.0 lux white light, and the time (sec) until the surface potential decreases to half of the initial surface potential is measured. The exposure amount E1 / 2 (lux · second) was determined.
The initial surface potential of this photosensitive member was +869 V, and E1 / 2 was 1.4 lux · sec.

【0140】実施例24 実施例1で用いた電荷輸送剤の塗工液をアルミ蒸着PE
Tフィルムのアルミ面上にワイヤーバーを用いて塗布
し、常圧下60℃で2時間、更に減圧下で2時間乾燥し
て膜厚10μmの電荷輸送層を形成した。一方、電荷発
生剤として実施例3で用いたと同じジスアゾ化合物3.
0部をポリエステル樹脂(バイロン200、東洋紡
(株)製)の8%THF溶液18.5部に加え、メノウ
球入りのメノウポットに入れ、遊星型微粒粉砕機(フリ
ッツ社製)で1時間回転し、分散した。この分散液にT
HF200mlを加え、攪拌混合して塗工液とした。こ
の塗工液を上記電荷輸送層の上にスプレーで塗工し、常
圧下60℃で2時間、更に減圧下で2時間乾燥して膜厚
0.5μmの電荷発生層を形成した。更に、この電荷発
生層の上にアルコール可溶性ポリアミド樹脂をイソプロ
パノールに溶解した溶液をスプレーで塗工し、常圧下6
0℃で2時間、更に減圧下で2時間乾燥して膜厚0.5
μmのオーバーコート層を形成せしめて感光体No.2
4を作製した。この感光体を実施例1と同様にして感度
を測定した。この感光体の初期表面電位は+805V
で、E1/2は1.5ルックス・秒であった。
Example 24 The coating liquid of the charge transfer agent used in Example 1 was applied to aluminum vapor-deposited PE.
It was applied on the aluminum surface of the T film using a wire bar and dried under normal pressure at 60 ° C. for 2 hours and further under reduced pressure for 2 hours to form a charge transport layer having a film thickness of 10 μm. On the other hand, the same disazo compound as that used in Example 3 as the charge generating agent 3.
Add 0 parts to 18.5 parts of 8% THF solution of polyester resin (Byron 200, manufactured by Toyobo Co., Ltd.), put it in an agate pot containing agate balls, and rotate for 1 hour with a planetary type fine pulverizer (made by Fritz). And then dispersed. This dispersion contains T
200 ml of HF was added and mixed by stirring to obtain a coating liquid. This coating solution was applied onto the above charge transport layer by spraying and dried under normal pressure at 60 ° C. for 2 hours and further under reduced pressure for 2 hours to form a charge generation layer having a thickness of 0.5 μm. Further, a solution in which an alcohol-soluble polyamide resin is dissolved in isopropanol is applied onto the charge generation layer by spraying, and the solution is dried under normal pressure.
Dry at 0 ° C for 2 hours and then under reduced pressure for 2 hours to obtain a film thickness of 0.5
The photoconductor No. Two
4 was produced. The sensitivity of this photoreceptor was measured in the same manner as in Example 1. The initial surface potential of this photoconductor is + 805V.
The E1 / 2 was 1.5 lux · second.

【0141】[0141]

【発明の効果】本発明の新規なポリアミン化合物は優れ
た電荷輸送能を有しており、これらの化合物を含有する
感光層を導電性支持体上に有する本発明の電子写真用感
光体は高感度、高耐久性などの優れた感光体特性を示
し、電子写真用感光体として広範囲に利用することがで
きる利点を有する。
INDUSTRIAL APPLICABILITY The novel polyamine compound of the present invention has an excellent charge transporting ability, and the electrophotographic photoreceptor of the present invention having a photosensitive layer containing these compounds on a conductive support has high efficiency. It exhibits excellent photoconductor characteristics such as sensitivity and high durability, and has the advantage that it can be widely used as an electrophotographic photoconductor.

【図面の簡単な説明】[Brief description of drawings]

【図1】電子写真用単層感光体の断面図である。FIG. 1 is a sectional view of a single-layer photoconductor for electrophotography.

【図2】電荷発生物質を分散させた電子写真用単層感光
体の断面図である。
FIG. 2 is a cross-sectional view of a single-layer electrophotographic photoreceptor for electrophotography in which a charge generating substance is dispersed.

【図3】導電性支持体上に、電荷発生層、電荷輸送層の
順に積層した電子写真用感光体の断面図である。
FIG. 3 is a cross-sectional view of an electrophotographic photoreceptor in which a charge generation layer and a charge transport layer are laminated in this order on a conductive support.

【図4】導電性支持体上に電荷輸送層、電荷発生層の順
に積層した電子写真用感光体の断面図である。
FIG. 4 is a cross-sectional view of an electrophotographic photoreceptor in which a charge transport layer and a charge generation layer are laminated in this order on a conductive support.

【図5】保護層を設けた電子写真用感光体の断面図であ
る。
FIG. 5 is a sectional view of an electrophotographic photosensitive member provided with a protective layer.

【符号の説明】[Explanation of symbols]

1 導電性支持体 2,21,22,23,24 感光層 3 電荷輸送媒体、電荷輸送層 4 電荷発生物質 5 電荷発生層 6 保護層 1 Conductive Support 2, 21, 22, 23, 24 Photosensitive Layer 3 Charge Transport Medium, Charge Transport Layer 4 Charge Generating Material 5 Charge Generating Layer 6 Protective Layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 安西 光利 茨城県つくば市御幸が丘45番地 保土谷化 学工業株式会社筑波研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Mitsutoshi Anzai 45 Miyukigaoka, Tsukuba-shi, Ibaraki Hodogaya Chemical Industry Co., Ltd. Tsukuba Research Institute

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 下記一般式(1) 【化1】 [式中、R1、R2、R3 は各々独立に水素原子、低級ア
ルキル基、低級アルコキシ基または置換あるいは無置換
のフェニル基を表し、R4 は水素原子、低級アルキル
基、低級アルコキシ基または塩素原子を表し、Aは下記
式 【化2】 【化3】 【化4】 【化5】 【化6】 【化7】 【化8】 【化9】 【化10】 【化11】 【化12】 で表され、R5 は水素原子、低級アルキル基、低級アル
コキシ基または塩素原子を表わす。]で表されるテトラ
アミン化合物、 あるいは下記一般式(2) 【化13】 [式中、R6、R7 は各々独立に水素原子、低級アルキ
ル基、低級アルコキシ基または置換あるいは無置換のフ
ェニル基を表し、R8 は水素原子、低級アルキル基、低
級アルコキシ基または塩素原子を表し、Bは下記式 【化14】 【化15】 【化16】 【化17】 【化18】 【化19】 【化20】 【化21】 【化22】 【化23】 【化24】 で表され、R9 は水素原子、低級アルキル基、低級アル
コキシ基または塩素原子を表わす。]で表されるヘキサ
アミン化合物の群より選ばれたポリアミン化合物を含有
する感光層を有することを特徴とする電子写真用感光
体。
1. The following general formula (1): [Wherein R 1 , R 2 , and R 3 each independently represent a hydrogen atom, a lower alkyl group, a lower alkoxy group, or a substituted or unsubstituted phenyl group, and R 4 represents a hydrogen atom, a lower alkyl group, a lower alkoxy group. Alternatively, it represents a chlorine atom, and A is the following formula: Embedded image [Chemical 4] Embedded image [Chemical 6] [Chemical 7] Embedded image [Chemical 9] [Chemical 10] [Chemical 11] [Chemical 12] And R 5 represents a hydrogen atom, a lower alkyl group, a lower alkoxy group or a chlorine atom. ] Or a tetraamine compound represented by the following general formula (2): [Wherein R 6 and R 7 each independently represent a hydrogen atom, a lower alkyl group, a lower alkoxy group or a substituted or unsubstituted phenyl group, and R 8 represents a hydrogen atom, a lower alkyl group, a lower alkoxy group or a chlorine atom. And B is the following formula: [Chemical 15] Embedded image [Chemical 17] Embedded image [Chemical 19] Embedded image [Chemical 21] [Chemical formula 22] [Chemical formula 23] [Chemical formula 24] And R 9 represents a hydrogen atom, a lower alkyl group, a lower alkoxy group or a chlorine atom. ] A photoconductor for electrophotography, comprising a photosensitive layer containing a polyamine compound selected from the group of hexaamine compounds represented by:
JP11906695A 1995-04-21 1995-04-21 Electrophotographic photoreceptor Pending JPH08292586A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11906695A JPH08292586A (en) 1995-04-21 1995-04-21 Electrophotographic photoreceptor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11906695A JPH08292586A (en) 1995-04-21 1995-04-21 Electrophotographic photoreceptor

Publications (1)

Publication Number Publication Date
JPH08292586A true JPH08292586A (en) 1996-11-05

Family

ID=14752057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11906695A Pending JPH08292586A (en) 1995-04-21 1995-04-21 Electrophotographic photoreceptor

Country Status (1)

Country Link
JP (1) JPH08292586A (en)

Cited By (93)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10106750A (en) * 1996-09-03 1998-04-24 Xerox Corp Electroluminescence device
US5853905A (en) * 1997-09-08 1998-12-29 Motorola, Inc. Efficient single layer electroluminescent device
JP2001100439A (en) * 1999-09-28 2001-04-13 Konica Corp Electrophotographic photoreceptor and method and device for forming electrophotographic image and process cartridge using the same
WO2001056091A3 (en) * 2000-01-28 2002-02-07 Siemens Ag Charge transport material having an increased glass transition temperature and the use of said material
JP2002179630A (en) * 2000-09-28 2002-06-26 Hodogaya Chem Co Ltd Polyamino-fluorene derivative
JP2004093798A (en) * 2002-08-30 2004-03-25 Canon Inc Electrophotographic photoreceptor, process cartridge, and electrophotographic system
JP2004093799A (en) * 2002-08-30 2004-03-25 Canon Inc Electrophotographic photoreceptor, process cartridge, and electrophotographic system
JP2004093810A (en) * 2002-08-30 2004-03-25 Canon Inc Electrophotographic sensitive body, process cartridge and electrophotographic device
JP2005104971A (en) * 2003-09-05 2005-04-21 Qinghua Univ Carbazole derivative and its use for organic el element
EP1698613A4 (en) * 2003-12-26 2007-02-07 Hodogaya Chemical Co Ltd Tetramine compound and organic el device
JP2007045778A (en) * 2005-08-11 2007-02-22 Ricoh Co Ltd Novel benzidine compound and its manufacturing method
JP2007525498A (en) * 2004-02-19 2007-09-06 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Compositions containing novel compounds and electronic devices made with such compositions
JP2007527420A (en) * 2004-02-20 2007-09-27 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Inclusion of aromatic amine compositions and electronic devices made with such compositions
JP2007248917A (en) * 2006-03-16 2007-09-27 Ricoh Co Ltd Electrophotographic photoreceptor, electrophotographic method and apparatus using same, and process cartridge for electrophotographic apparatus
JP2007531762A (en) * 2004-03-31 2007-11-08 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Triarylamine compounds used as charge transport materials
JP2009292781A (en) * 2008-06-06 2009-12-17 Konica Minolta Business Technologies Inc Amine compound, electrophotographic photoreceptor and image-forming device
WO2010094636A1 (en) * 2009-02-23 2010-08-26 Basf Se Use of triarylamine derivatives as hole-conducting materials in organic solar cells and organic solar cells containing said triarylamine derivatives
WO2011015265A2 (en) 2009-08-04 2011-02-10 Merck Patent Gmbh Electronic devices comprising multi cyclic hydrocarbons
WO2011032686A1 (en) 2009-09-16 2011-03-24 Merck Patent Gmbh Formulas for producing electronic devices
WO2011076326A1 (en) 2009-12-22 2011-06-30 Merck Patent Gmbh Electroluminescent functional surfactants
WO2011076323A1 (en) 2009-12-22 2011-06-30 Merck Patent Gmbh Formulations comprising phase-separated functional materials
WO2011076314A1 (en) 2009-12-22 2011-06-30 Merck Patent Gmbh Electroluminescent formulations
WO2011110275A2 (en) 2010-03-11 2011-09-15 Merck Patent Gmbh Radiative fibers
WO2011110277A1 (en) 2010-03-11 2011-09-15 Merck Patent Gmbh Fibers in therapy and cosmetics
WO2011147522A1 (en) 2010-05-27 2011-12-01 Merck Patent Gmbh Compositions comprising quantum dots
WO2012013270A1 (en) 2010-07-26 2012-02-02 Merck Patent Gmbh Nanocrystals in devices
WO2012110178A1 (en) 2011-02-14 2012-08-23 Merck Patent Gmbh Device and method for treatment of cells and cell tissue
WO2012126566A1 (en) 2011-03-24 2012-09-27 Merck Patent Gmbh Organic ionic functional materials
WO2012152366A1 (en) 2011-05-12 2012-11-15 Merck Patent Gmbh Organic ionic compounds, compositions and electronic devices
WO2012163464A1 (en) 2011-06-01 2012-12-06 Merck Patent Gmbh Hybrid ambipolar tfts
WO2013013754A1 (en) 2011-07-25 2013-01-31 Merck Patent Gmbh Copolymers with functionalized side chains
DE102011117422A1 (en) 2011-10-28 2013-05-02 Merck Patent Gmbh Hyperbranched polymers, process for their preparation and their use in electronic devices
US8629300B2 (en) 2006-12-13 2014-01-14 Sensient Imaging Technologies Gmbh Arylamine-substituted divinyl fluorenes and their use for electrophotographic applications, and for OLEDs (organic light emitting devices)
US8937300B2 (en) 2009-10-19 2015-01-20 E I Du Pont De Nemours And Company Triarylamine compounds for use in organic light-emitting diodes
WO2016034262A1 (en) 2014-09-05 2016-03-10 Merck Patent Gmbh Formulations and electronic devices
WO2016107663A1 (en) 2014-12-30 2016-07-07 Merck Patent Gmbh Formulations and electronic devices
WO2016155866A1 (en) 2015-03-30 2016-10-06 Merck Patent Gmbh Formulation of an organic functional material comprising a siloxane solvent
WO2016198141A1 (en) 2015-06-12 2016-12-15 Merck Patent Gmbh Esters containing non-aromatic cycles as solvents for oled formulations
WO2017036572A1 (en) 2015-08-28 2017-03-09 Merck Patent Gmbh Formulation of an organic functional material comprising an epoxy group containing solvent
US9665182B2 (en) 2013-08-19 2017-05-30 Basf Se Detector for determining a position of at least one object
WO2017097391A1 (en) 2015-12-10 2017-06-15 Merck Patent Gmbh Formulations containing ketones comprising non-aromatic cycles
WO2017102049A1 (en) 2015-12-16 2017-06-22 Merck Patent Gmbh Formulations containing a mixture of at least two different solvents
WO2017102048A1 (en) 2015-12-15 2017-06-22 Merck Patent Gmbh Esters containing aromatic groups as solvents for organic electronic formulations
WO2017102052A1 (en) 2015-12-16 2017-06-22 Merck Patent Gmbh Formulations containing a solid solvent
US9741954B2 (en) 2013-06-13 2017-08-22 Basf Se Optical detector and method for manufacturing the same
WO2017140404A1 (en) 2016-02-17 2017-08-24 Merck Patent Gmbh Formulation of an organic functional material
DE102016003104A1 (en) 2016-03-15 2017-09-21 Merck Patent Gmbh Container comprising a formulation containing at least one organic semiconductor
US9829564B2 (en) 2013-06-13 2017-11-28 Basf Se Detector for optically detecting at least one longitudinal coordinate of one object by determining a number of illuminated pixels
JP2017212364A (en) * 2016-05-26 2017-11-30 株式会社リコー Hole transport material, photoelectric conversion element and solar cell
WO2017216128A1 (en) 2016-06-17 2017-12-21 Merck Patent Gmbh Formulation of an organic functional material
WO2017216129A1 (en) 2016-06-16 2017-12-21 Merck Patent Gmbh Formulation of an organic functional material
WO2018001928A1 (en) 2016-06-28 2018-01-04 Merck Patent Gmbh Formulation of an organic functional material
WO2018024719A1 (en) 2016-08-04 2018-02-08 Merck Patent Gmbh Formulation of an organic functional material
WO2018077660A1 (en) 2016-10-31 2018-05-03 Merck Patent Gmbh Formulation of an organic functional material
WO2018077662A1 (en) 2016-10-31 2018-05-03 Merck Patent Gmbh Formulation of an organic functional material
WO2018104202A1 (en) 2016-12-06 2018-06-14 Merck Patent Gmbh Preparation process for an electronic device
WO2018108760A1 (en) 2016-12-13 2018-06-21 Merck Patent Gmbh Formulation of an organic functional material
WO2018114883A1 (en) 2016-12-22 2018-06-28 Merck Patent Gmbh Mixtures comprising at least two organofunctional compounds
US10012532B2 (en) 2013-08-19 2018-07-03 Basf Se Optical detector
WO2018138318A1 (en) 2017-01-30 2018-08-02 Merck Patent Gmbh Method for forming an organic element of an electronic device
WO2018138319A1 (en) 2017-01-30 2018-08-02 Merck Patent Gmbh Method for forming an organic electroluminescence (el) element
WO2018178136A1 (en) 2017-03-31 2018-10-04 Merck Patent Gmbh Printing method for an organic light emitting diode (oled)
US10094927B2 (en) 2014-09-29 2018-10-09 Basf Se Detector for optically determining a position of at least one object
WO2018189050A1 (en) 2017-04-10 2018-10-18 Merck Patent Gmbh Formulation of an organic functional material
US10120078B2 (en) 2012-12-19 2018-11-06 Basf Se Detector having a transversal optical sensor and a longitudinal optical sensor
WO2018202603A1 (en) 2017-05-03 2018-11-08 Merck Patent Gmbh Formulation of an organic functional material
WO2019016184A1 (en) 2017-07-18 2019-01-24 Merck Patent Gmbh Formulation of an organic functional material
WO2019115573A1 (en) 2017-12-15 2019-06-20 Merck Patent Gmbh Formulation of an organic functional material
US10353049B2 (en) 2013-06-13 2019-07-16 Basf Se Detector for optically detecting an orientation of at least one object
WO2019162483A1 (en) 2018-02-26 2019-08-29 Merck Patent Gmbh Formulation of an organic functional material
US10412283B2 (en) 2015-09-14 2019-09-10 Trinamix Gmbh Dual aperture 3D camera and method using differing aperture areas
WO2019238782A1 (en) 2018-06-15 2019-12-19 Merck Patent Gmbh Formulation of an organic functional material
WO2020064582A1 (en) 2018-09-24 2020-04-02 Merck Patent Gmbh Method for the production of a granular material
WO2020094538A1 (en) 2018-11-06 2020-05-14 Merck Patent Gmbh Method for forming an organic element of an electronic device
US10775505B2 (en) 2015-01-30 2020-09-15 Trinamix Gmbh Detector for an optical detection of at least one object
US10890491B2 (en) 2016-10-25 2021-01-12 Trinamix Gmbh Optical detector for an optical detection
US10948567B2 (en) 2016-11-17 2021-03-16 Trinamix Gmbh Detector for optically detecting at least one object
US10955936B2 (en) 2015-07-17 2021-03-23 Trinamix Gmbh Detector for optically detecting at least one object
US11041718B2 (en) 2014-07-08 2021-06-22 Basf Se Detector for determining a position of at least one object
US11060922B2 (en) 2017-04-20 2021-07-13 Trinamix Gmbh Optical detector
US11067692B2 (en) 2017-06-26 2021-07-20 Trinamix Gmbh Detector for determining a position of at least one object
US11125880B2 (en) 2014-12-09 2021-09-21 Basf Se Optical detector
WO2021213917A1 (en) 2020-04-21 2021-10-28 Merck Patent Gmbh Emulsions comprising organic functional materials
US11211513B2 (en) 2016-07-29 2021-12-28 Trinamix Gmbh Optical sensor and detector for an optical detection
WO2021259824A1 (en) 2020-06-23 2021-12-30 Merck Patent Gmbh Method for producing a mixture
WO2022122607A1 (en) 2020-12-08 2022-06-16 Merck Patent Gmbh An ink system and a method for inkjet printing
US11428787B2 (en) 2016-10-25 2022-08-30 Trinamix Gmbh Detector for an optical detection of at least one object
WO2022243403A1 (en) 2021-05-21 2022-11-24 Merck Patent Gmbh Method for the continuous purification of at least one functional material and device for the continuous purification of at least one functional material
WO2023012084A1 (en) 2021-08-02 2023-02-09 Merck Patent Gmbh A printing method by combining inks
WO2023031073A1 (en) 2021-08-31 2023-03-09 Merck Patent Gmbh Composition
WO2023057327A1 (en) 2021-10-05 2023-04-13 Merck Patent Gmbh Method for forming an organic element of an electronic device
WO2023237458A1 (en) 2022-06-07 2023-12-14 Merck Patent Gmbh Method of printing a functional layer of an electronic device by combining inks
US11860292B2 (en) 2016-11-17 2024-01-02 Trinamix Gmbh Detector and methods for authenticating at least one object

Cited By (111)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10106750A (en) * 1996-09-03 1998-04-24 Xerox Corp Electroluminescence device
US5853905A (en) * 1997-09-08 1998-12-29 Motorola, Inc. Efficient single layer electroluminescent device
JP2001100439A (en) * 1999-09-28 2001-04-13 Konica Corp Electrophotographic photoreceptor and method and device for forming electrophotographic image and process cartridge using the same
WO2001056091A3 (en) * 2000-01-28 2002-02-07 Siemens Ag Charge transport material having an increased glass transition temperature and the use of said material
JP2002179630A (en) * 2000-09-28 2002-06-26 Hodogaya Chem Co Ltd Polyamino-fluorene derivative
JP2004093798A (en) * 2002-08-30 2004-03-25 Canon Inc Electrophotographic photoreceptor, process cartridge, and electrophotographic system
JP2004093799A (en) * 2002-08-30 2004-03-25 Canon Inc Electrophotographic photoreceptor, process cartridge, and electrophotographic system
JP2004093810A (en) * 2002-08-30 2004-03-25 Canon Inc Electrophotographic sensitive body, process cartridge and electrophotographic device
JP2005104971A (en) * 2003-09-05 2005-04-21 Qinghua Univ Carbazole derivative and its use for organic el element
EP1698613A4 (en) * 2003-12-26 2007-02-07 Hodogaya Chemical Co Ltd Tetramine compound and organic el device
JP2007525498A (en) * 2004-02-19 2007-09-06 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Compositions containing novel compounds and electronic devices made with such compositions
JP2011173893A (en) * 2004-02-19 2011-09-08 E I Du Pont De Nemours & Co Composition containing new compound, and electronic device manufactured from such composition
JP4820762B2 (en) * 2004-02-19 2011-11-24 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Novel triarylamine compound and method for producing the same
JP2007527420A (en) * 2004-02-20 2007-09-27 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Inclusion of aromatic amine compositions and electronic devices made with such compositions
KR101135745B1 (en) * 2004-02-20 2012-05-25 이 아이 듀폰 디 네모아 앤드 캄파니 Aromatic amine compositions comprising and electronic devices made with such compositions
EP2292583A3 (en) * 2004-03-31 2011-08-31 E. I. du Pont de Nemours and Company Triarylamine compounds for use as charge transport materials
JP2007531762A (en) * 2004-03-31 2007-11-08 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Triarylamine compounds used as charge transport materials
JP2007045778A (en) * 2005-08-11 2007-02-22 Ricoh Co Ltd Novel benzidine compound and its manufacturing method
JP2007248917A (en) * 2006-03-16 2007-09-27 Ricoh Co Ltd Electrophotographic photoreceptor, electrophotographic method and apparatus using same, and process cartridge for electrophotographic apparatus
US8629300B2 (en) 2006-12-13 2014-01-14 Sensient Imaging Technologies Gmbh Arylamine-substituted divinyl fluorenes and their use for electrophotographic applications, and for OLEDs (organic light emitting devices)
JP2009292781A (en) * 2008-06-06 2009-12-17 Konica Minolta Business Technologies Inc Amine compound, electrophotographic photoreceptor and image-forming device
JP2012518896A (en) * 2009-02-23 2012-08-16 ビーエーエスエフ ソシエタス・ヨーロピア Use of triarylamine derivatives as hole transport materials in organic solar cells, and organic solar cells comprising the triarylamine derivatives
US20140130870A1 (en) * 2009-02-23 2014-05-15 Basf Se Use of triarylamine derivatives as hole-conducting materials in organic solar cells and organic solar cells containing said triarylamine derivatives
CN102326271A (en) * 2009-02-23 2012-01-18 巴斯夫欧洲公司 The triarylamine derivative in organic solar batteries as the purposes of hole-conductive material and the organic solar batteries that contains said triaryl derivative
WO2010094636A1 (en) * 2009-02-23 2010-08-26 Basf Se Use of triarylamine derivatives as hole-conducting materials in organic solar cells and organic solar cells containing said triarylamine derivatives
WO2011015265A2 (en) 2009-08-04 2011-02-10 Merck Patent Gmbh Electronic devices comprising multi cyclic hydrocarbons
WO2011032686A1 (en) 2009-09-16 2011-03-24 Merck Patent Gmbh Formulas for producing electronic devices
US8937300B2 (en) 2009-10-19 2015-01-20 E I Du Pont De Nemours And Company Triarylamine compounds for use in organic light-emitting diodes
WO2011076314A1 (en) 2009-12-22 2011-06-30 Merck Patent Gmbh Electroluminescent formulations
WO2011076323A1 (en) 2009-12-22 2011-06-30 Merck Patent Gmbh Formulations comprising phase-separated functional materials
WO2011076326A1 (en) 2009-12-22 2011-06-30 Merck Patent Gmbh Electroluminescent functional surfactants
WO2011110277A1 (en) 2010-03-11 2011-09-15 Merck Patent Gmbh Fibers in therapy and cosmetics
WO2011110275A2 (en) 2010-03-11 2011-09-15 Merck Patent Gmbh Radiative fibers
EP3309236A1 (en) 2010-05-27 2018-04-18 Merck Patent GmbH Compositions comprising quantum dots
WO2011147522A1 (en) 2010-05-27 2011-12-01 Merck Patent Gmbh Compositions comprising quantum dots
WO2012013270A1 (en) 2010-07-26 2012-02-02 Merck Patent Gmbh Nanocrystals in devices
WO2012110178A1 (en) 2011-02-14 2012-08-23 Merck Patent Gmbh Device and method for treatment of cells and cell tissue
WO2012126566A1 (en) 2011-03-24 2012-09-27 Merck Patent Gmbh Organic ionic functional materials
WO2012152366A1 (en) 2011-05-12 2012-11-15 Merck Patent Gmbh Organic ionic compounds, compositions and electronic devices
WO2012163464A1 (en) 2011-06-01 2012-12-06 Merck Patent Gmbh Hybrid ambipolar tfts
WO2013013754A1 (en) 2011-07-25 2013-01-31 Merck Patent Gmbh Copolymers with functionalized side chains
DE102011117422A1 (en) 2011-10-28 2013-05-02 Merck Patent Gmbh Hyperbranched polymers, process for their preparation and their use in electronic devices
US10120078B2 (en) 2012-12-19 2018-11-06 Basf Se Detector having a transversal optical sensor and a longitudinal optical sensor
US10823818B2 (en) 2013-06-13 2020-11-03 Basf Se Detector for optically detecting at least one object
US10353049B2 (en) 2013-06-13 2019-07-16 Basf Se Detector for optically detecting an orientation of at least one object
US9989623B2 (en) 2013-06-13 2018-06-05 Basf Se Detector for determining a longitudinal coordinate of an object via an intensity distribution of illuminated pixels
US10845459B2 (en) 2013-06-13 2020-11-24 Basf Se Detector for optically detecting at least one object
US9741954B2 (en) 2013-06-13 2017-08-22 Basf Se Optical detector and method for manufacturing the same
US9829564B2 (en) 2013-06-13 2017-11-28 Basf Se Detector for optically detecting at least one longitudinal coordinate of one object by determining a number of illuminated pixels
US9958535B2 (en) 2013-08-19 2018-05-01 Basf Se Detector for determining a position of at least one object
US9665182B2 (en) 2013-08-19 2017-05-30 Basf Se Detector for determining a position of at least one object
US10012532B2 (en) 2013-08-19 2018-07-03 Basf Se Optical detector
US11041718B2 (en) 2014-07-08 2021-06-22 Basf Se Detector for determining a position of at least one object
WO2016034262A1 (en) 2014-09-05 2016-03-10 Merck Patent Gmbh Formulations and electronic devices
US10094927B2 (en) 2014-09-29 2018-10-09 Basf Se Detector for optically determining a position of at least one object
US11125880B2 (en) 2014-12-09 2021-09-21 Basf Se Optical detector
WO2016107663A1 (en) 2014-12-30 2016-07-07 Merck Patent Gmbh Formulations and electronic devices
US10775505B2 (en) 2015-01-30 2020-09-15 Trinamix Gmbh Detector for an optical detection of at least one object
WO2016155866A1 (en) 2015-03-30 2016-10-06 Merck Patent Gmbh Formulation of an organic functional material comprising a siloxane solvent
WO2016198141A1 (en) 2015-06-12 2016-12-15 Merck Patent Gmbh Esters containing non-aromatic cycles as solvents for oled formulations
EP3581633A1 (en) 2015-06-12 2019-12-18 Merck Patent GmbH Esters containing non-aromatic cycles as solvents for oled formulations
US10955936B2 (en) 2015-07-17 2021-03-23 Trinamix Gmbh Detector for optically detecting at least one object
WO2017036572A1 (en) 2015-08-28 2017-03-09 Merck Patent Gmbh Formulation of an organic functional material comprising an epoxy group containing solvent
US10412283B2 (en) 2015-09-14 2019-09-10 Trinamix Gmbh Dual aperture 3D camera and method using differing aperture areas
WO2017097391A1 (en) 2015-12-10 2017-06-15 Merck Patent Gmbh Formulations containing ketones comprising non-aromatic cycles
EP4084109A1 (en) 2015-12-15 2022-11-02 Merck Patent GmbH Esters containing aromatic groups as solvents for organic electronic formulations
WO2017102048A1 (en) 2015-12-15 2017-06-22 Merck Patent Gmbh Esters containing aromatic groups as solvents for organic electronic formulations
WO2017102049A1 (en) 2015-12-16 2017-06-22 Merck Patent Gmbh Formulations containing a mixture of at least two different solvents
WO2017102052A1 (en) 2015-12-16 2017-06-22 Merck Patent Gmbh Formulations containing a solid solvent
WO2017140404A1 (en) 2016-02-17 2017-08-24 Merck Patent Gmbh Formulation of an organic functional material
DE102016003104A1 (en) 2016-03-15 2017-09-21 Merck Patent Gmbh Container comprising a formulation containing at least one organic semiconductor
WO2017157783A1 (en) 2016-03-15 2017-09-21 Merck Patent Gmbh Receptacle comprising a formulation containing at least one organic semiconductor
JP2017212364A (en) * 2016-05-26 2017-11-30 株式会社リコー Hole transport material, photoelectric conversion element and solar cell
WO2017216129A1 (en) 2016-06-16 2017-12-21 Merck Patent Gmbh Formulation of an organic functional material
WO2017216128A1 (en) 2016-06-17 2017-12-21 Merck Patent Gmbh Formulation of an organic functional material
WO2018001928A1 (en) 2016-06-28 2018-01-04 Merck Patent Gmbh Formulation of an organic functional material
US11211513B2 (en) 2016-07-29 2021-12-28 Trinamix Gmbh Optical sensor and detector for an optical detection
WO2018024719A1 (en) 2016-08-04 2018-02-08 Merck Patent Gmbh Formulation of an organic functional material
US11428787B2 (en) 2016-10-25 2022-08-30 Trinamix Gmbh Detector for an optical detection of at least one object
US10890491B2 (en) 2016-10-25 2021-01-12 Trinamix Gmbh Optical detector for an optical detection
WO2018077662A1 (en) 2016-10-31 2018-05-03 Merck Patent Gmbh Formulation of an organic functional material
WO2018077660A1 (en) 2016-10-31 2018-05-03 Merck Patent Gmbh Formulation of an organic functional material
US11698435B2 (en) 2016-11-17 2023-07-11 Trinamix Gmbh Detector for optically detecting at least one object
US11415661B2 (en) 2016-11-17 2022-08-16 Trinamix Gmbh Detector for optically detecting at least one object
US11635486B2 (en) 2016-11-17 2023-04-25 Trinamix Gmbh Detector for optically detecting at least one object
US10948567B2 (en) 2016-11-17 2021-03-16 Trinamix Gmbh Detector for optically detecting at least one object
US11860292B2 (en) 2016-11-17 2024-01-02 Trinamix Gmbh Detector and methods for authenticating at least one object
WO2018104202A1 (en) 2016-12-06 2018-06-14 Merck Patent Gmbh Preparation process for an electronic device
WO2018108760A1 (en) 2016-12-13 2018-06-21 Merck Patent Gmbh Formulation of an organic functional material
WO2018114883A1 (en) 2016-12-22 2018-06-28 Merck Patent Gmbh Mixtures comprising at least two organofunctional compounds
WO2018138318A1 (en) 2017-01-30 2018-08-02 Merck Patent Gmbh Method for forming an organic element of an electronic device
WO2018138319A1 (en) 2017-01-30 2018-08-02 Merck Patent Gmbh Method for forming an organic electroluminescence (el) element
WO2018178136A1 (en) 2017-03-31 2018-10-04 Merck Patent Gmbh Printing method for an organic light emitting diode (oled)
WO2018189050A1 (en) 2017-04-10 2018-10-18 Merck Patent Gmbh Formulation of an organic functional material
US11060922B2 (en) 2017-04-20 2021-07-13 Trinamix Gmbh Optical detector
WO2018202603A1 (en) 2017-05-03 2018-11-08 Merck Patent Gmbh Formulation of an organic functional material
US11067692B2 (en) 2017-06-26 2021-07-20 Trinamix Gmbh Detector for determining a position of at least one object
WO2019016184A1 (en) 2017-07-18 2019-01-24 Merck Patent Gmbh Formulation of an organic functional material
WO2019115573A1 (en) 2017-12-15 2019-06-20 Merck Patent Gmbh Formulation of an organic functional material
WO2019162483A1 (en) 2018-02-26 2019-08-29 Merck Patent Gmbh Formulation of an organic functional material
WO2019238782A1 (en) 2018-06-15 2019-12-19 Merck Patent Gmbh Formulation of an organic functional material
WO2020064582A1 (en) 2018-09-24 2020-04-02 Merck Patent Gmbh Method for the production of a granular material
WO2020094538A1 (en) 2018-11-06 2020-05-14 Merck Patent Gmbh Method for forming an organic element of an electronic device
WO2021213917A1 (en) 2020-04-21 2021-10-28 Merck Patent Gmbh Emulsions comprising organic functional materials
WO2021259824A1 (en) 2020-06-23 2021-12-30 Merck Patent Gmbh Method for producing a mixture
WO2022122607A1 (en) 2020-12-08 2022-06-16 Merck Patent Gmbh An ink system and a method for inkjet printing
WO2022243403A1 (en) 2021-05-21 2022-11-24 Merck Patent Gmbh Method for the continuous purification of at least one functional material and device for the continuous purification of at least one functional material
WO2023012084A1 (en) 2021-08-02 2023-02-09 Merck Patent Gmbh A printing method by combining inks
WO2023031073A1 (en) 2021-08-31 2023-03-09 Merck Patent Gmbh Composition
WO2023057327A1 (en) 2021-10-05 2023-04-13 Merck Patent Gmbh Method for forming an organic element of an electronic device
WO2023237458A1 (en) 2022-06-07 2023-12-14 Merck Patent Gmbh Method of printing a functional layer of an electronic device by combining inks

Similar Documents

Publication Publication Date Title
JPH08292586A (en) Electrophotographic photoreceptor
JP5545897B2 (en) P-terphenyl compound mixture and electrophotographic photoreceptor using the compound mixture
JP4943840B2 (en) p-Terphenyl compound and electrophotographic photoreceptor using the compound
JP2886493B2 (en) Electrophotographic photoreceptor
EP2460796A1 (en) Indole derivative
EP0709364B1 (en) Tetrahydronaphthylaminostyrene compounds and their use in electrophotographic photoreceptors
WO2006054805A1 (en) Electrophotographic photosensitive body
JP3568431B2 (en) Stilbene derivative, method for producing the same, and electrophotographic photoreceptor using the same
JPH08152724A (en) Electrophotographic photoreceptor
JP3897838B2 (en) Indane compound and electrophotographic photoreceptor using the compound
JPH08143550A (en) Hydrazone compound and electrphotographic photoreceptor using the same compound and organic electroluminescent element
JP3996223B2 (en) 9,9-dimethylxanthene compound and electrophotographic photoreceptor using the compound
US5721082A (en) Electrophotographic photoreceptor containing amine compound
JPH09202762A (en) Hydrazone compound and electrophotographic photoreceptor and organic electroluminescent element using the compound
US5728500A (en) Electrophotographic photoreceptor with acenaphthene compound
JP3910658B2 (en) Acenaphthene compounds
JPH06211757A (en) New-9,10-bis@(3754/24)n,n-diarylamino)phenanthrene derivative and its production
JP3290875B2 (en) Electrophotographic photoreceptor, and method for producing bisazo compound, intermediate and bisazo compound
JPH09208549A (en) Acenaphthene compound and electrophotographic photoreceptor using the same
JP4017043B2 (en) Electrophotographic photoreceptor
JP4506182B2 (en) Arylamine compound, hole transport material using the compound, and electrophotographic photoreceptor
JPH08127559A (en) Phenanthrylenediamine derivative and electrophotography sensitive body using the same
JP3301185B2 (en) Electrophotographic photoreceptor
JPH0934143A (en) Electrophotographic photoreceptor
JPH09328460A (en) Indane compound and electrophotographic receptor using the compound