JPH08292260A - Photoelectric sensor having self-diagnostic function - Google Patents

Photoelectric sensor having self-diagnostic function

Info

Publication number
JPH08292260A
JPH08292260A JP7100843A JP10084395A JPH08292260A JP H08292260 A JPH08292260 A JP H08292260A JP 7100843 A JP7100843 A JP 7100843A JP 10084395 A JP10084395 A JP 10084395A JP H08292260 A JPH08292260 A JP H08292260A
Authority
JP
Japan
Prior art keywords
light
level
self
light receiving
diagnosis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7100843A
Other languages
Japanese (ja)
Inventor
Masaharu Miyazaki
正治 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP7100843A priority Critical patent/JPH08292260A/en
Publication of JPH08292260A publication Critical patent/JPH08292260A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Electronic Switches (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Burglar Alarm Systems (AREA)

Abstract

PURPOSE: To generate a self-diagnosis signal without fail irrespective of the speed of movement of an object of detection when a light reception level is in an unstable region. CONSTITUTION: Light is projected into a monitoring space from a light-emitting element 11 and a reflected light on an object l is received by a photodetector 21. When a light reception level in the photodetector 21 is in an unstable region wherein it is higher than a stable light-interception level and lower than a stable light-entrance level, a self-diagnosis signal is outputted from a self- diagnostic circuit 30. The self-diagnostic circuit 30 delivers rectangular wave signals which show a first output value outputted when the light reception level in the photodetector 21 is the stable light-interception level or below or the stable light-entrance level or above and a second output value being different from the first output value repeatedly and alternately in a set period, and it generates the first output value at the time point when the light reception level enters the unstable region.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、受光手段での受光レベ
ルが回路動作は可能であるが対象物の検知や対象物まで
の距離測定が正常になされているか否かを保証できない
程度であるときに、出力結果が必ずしも保証されていな
いことを報知するようにした自己診断機能を有する光電
センサに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is such that the level of light received by the light receiving means is such that circuit operation is possible, but it is not possible to guarantee whether or not detection of an object or distance measurement to the object is normally performed. At the same time, the present invention relates to a photoelectric sensor having a self-diagnosis function for notifying that the output result is not always guaranteed.

【0002】[0002]

【従来の技術】一般に、光電センサは監視空間からの光
を受光素子で受光し、受光素子での受光光量や受光位置
に基づいて監視空間内の対象物の存否を検出したり、対
象物までの距離を求めたりするように構成されている。
この種の光電センサでは、受光素子での受光光量が充分
であるときには安定に動作するが、受光素子の受光レベ
ルが低下すると受光素子の受光レベルが回路動作の可能
な範囲であったとしても、動作が不安定になって出力結
果の信頼性が低下するという問題が生じる。この種の現
象は、光学素子(レンズなど)や光電素子(投光素子、
受光素子)の光軸のずれや汚れなどにより生じ、また対
象物までの距離や対象物の反射率ないし透過率などによ
っても生じることがある。一方、監視空間に対象物が存
在しない場合でも外乱光が存在していると、受光素子の
受光レベルが高くなって回路動作が可能になり、何らか
の出力結果が得られてしまうという問題が生じる。この
ような問題は、光電センサから監視空間に光を投光する
能動形か光を投光しない受動形かにかかわらず生じる。
2. Description of the Related Art Generally, a photoelectric sensor receives light from a monitoring space with a light receiving element, detects the presence or absence of an object in the monitoring space based on the amount of light received by the light receiving element and the light receiving position, and even detects the object. It is configured to calculate the distance of.
This kind of photoelectric sensor operates stably when the amount of light received by the light receiving element is sufficient, but even if the light receiving level of the light receiving element falls within the range where circuit operation is possible when the light receiving level of the light receiving element decreases. There arises a problem that the operation becomes unstable and the reliability of the output result decreases. This kind of phenomenon is caused by optical elements (lenses, etc.) and photoelectric elements (projectors,
It may be caused by the deviation of the optical axis of the light receiving element), dirt, or the like, and may also be caused by the distance to the object or the reflectance or transmittance of the object. On the other hand, if ambient light is present even when there is no object in the monitoring space, the light-receiving level of the light-receiving element becomes high and circuit operation becomes possible, resulting in some output result. Such a problem occurs regardless of whether it is an active type that projects light from the photoelectric sensor to the monitoring space or a passive type that does not project light.

【0003】また、光電センサとしては、監視空間に光
ビームを投光し、監視空間内の対象物からの反射光に基
づいて、三角測量法を適用したり、投光から受光までの
時間差に相当する量を求めたりすることによって、対象
物までの距離を求める光電センサも提供されている。こ
の種の光電センサでは、対象物が所定の距離範囲内に存
在するときに検知出力が得られるものもある。このよう
に距離を求める形式の光電センサであっても、受光光量
が不十分であれば距離を正確に求めることができず、ま
た対象物が存在しないときに外乱光が存在すれば距離を
誤認する可能性がある。
Further, as the photoelectric sensor, a light beam is projected onto the surveillance space, and the triangulation method is applied based on the reflected light from the object in the surveillance space, or the time difference from the projection to the reception is calculated. There is also provided a photoelectric sensor that obtains the distance to an object by obtaining a corresponding amount. In some photoelectric sensors of this type, a detection output is obtained when the object is within a predetermined distance range. Even with such a photoelectric sensor that calculates the distance, the distance cannot be accurately calculated if the amount of received light is insufficient, and the distance is erroneously recognized if there is ambient light when there is no object. there's a possibility that.

【0004】そこで、受光素子での受光レベルが、回路
動作は可能であるが出力結果の信頼性が低い範囲である
ときに、光学素子や光電素子の劣化ないし光軸ずれなど
が生じている可能性があり、対象物を正確に検出したり
対象物までの距離を正確に求めたりすることができない
不安定領域であると判断して自己診断信号を発生させる
ことが考えられている。
Therefore, when the light receiving level of the light receiving element is within a range where the circuit operation is possible but the reliability of the output result is low, the optical element or the photoelectric element may be deteriorated or the optical axis is deviated. It is considered that the self-diagnosis signal is generated by determining that it is an unstable region in which the target object cannot be accurately detected or the distance to the target object cannot be accurately determined.

【0005】たとえば、図5に示すものは、受光素子の
出力により何らかの検知出力が得られるレベルを動作レ
ベルLaとし、この動作レベルLaに対して所定割合だ
け低い安定遮光レベルLdと、動作レベルLaに対して
所定割合だけ高い安定入光レベルLbとを設定してあ
る。受光素子での受光レベルが安定遮光レベルLd以下
であるか安定入光レベルLb以上であれば、受光レベル
は安定領域であって対象物の検知の有無を正確に反映し
ていると判断し、一方、受光レベルが安定遮光レベルL
dより高く安定入光レベルより低いと、受光レベルは不
安定領域であって、対象物の検知の有無が正確に反映さ
れていないと判断して自己診断信号を出力する。具体的
には、受光レベルが不安定領域である状態で一定時間T
1(たとえば、0.3秒)以上継続すると、不安定領域
に入った時点から一定時間T1後に図5(b)のように
自己診断信号を出力し、受光レベルが不安定領域から出
るとただちに自己診断信号を解除するようになってい
る。この構成は能動形、受動形にかかわらず用いること
ができる。
For example, in the structure shown in FIG. 5, the level at which some detection output is obtained by the output of the light receiving element is set as the operation level La, and the stable light shielding level Ld and the operation level La which are lower than the operation level La by a predetermined ratio. The stable light input level Lb is set to be higher by a predetermined ratio. If the light receiving level at the light receiving element is below the stable light blocking level Ld or above the stable light receiving level Lb, it is determined that the light receiving level is in the stable region and accurately reflects the presence or absence of detection of the object, On the other hand, the light receiving level is stable and the light blocking level is L.
When it is higher than d and lower than the stable light input level, the light receiving level is in the unstable region, and it is judged that the presence or absence of the detection of the object is not accurately reflected, and the self-diagnosis signal is output. Specifically, when the light receiving level is in the unstable region, the predetermined time T
If it continues for 1 (for example, 0.3 seconds) or more, a self-diagnosis signal is output as shown in FIG. 5 (b) after a certain time T1 from the time of entering the unstable region, and immediately after the light receiving level goes out of the unstable region. It is designed to cancel the self-diagnosis signal. This configuration can be used regardless of active type or passive type.

【0006】また、図6(c)のような制御信号により
パルス光を投光しパルス光に同期して反射光や透過光を
受光する能動形の光電センサに用いるものでは、図6
(a)に示すように動作レベルLaに対して安定遮光レ
ベルLdと安定入光レベルLbとを設定しておき、パル
ス光の発生期間と非発生期間との一方での受光レベルが
安定遮光レベルLbと安定入光レベルLbとの間である
不安定領域であると、図6(b)のように受光素子での
受光レベルが不安定領域になった回数を計数し、その状
態がパルス光の投光毎に連続して規定回数(たとえば、
7回)発生すると、自己診断出力を発生する構成があ
る。
Further, in the case of an active type photoelectric sensor which projects pulsed light by a control signal as shown in FIG. 6C and receives reflected light or transmitted light in synchronization with the pulsed light, FIG.
As shown in (a), a stable light shielding level Ld and a stable light incident level Lb are set for the operation level La, and the light receiving level of one of the pulse light generation period and the non-generation period is the stable light shielding level. If it is an unstable region between Lb and the stable light input level Lb, the number of times the light receiving level of the light receiving element becomes the unstable region is counted as shown in FIG. For a specified number of times (for example,
When it occurs 7 times), there is a configuration in which a self-diagnosis output is generated.

【0007】[0007]

【発明が解決しようとする課題】前者では上記一定時間
T1が固定的に設定されているから、図5の右端に示し
ているように、検知物が上記一定時間T1よりも短い時
間で安定入光レベルLbと安定遮光レベルLdとの間を
通過すると、受光素子の受光レベルが不安定領域を通過
するにもかかわらず自己診断信号を発生することができ
ない場合がある。たとえば、移動する検知物では受光レ
ベルが時間とともに変化するから、不安定領域の通過を
検知できない場合がある。
In the former case, since the fixed time T1 is fixedly set, as shown in the right end of FIG. 5, the detected object is stably entered in a time shorter than the fixed time T1. When passing between the light level Lb and the stable light blocking level Ld, the self-diagnosis signal may not be generated even though the light receiving level of the light receiving element passes through the unstable region. For example, in a moving object, the light receiving level changes with time, and thus it may not be possible to detect passage through an unstable region.

【0008】また、図6に示した後者の従来構成では、
検出状態の変化が長時間起こらない楊合にはその変化が
所定回数発生しないと異常を出力できないので、異常の
発見が遅れ装置に大きな損害を与えることがある。さら
に、距離を測定する形式の光電センサでは、移動する検
知物について光ビームを照射している位置の反射率が変
化すると、所定の距離範囲内に存在している検知物でも
受光レベルが余裕光量レベルを超えなくなる場合があ
り、検知物までの距離が検知出力を発生すべき範囲であ
っても異常(不安定領域)と誤判断されることがある。
このような誤判断を避けるように余裕光量レベルを引き
下げると、光ビームの発光光量の低下や光学素子(レン
ズ)の汚れを正確に検出することができなくなる。
Further, in the latter conventional configuration shown in FIG. 6,
In the case where the change of the detection state does not occur for a long time, the abnormality cannot be output unless the change occurs a predetermined number of times, so that the discovery of the abnormality may be delayed and the device may be seriously damaged. Furthermore, in the photoelectric sensor of the type that measures the distance, if the reflectance of the moving detection object at the position where the light beam is radiated changes, the detection light level of the detection object existing within the predetermined distance range will be a marginal light amount. The level may not be exceeded, and even if the distance to the detected object is within the range in which the detection output should be generated, it may be erroneously determined to be abnormal (unstable region).
If the margin light amount level is lowered so as to avoid such an erroneous determination, it becomes impossible to accurately detect the decrease in the light emission amount of the light beam and the contamination of the optical element (lens).

【0009】本発明は上記事由に鑑みて為されたもので
あり、その目的は、検知物が停止しているときにはもち
ろんのこと、検知物が移動しているようなときでも受光
レベルが不安定領域になれば検知物の移動速度にかかわ
らず自己診断信号を確実に発生させることができる自己
診断機能を有する光電センサを提供することにある。
The present invention has been made in view of the above reasons, and its object is not only when the detected object is stopped, but also when the detected object is moving, the light receiving level is unstable. It is an object of the present invention to provide a photoelectric sensor having a self-diagnosis function that can surely generate a self-diagnosis signal regardless of the moving speed of a detected object in a region.

【0010】[0010]

【課題を解決するための手段】請求項1の発明は、監視
空間からの光を受光する受光手段と、受光手段の出力に
基づいて対象物を検知する処理手段とを備える光電セン
サにおいて、処理手段により対象物を検知できる最小の
受光レベル以下に設定された安定遮光レベルと受光手段
での受光レベルとを比較する第1の比較手段と、処理手
段が対象物を検知するに充分な受光レベル以上に設定さ
れた安定入光レベルと受光手段での受光レベルとを比較
する第2の比較手段と、受光手段での受光レベルが安定
遮光レベルよりも高く安定入光レベルよりも低い期間に
自己診断信号を出力する自己診断回路とを備え、自己診
断回路は、受光手段での受光レベルが安定遮光レベル以
下であるか安定入光レベル以上であるときに出力する第
1の出力値と第1の出力値とは異なる第2の出力値とを
設定された周期で交互に繰り返す矩形波信号であって、
上記期間の開始時点では第1の出力値を発生することを
特徴とする。
According to a first aspect of the present invention, there is provided a photoelectric sensor provided with a light receiving means for receiving light from a monitoring space and a processing means for detecting an object based on an output of the light receiving means. First comparing means for comparing the stable light-shielding level set below the minimum light-receiving level at which the object can be detected with the light-receiving level with the light-receiving means, and the light-receiving level sufficient for the processing means to detect the object. Second comparing means for comparing the stable light input level set above with the light receiving level of the light receiving means, and the self comparing device during the period when the light receiving level of the light receiving means is higher than the stable light blocking level and lower than the stable light receiving level. A self-diagnosis circuit for outputting a diagnostic signal, wherein the self-diagnosis circuit outputs a first output value and a first output value when the light-receiving level at the light-receiving means is below the stable light-shielding level or above the stable light-receiving level. The output value a rectangular wave signal that repeats alternately a set cycle time and different second output value,
The first output value is generated at the start of the period.

【0011】請求項2の発明は、請求項1の発明におい
て、自己診断回路より出力される自己診断信号の周期を
調節する周期調節手段を備えることを特徴とする。請求
項3の発明は、光ビームを監視空間に投光する投光手段
と、監視空間に存在する対象物による光ビームの反射光
を受光する受光手段と、受光手段で受光した反射光に基
づいて監視空間内に存在する対象物までの距離を演算す
る距離演算手段と、受光手段での受光レベルを距離演算
手段による演算が可能な最小レベルと比較する最小光量
判定手段と、受光手段での受光レベルを距離演算手段に
より距離を安定に演算することができる余裕レベルと比
較する余裕光量判定手段と、受光手段での受光レベルが
最小光量判定手段で最小レベルより高いと判断され且つ
余裕光量判定手段で余裕レベルよりも低いと判断された
期間に自己診断信号を出力する自己診断回路とからな
り、自己診断信号は、受光手段での受光レベルが最小レ
ベル以下であるか余裕レベル以上であるときに出力する
第1の出力値と第1の出力値とは異なる第2の出力値と
を設定された周期で交互に繰り返す矩形波信号であっ
て、上記期間の開始時点では第1の出力値を発生するこ
とを特徴とする。
According to a second aspect of the present invention, in the first aspect of the invention, there is provided a cycle adjusting means for adjusting the cycle of the self-diagnosis signal output from the self-diagnosis circuit. The invention according to claim 3 is based on the light projecting means for projecting the light beam into the monitoring space, the light receiving means for receiving the reflected light of the light beam by the object existing in the monitoring space, and the reflected light received by the light receiving means. Distance calculating means for calculating the distance to the object existing in the monitoring space, minimum light amount determining means for comparing the light receiving level of the light receiving means with the minimum level that can be calculated by the distance calculating means, and the light receiving means of the light receiving means. A margin light amount determining means for comparing the light receiving level with a margin level at which the distance can be stably calculated by the distance computing means, and a light receiving level at the light receiving means is judged to be higher than the minimum level by the minimum light amount judging means and a margin light amount is judged. The self-diagnosis circuit outputs a self-diagnosis signal during a period determined by the means to be lower than the margin level, and the self-diagnosis signal has a light-receiving level at the light-receiving means that is equal to or lower than the minimum level. A rectangular wave signal that alternately repeats a first output value and a second output value that is different from the first output value at a set cycle, when the margin level is exceeded, at the start time of the period. Then, the first output value is generated.

【0012】請求項4の発明は、請求項3の発明におい
て、自己診断回路より出力される自己診断信号の周期を
調節する周期調節手段を備えることを特徴とする。
According to a fourth aspect of the present invention, in the third aspect of the invention, there is provided a cycle adjusting means for adjusting the cycle of the self-diagnosis signal output from the self-diagnosis circuit.

【0013】[0013]

【作用】請求項1、3の発明の構成によれば、受光手段
での受光レベルが安定遮光レベル以下であるか安定入光
レベル以上であるときに出力する第1の出力値と第1の
出力値とは異なる第2の出力値とを設定された周期で交
互に繰り返す矩形波信号を自己診断信号として出力し、
受光レベルが安定遮光レベルより大きく安定入光レベル
より小さい不安定領域に入った時点では第1の出力値を
発生するから、受光レベルが不安定領域に入った時点で
は安定領域と同様の第1の出力値を発生し、矩形波信号
の周期に応じて決まる時間が経過した後に第2の出力値
が発生し、その後、受光レベルが不安定領域にある期間
は矩形波信号が出力され続ける。したがって、光学素子
(レンズ等)や光電素子(発光素子、受光素子)の汚
れ、劣化、光軸のずれなどの異常が生じたときには、自
己診断信号を外部に出力することができる。この自己診
断信号を用いて報知を行なえば、光電センサの異常や光
電センサを用いた装置の異常を報知することができる。
また、異常のないときには受光レベルが不安定領域を短
時間だけ通過しても第2の出力値を発生するに至らなけ
れば、安定領域と同じ第1の出力値を発生しているか
ら、異常のない通常の使用状態では不必要に自己診断信
号が発生することはない。
According to the first and third aspects of the invention, the first output value and the first output value output when the light receiving level of the light receiving means is below the stable light blocking level or above the stable light receiving level. A rectangular wave signal that alternately repeats a second output value different from the output value in a set cycle is output as a self-diagnosis signal,
The first output value is generated when the light receiving level enters the unstable region which is higher than the stable light blocking level and smaller than the stable light receiving level. Therefore, when the light receiving level enters the unstable region, the first output value similar to the stable region is generated. The second output value is generated after a time determined according to the cycle of the rectangular wave signal has elapsed, and then the rectangular wave signal is continuously output during the period when the light receiving level is in the unstable region. Therefore, when the optical element (lens or the like) or the photoelectric element (light emitting element, light receiving element) becomes dirty or deteriorates, or the optical axis is deviated, the self-diagnosis signal can be output to the outside. If the notification is performed using the self-diagnosis signal, it is possible to notify the abnormality of the photoelectric sensor or the abnormality of the device using the photoelectric sensor.
When there is no abnormality, if the light receiving level does not reach the second output value even after passing through the unstable region for a short time, the same first output value as in the stable region is generated. In a normal use condition without a signal, the self-diagnosis signal is not generated unnecessarily.

【0014】また、請求項3の発明の構成では、測距型
の光電センサにおいてこの構成を採用しているから、自
己診断信号が発生すれば距離を正確に測定するに足る光
量が得られていないことを知ることができ、検知物まで
の距離を正確に測定できるような対応をとることができ
る。請求項2、4の発明の構成によれば、自己診断回路
より出力される自己診断信号の周期を調節する周期調節
手段を備えるから、検知物の移動速度に応じて自己診断
信号の周期を調節することができ、検知物の状態に応じ
た周期に設定することで、検知物の移動速度によらず自
己診断信号を発生させて異常報知が行なえることにな
る。
Further, according to the third aspect of the invention, since this configuration is adopted in the distance measuring type photoelectric sensor, when the self-diagnosis signal is generated, the amount of light sufficient to accurately measure the distance is obtained. It is possible to know that there is no such thing, and it is possible to take measures to accurately measure the distance to the detected object. According to the configurations of claims 2 and 4, since the cycle adjusting means for adjusting the cycle of the self-diagnosis signal output from the self-diagnosis circuit is provided, the cycle of the self-diagnosis signal is adjusted according to the moving speed of the detected object. By setting the cycle according to the state of the detected object, it is possible to generate the self-diagnosis signal regardless of the moving speed of the detected object and notify the abnormality.

【0015】[0015]

【実施例】【Example】

(実施例1)本実施例は、図1に示すように、LEDな
いし半導体レーザよりなる発光素子11から投光レンズ
12を通して監視空間に検知光を照射し、監視空間内の
検知物1での反射光を受光レンズ22を通してフォトダ
イオードのような受光素子21で検出することにより、
監視空間内の物体の存否を検出する光電センサを例示す
る。発光素子11は、タイミング発生回路13から出力
される一定周期のタイミングパルスが駆動回路14を通
して供給されることにより、監視空間にパルス光を送出
する。また、受光素子21の出力は、増幅回路23を通
して光量判別回路24に入力される。光量判別回路24
では、タイミング発生回路13から出力されるタイミン
グパルスを用いることにより発光素子11からのパルス
光に同期した同期検波を行ない、発光素子11の投光時
と非投光時との受光素子21の出力を抽出する。さら
に、光量判別回路24には、従来の技術において説明し
た動作レベルに対して所定の割合だけ小さい安定遮光レ
ベルと、所定の割合だけ大きい安定入光レベルとが設定
され、発光素子11の非投光時における受光レベルが安
定遮光レベルと比較され、投光時における受光レベルが
安定入光レベルと比較される。つまり、光量判別回路2
4は、第1の比較手段と第2の比較手段とを備えてい
る。
(Embodiment 1) In this embodiment, as shown in FIG. 1, detection light is emitted from a light emitting element 11 composed of an LED or a semiconductor laser through a light projecting lens 12 into a monitoring space to detect an object 1 in the monitoring space. By detecting the reflected light through the light receiving lens 22 by the light receiving element 21 such as a photodiode,
A photoelectric sensor that detects the presence or absence of an object in the surveillance space is illustrated. The light emitting element 11 sends out pulsed light to the monitoring space by being supplied with timing pulses of a constant cycle output from the timing generation circuit 13 through the drive circuit 14. Further, the output of the light receiving element 21 is input to the light amount determination circuit 24 through the amplifier circuit 23. Light amount determination circuit 24
Then, by using the timing pulse output from the timing generation circuit 13, synchronous detection in synchronization with the pulsed light from the light emitting element 11 is performed, and the output of the light receiving element 21 when the light emitting element 11 is projecting and when not projecting. To extract. Further, the light quantity determination circuit 24 is set with a stable light-shielding level that is lower by a predetermined ratio and a stable light-incident level that is higher by a predetermined ratio than the operation level described in the prior art, and the light emitting element 11 is not projected. The light receiving level during light is compared with the stable light blocking level, and the light receiving level during light projection is compared with the stable light incident level. That is, the light amount determination circuit 2
Reference numeral 4 includes a first comparing means and a second comparing means.

【0016】受光レベルと安定遮光レベルとの比較結果
は、上記タイミングパルスに同期して安定遮光レベル判
別データラッチ回路31にラッチされ、受光レベルと安
定入光レベルとの比較結果は、タイミングパルスに同期
して安定入光レベル判別データラッチ回路32にラッチ
される。また、受光レベルは動作レベル判定回路33で
動作レベルと比較され、受光レベルが動作レベル以上で
あれば監視空間に検知物が存在すると判断されて出力回
路34に検知信号が出力される。
The comparison result of the light receiving level and the stable light shielding level is latched by the stable light shielding level discrimination data latch circuit 31 in synchronization with the timing pulse, and the comparison result of the light receiving level and the stable light receiving level is converted into a timing pulse. The data is latched by the stable light incident level determination data latch circuit 32 in synchronization. Further, the light receiving level is compared with the operation level in the operation level determination circuit 33, and if the light receiving level is equal to or higher than the operation level, it is determined that a detection object exists in the monitoring space, and a detection signal is output to the output circuit 34.

【0017】安定遮光レベル判別データラッチ回路31
および安定入光レベル判別データラッチ回路32の出力
結果は、それぞれ安定遮光判別回路35と安定入光判別
回路36とを通してHレベル(電源電圧)とLレベル
(0V)との2値信号として自己診断回路30に入力さ
れる。自己診断回路30は、HレベルとLレベルとを交
互に繰り返す所定周期の矩形波信号を自己診断信号とし
て出力する回路であって、安定遮光判別回路35の出力
により受光レベルが安定遮光レベルよりも高いことが示
され、かつ安定入光判別回路36の出力によって受光レ
ベルが安定入光レベルよりも低いことが示されたときに
上記自己診断信号を発生する。また、自己診断信号の周
期は、発振周期調節手段(可変抵抗器など)により、調
節可能になっている。自己診断信号は、安定遮光レベル
以上になるか安定入光レベル以下になった時点から発生
するが、その時点ではLレベル(受光レベルが安定遮光
レベル以下または安定入光レベル以上のときもLレベ
ル)になるようにしてある。したがって、自己診断信号
としての変化が生じるのは、自己診断信号の半周期後に
なる(説明を簡単にするために自己診断信号のデューテ
ィ比を50%に設定している)。自己診断信号は出力回
路37を通して外部に出力される。また、安定入光レベ
ルを超えているときには、LED駆動回路51を通して
発光ダイオードよりなる表示灯52を点灯させる。
Stable light shielding level discrimination data latch circuit 31
The output result of the stable light-incident level determination data latch circuit 32 is self-diagnosed as a binary signal of H level (power supply voltage) and L level (0 V) through the stable light-shielding determination circuit 35 and the stable light-incident determination circuit 36, respectively. It is input to the circuit 30. The self-diagnosis circuit 30 is a circuit that outputs a rectangular wave signal of a predetermined cycle that alternately repeats H level and L level as a self-diagnosis signal, and the light reception level is higher than the stable light shield level by the output of the stable light shield determination circuit 35. The self-diagnosis signal is generated when it is shown to be high and when the output of the stable incident light determination circuit 36 indicates that the received light level is lower than the stable incident light level. Further, the cycle of the self-diagnosis signal can be adjusted by the oscillation cycle adjusting means (variable resistor or the like). The self-diagnosis signal is generated from the time when it becomes equal to or higher than the stable light shielding level or becomes equal to or lower than the stable light incident level. ). Therefore, the change as the self-diagnosis signal occurs after a half cycle of the self-diagnosis signal (the duty ratio of the self-diagnosis signal is set to 50% for simplification of description). The self-diagnosis signal is output to the outside through the output circuit 37. When the stable light input level is exceeded, the LED drive circuit 51 is used to turn on the indicator lamp 52 formed of a light emitting diode.

【0018】上記構成によれば、図2に示すように、受
光レベルが安定入光レベルLb以上か安定遮光レベルL
d以下のとき(安定領域)には自己診断信号は発生せ
ず、安定入光レベルLbより低く、安定遮光レベルLd
よりも高いとき(不安定領域)には図2(b)のように
自己診断信号が出力される。また、受光レベルが不安定
領域から安定領域になれば、自己診断信号はただちに停
止する。自己診断信号の周期は可変であるから、検知物
の移動速度に応じて適宜に周期を設定すれば、図2の右
端部に示すように、反射率の変化などによって短時間だ
け不安定領域を横切ったとしても不要な自己診断信号が
出力されないようにしながらも、受光レベルが不安定領
域であれば短時間のうちに自己診断信号を出力すること
によって、検知物が比較的高速で移動している場合でも
自己診断信号を発生させることが可能になる。
According to the above construction, as shown in FIG. 2, the light receiving level is equal to or higher than the stable light receiving level Lb or the stable light blocking level L.
When d is less than or equal to (stable region), no self-diagnosis signal is generated, which is lower than the stable light incident level Lb and stable light shielding level Ld.
When it is higher than that (unstable region), a self-diagnosis signal is output as shown in FIG. When the light receiving level changes from the unstable region to the stable region, the self-diagnosis signal stops immediately. Since the cycle of the self-diagnosis signal is variable, if an appropriate cycle is set according to the moving speed of the object to be detected, as shown in the right end portion of FIG. Even if it crosses, while preventing unnecessary self-diagnosis signal from being output, if the received light level is in an unstable region, by outputting the self-diagnosis signal in a short time, the detected object moves at a relatively high speed. It is possible to generate the self-diagnosis signal even when there is.

【0019】(実施例2)本実施例は基本的には、実施
例1と同様の構成であるが、光電センサとして対象物1
までの距離を測定し、対象物1が所定距離範囲内に存在
するときに検知出力を発生するようにした測距型の光電
センサを示している。すなわち、図3に示すように、受
光素子として位置検知素子(PSD、2個のフォトダイ
オードを長手方向に配列したものなど)21’を用いて
いる。この種の位置検知素子21’は、受光レンズ22
を通して受光面に形成される光スポットの位置に応じて
比率の変化する2つの電流信号を出力する。両電流信号
はそれぞれ電流−電圧変換回路25a,25bを通して
位置判別回路26に入力される。位置判別回路26で
は、両信号に基づいて検知物1までの距離を求め、その
距離があらかじめ設定された距離範囲内か否かを判定す
る。つまり、位置判別回路26は距離演算手段として機
能する。この判定結果は、位置判別データラッチ回路4
1にラッチされる。また、両信号の一方の出力(一般に
は、信号値が小さくなるほうの信号)を光量判別回路2
7に入力し、タイミングパルスに同期させて最小レベル
および余裕レベルと比較する。すなわち、最小レベルは
発光素子11の非投光時に受光光量と比較され、余裕レ
ベルは発光素子の投光期間に比較される。位置検知素子
21’の一方の出力は受光光量を反映しているから、受
光光量が距離測定を正確に行なうことができる余裕レベ
ル以上であるか、距離測定が不可能な最小レベル以下で
あれば受光光量が安定領域にあるものとして、検知出力
の信頼性を保証することができる。また、受光光量が最
小レベルより大きく余裕レベルよりも小さいときには不
安定領域にあるものとして自己診断信号を出力させるの
である。このように光量判別回路27は、第1の比較手
段および第2の比較手段に兼用されている。
(Embodiment 2) This embodiment basically has the same structure as that of the first embodiment, but the object 1 is used as a photoelectric sensor.
2 shows a distance-measuring-type photoelectric sensor that measures a distance up to and generates a detection output when the object 1 is within a predetermined distance range. That is, as shown in FIG. 3, a position detecting element (PSD, two photodiodes arranged in the longitudinal direction, etc.) 21 'is used as a light receiving element. The position detecting element 21 ′ of this type includes a light receiving lens 22.
The two current signals whose ratio changes according to the position of the light spot formed on the light receiving surface are output. Both current signals are input to the position determination circuit 26 through the current-voltage conversion circuits 25a and 25b, respectively. In the position discriminating circuit 26, the distance to the detection object 1 is obtained based on both signals, and it is determined whether or not the distance is within a preset distance range. That is, the position determination circuit 26 functions as distance calculation means. This determination result is the position determination data latch circuit 4
Latched to 1. In addition, one of the outputs of the two signals (generally, the signal with the smaller signal value) is used as the light amount determination circuit 2
It is input to 7 and compared with the minimum level and the margin level in synchronization with the timing pulse. That is, the minimum level is compared with the received light amount when the light emitting element 11 is not projecting light, and the margin level is compared with the light projecting period of the light emitting element. Since one output of the position detecting element 21 'reflects the amount of received light, if the amount of received light is above a margin level at which distance measurement can be accurately performed or below a minimum level at which distance measurement is impossible. As long as the amount of received light is in the stable region, the reliability of the detection output can be guaranteed. Further, when the amount of received light is larger than the minimum level and smaller than the margin level, the self-diagnosis signal is output because it is in the unstable region. As described above, the light amount determination circuit 27 is also used as the first comparing means and the second comparing means.

【0020】光量判別回路27での受光光量と最小レベ
ルとの比較結果は最小レベル判別データラッチ回路42
にラッチされ、余裕レベルとの比較結果は余裕レベル判
別データラッチ回路43にラッチされる。上述した位置
判別データラッチ回路41によって検知物1までの距離
が設定された距離範囲内であることが示され、最小レベ
ル判別データラッチ回路42の出力によって受光光量が
距離測定に必要な最小レベル以上であることが示される
と、物体有無判別回路44は、検知物1が設定した距離
範囲内に存在すると判断して検知出力を出力回路45に
出力する。
The comparison result between the received light amount and the minimum level in the light amount determination circuit 27 is the minimum level determination data latch circuit 42.
The result of comparison with the allowance level is latched by the allowance level determination data latch circuit 43. It is shown by the position discrimination data latch circuit 41 that the distance to the detected object 1 is within the set distance range, and the output of the minimum level discrimination data latch circuit 42 causes the received light amount to be equal to or higher than the minimum level required for distance measurement. When it is indicated that, the object presence / absence determining circuit 44 determines that the detected object 1 exists within the set distance range and outputs a detection output to the output circuit 45.

【0021】余裕レベル判別データラッチ回路43にラ
ッチされているデータにより受光光量が余裕レベル以上
であり、かつ物体有無判別回路44から検知信号が出力
されていると余裕判別回路46が判断すると、LED駆
動回路51を通して発光ダイオードよりなる表示灯52
を点灯させる。また、余裕判別回路46で物体有無判別
回路44から検知出力が発生せず、かつ余裕レベル判別
データラッチ回路43で受光光量が余裕レベルを超えな
いと判断されるときには、受光光量が最小レベル以下で
あると判断してこのときにも表示灯52を点灯させる。
余裕判別回路46において受光光量が余裕レベル以下と
判断され、かつ物体有無検知判別回路44で検知物1が
検出されているときには、受光光量が最小レベル以上で
あるから、自己診断回路40において自己診断信号を出
力回路47に出力する。自己診断診断信号は実施例1に
示したものと同じであって、0Vと電源電圧とを交互に
繰り返す矩形波信号となる。自己診断回路40には発振
周期調節手段(可変抵抗器など)48が設けられ、自己
診断信号の周期が調節可能になっている。結局、受光光
量が最小レベル以上で余裕レベル以下のときに自己診断
信号が発生することになる。他の構成および動作は実施
例1と同様である。
When the margin discriminating circuit 46 determines that the amount of received light is equal to or larger than the margin level according to the data latched in the margin level discriminating data latch circuit 43 and the detection signal is output from the object presence / absence discriminating circuit 44, the LED Through the drive circuit 51, an indicator lamp 52 including a light emitting diode
Light up. When the margin determination circuit 46 does not generate the detection output from the object presence / absence determination circuit 44 and the margin level determination data latch circuit 43 determines that the received light amount does not exceed the margin level, the received light amount is equal to or less than the minimum level. It is determined that there is, and the indicator lamp 52 is turned on at this time as well.
When the amount of received light is determined to be less than or equal to the margin level in the margin determination circuit 46 and the object 1 is detected by the object presence / absence detection determination circuit 44, the amount of received light is equal to or greater than the minimum level, and therefore the self-diagnosis circuit 40 performs self-diagnosis The signal is output to the output circuit 47. The self-diagnosis diagnostic signal is the same as that shown in the first embodiment, and is a rectangular wave signal in which 0 V and the power supply voltage are alternately repeated. The self-diagnosis circuit 40 is provided with an oscillation cycle adjusting means (variable resistor or the like) 48 so that the cycle of the self-diagnosis signal can be adjusted. After all, the self-diagnosis signal is generated when the received light amount is above the minimum level and below the margin level. Other configurations and operations are the same as those of the first embodiment.

【0022】上記構成によって、図4に示す動作が可能
になる。すなわち、図4(a)は検知物1までの距離を
示し設定値DLに対して近い(上側)か遠い(下側)か
が位置判別回路26で判断される。物体有無検知判別回
路44では、この結果に基づいて検知物1が設定値DL
よりも近いときに図4(c)のような検知出力を発生す
る。また、光量判別回路27では、図4(b)のように
受光光量が最小レベルLlおよび余裕レベルLrと比較
される。上述のように、受光光量が最小レベルLlか余
裕レベルLr以上であれば図4(d)のように表示灯5
2を点灯させる。一方、受光光量が最小レベルLlより
大きく、余裕レベルLrよりも小さい不安定領域であっ
て、なおかつ検知出力が発生していると、図4(e)の
ように、自己診断信号を発生させるのである。
The above-described structure enables the operation shown in FIG. That is, FIG. 4A shows the distance to the detected object 1, and the position determination circuit 26 determines whether the distance is close (upper side) or far (lower side) with respect to the set value DL. In the object presence / absence detection determination circuit 44, the detected object 1 is set to the set value DL based on this result.
When it is closer than that, the detection output as shown in FIG. Further, in the light amount determination circuit 27, the received light amount is compared with the minimum level Ll and the margin level Lr as shown in FIG. As described above, if the amount of received light is equal to or greater than the minimum level Ll or the margin level Lr, the indicator lamp 5 as shown in FIG.
Turn on 2. On the other hand, in the unstable region where the received light amount is larger than the minimum level Ll and smaller than the margin level Lr, and the detection output is generated, the self-diagnosis signal is generated as shown in FIG. 4 (e). is there.

【0023】[0023]

【発明の効果】請求項1、3の発明は、受光手段での受
光レベルが安定遮光レベル以下であるか安定入光レベル
以上であるときに出力する第1の出力値と第1の出力値
とは異なる第2の出力値とを設定された周期で交互に繰
り返す矩形波信号を自己診断信号として出力し、受光レ
ベルが安定遮光レベルより大きく安定入光レベルより小
さい不安定領域に入った時点では第1の出力値を発生す
るから、受光レベルが不安定領域に入った時点では安定
領域と同様の第1の出力値を発生し、矩形波信号の周期
に応じて決まる時間が経過した後に第2の出力値が発生
し、その後、受光レベルが不安定領域にある期間は矩形
波信号が出力され続けるのであって、光学素子(レンズ
等)や光電素子(発光素子、受光素子)の汚れ、劣化、
光軸のずれなどの異常が生じたときには、自己診断信号
を外部に出力してただちに異常を報知することがことが
できるという利点がある。また、異常のないときには受
光レベルが不安定領域を短時間だけ通過しても第2の出
力値を発生するに至らなければ、安定領域と同じ第1の
出力値を発生しているから、異常のない通常の使用状態
では不必要に自己診断信号が発生することはない。
According to the first and third aspects of the present invention, the first output value and the first output value output when the light receiving level of the light receiving means is equal to or lower than the stable light shielding level or higher than the stable light incident level. When a rectangular wave signal that alternately repeats a second output value different from the above is output as a self-diagnosis signal as a self-diagnosis signal, and when the received light level is higher than the stable light-shielding level and smaller than the stable light-receiving level, it enters an unstable region. Since the first output value is generated, the first output value similar to that in the stable region is generated at the time when the light receiving level enters the unstable region, and after the time determined according to the cycle of the rectangular wave signal elapses. The second output value is generated, and thereafter, the rectangular wave signal is continuously output during the period in which the light receiving level is in the unstable region, and the optical element (lens or the like) or the photoelectric element (light emitting element, light receiving element) is contaminated. ,deterioration,
When an abnormality such as a deviation of the optical axis occurs, there is an advantage that a self-diagnosis signal can be output to the outside to immediately notify the abnormality. When there is no abnormality, if the light receiving level does not reach the second output value even after passing through the unstable region for a short time, the same first output value as in the stable region is generated. In a normal use condition without a signal, the self-diagnosis signal is not generated unnecessarily.

【0024】また、請求項3の発明では、測距型の光電
センサにおいてこの構成を採用しているから、自己診断
信号が発生すれば距離を正確に測定するに足る光量が得
られていないことを知ることができ、検知物までの距離
を正確に測定できるような対応をとることができるとい
う利点がある。請求項2、4の発明は、自己診断回路よ
り出力される自己診断信号の周期を調節する周期調節手
段を備えるから、検知物の移動速度に応じて自己診断信
号の周期を調節することができ、検知物の状態に応じた
周期に設定することで、検知物の移動速度によらず自己
診断信号を発生させて異常報知が行なえるという利点を
有する。
Further, according to the invention of claim 3, since this structure is adopted in the distance measuring type photoelectric sensor, if the self-diagnosis signal is generated, the amount of light sufficient to accurately measure the distance is not obtained. It is possible to take a measure so that the distance to the detected object can be accurately measured. Since the invention according to claims 2 and 4 includes the cycle adjusting means for adjusting the cycle of the self-diagnosis signal output from the self-diagnosis circuit, the cycle of the self-diagnosis signal can be adjusted according to the moving speed of the detected object. By setting the cycle according to the state of the detected object, there is an advantage that the self-diagnosis signal can be generated to notify the abnormality regardless of the moving speed of the detected object.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1を示すブロック図である。FIG. 1 is a block diagram showing a first embodiment.

【図2】実施例1の動作説明図である。FIG. 2 is an operation explanatory diagram of the first embodiment.

【図3】実施例2を示すブロック図である。FIG. 3 is a block diagram showing a second embodiment.

【図4】実施例2の動作説明図である。FIG. 4 is an operation explanatory diagram of the second embodiment.

【図5】従来例の動作説明図である。FIG. 5 is an operation explanatory diagram of a conventional example.

【図6】他の従来例の動作説明図である。FIG. 6 is an operation explanatory diagram of another conventional example.

【符号の説明】 1 検知物 11 発光素子 12 投光レンズ 21 受光素子 22 受光レンズ 24 光量判別回路 26 位置判別回路 27 光量判別回路 30 自己診断回路 33 動作レベル判定回路 38 発振周期調節手段 40 自己診断回路 44 物体有無判別回路 46 余裕判別回路 48 発振周期調節手段[Explanation of reference numerals] 1 detection object 11 light emitting element 12 light emitting lens 21 light receiving element 22 light receiving lens 24 light amount determination circuit 26 position determination circuit 27 light amount determination circuit 30 self-diagnosis circuit 33 operation level determination circuit 38 oscillation cycle adjusting means 40 self-diagnosis Circuit 44 Object presence / absence determination circuit 46 Margin determination circuit 48 Oscillation cycle adjusting means

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H03K 17/78 9108−2F G01S 17/88 A ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location H03K 17/78 9108-2F G01S 17/88 A

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 監視空間からの光を受光する受光手段
と、受光手段の出力に基づいて対象物を検知する処理手
段とを備える光電センサにおいて、処理手段により対象
物を検知できる最小の受光レベル以下に設定された安定
遮光レベルと受光手段での受光レベルとを比較する第1
の比較手段と、処理手段が対象物を検知するに充分な受
光レベル以上に設定された安定入光レベルと受光手段で
の受光レベルとを比較する第2の比較手段と、受光手段
での受光レベルが安定遮光レベルよりも高く安定入光レ
ベルよりも低い期間に自己診断信号を出力する自己診断
回路とを備え、自己診断回路は、受光手段での受光レベ
ルが安定遮光レベル以下であるか安定入光レベル以上で
あるときに出力する第1の出力値と第1の出力値とは異
なる第2の出力値とを設定された周期で交互に繰り返す
矩形波信号であって、上記期間の開始時点では第1の出
力値を発生することを特徴とする自己診断機能を有する
光電センサ。
1. A photoelectric sensor having a light receiving means for receiving light from a monitoring space and a processing means for detecting an object based on an output of the light receiving means, wherein a minimum light receiving level at which the processing means can detect the object. A first comparing the stable light shielding level set below with the light receiving level of the light receiving means
Comparing means, the second comparing means for comparing the light receiving level at the light receiving means with the stable light receiving level set above the light receiving level sufficient for the processing means to detect the object, and the light receiving at the light receiving means. It has a self-diagnosis circuit that outputs a self-diagnosis signal during a period when the level is higher than the stable light-shielding level and lower than the stable light-incident level. A rectangular wave signal that alternately repeats a first output value and a second output value that is different from the first output value at a light incident level or higher at a set cycle, and starts the above period. A photoelectric sensor having a self-diagnosis function, which is characterized by generating a first output value at a time point.
【請求項2】 自己診断回路より出力される自己診断信
号の周期を調節する周期調節手段を備えることを特徴と
する請求項1記載の自己診断機能を有する光電センサ。
2. The photoelectric sensor having a self-diagnosis function according to claim 1, further comprising a cycle adjusting means for adjusting a cycle of a self-diagnosis signal output from the self-diagnosis circuit.
【請求項3】 光ビームを監視空間に投光する投光手段
と、監視空間に存在する対象物による光ビームの反射光
を受光する受光手段と、受光手段で受光した反射光に基
づいて監視空間内に存在する対象物までの距離を演算す
る距離演算手段と、距離演算手段による演算が可能な最
小レベルと受光手段での受光レベルを比較する最小光量
判定手段と、距離演算手段により距離を安定に演算する
ことができる余裕レベルと受光手段での受光レベルを比
較する余裕光量判定手段と、受光手段での受光レベルが
最小レベルより高く余裕レベルよりも低い期間に自己診
断信号を出力する自己診断回路とからなり、自己診断信
号は、受光手段での受光レベルが最小レベル以下である
か余裕レベル以上であるときに出力する第1の出力値と
第1の出力値とは異なる第2の出力値とを設定された周
期で交互に繰り返す矩形波信号であって、上記期間の開
始時点では第1の出力値を発生することを特徴とする自
己診断機能を有する光電センサ。
3. A light projecting means for projecting a light beam into a monitoring space, a light receiving means for receiving reflected light of the light beam by an object existing in the monitoring space, and monitoring based on the reflected light received by the light receiving means. Distance calculating means for calculating the distance to the object existing in the space, minimum light amount determining means for comparing the minimum level that can be calculated by the distance calculating means and the light receiving level of the light receiving means, and the distance calculating means for calculating the distance. A margin light amount determination means for comparing the margin level that can be stably calculated with the light reception level at the light receiving means, and a self-diagnosis signal that outputs a self-diagnosis signal when the light reception level at the light receiving means is higher than the minimum level and lower than the margin level The self-diagnosis signal is different from the first output value and the first output value output when the light-receiving level of the light-receiving means is below the minimum level or above the margin level. A photoelectric sensor having a self-diagnosis function, which is a rectangular wave signal which alternately repeats the following second output value at a set cycle, and generates the first output value at the start of the period.
【請求項4】 自己診断回路より出力される自己診断信
号の周期を調節する周期調節手段を備えることを特徴と
する請求項3記載の自己診断機能を有する光電センサ。
4. A photoelectric sensor having a self-diagnosis function according to claim 3, further comprising cycle adjusting means for adjusting a cycle of a self-diagnosis signal output from the self-diagnosis circuit.
JP7100843A 1995-04-25 1995-04-25 Photoelectric sensor having self-diagnostic function Withdrawn JPH08292260A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7100843A JPH08292260A (en) 1995-04-25 1995-04-25 Photoelectric sensor having self-diagnostic function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7100843A JPH08292260A (en) 1995-04-25 1995-04-25 Photoelectric sensor having self-diagnostic function

Publications (1)

Publication Number Publication Date
JPH08292260A true JPH08292260A (en) 1996-11-05

Family

ID=14284608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7100843A Withdrawn JPH08292260A (en) 1995-04-25 1995-04-25 Photoelectric sensor having self-diagnostic function

Country Status (1)

Country Link
JP (1) JPH08292260A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002054105A1 (en) * 2000-12-27 2002-07-11 Fujitsu Ten Limited Pavement detector and vertical axial shift detector of on board radar
JP2003510578A (en) * 1999-09-21 2003-03-18 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング State identification method and apparatus in an automatic longitudinal and / or lateral control system of a vehicle
JP2005535052A (en) * 2002-08-01 2005-11-17 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Method for monitoring at least one sensor
JP2016125898A (en) * 2014-12-26 2016-07-11 富士通株式会社 Laser ranging apparatus, laser ranging method and laser ranging program

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003510578A (en) * 1999-09-21 2003-03-18 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング State identification method and apparatus in an automatic longitudinal and / or lateral control system of a vehicle
WO2002054105A1 (en) * 2000-12-27 2002-07-11 Fujitsu Ten Limited Pavement detector and vertical axial shift detector of on board radar
JP2002202360A (en) * 2000-12-27 2002-07-19 Fujitsu Ten Ltd Vertical axial deviation detector of onboard radar
US6896082B2 (en) 2000-12-27 2005-05-24 Fujitsu Ten Limited Road surface detection apparatus and apparatus for detecting upward/downward axis displacement of vehicle-mounted radar
JP2005535052A (en) * 2002-08-01 2005-11-17 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Method for monitoring at least one sensor
JP2016125898A (en) * 2014-12-26 2016-07-11 富士通株式会社 Laser ranging apparatus, laser ranging method and laser ranging program

Similar Documents

Publication Publication Date Title
US6226076B1 (en) Distance measuring apparatus using pulse light
US7532312B2 (en) Radar apparatus
US5187361A (en) Object detection apparatus of the photoelectric reflection type with sampled data
US6288775B1 (en) Lightwave distance measuring apparatus and method
JP2008070159A (en) Scanning range finder
JPH10227857A (en) Optical range finder
GB2275841A (en) Optoelectric distance measuring equipment
US6587185B1 (en) Distance measuring apparatus
JP2008111855A (en) Scanning range finder
JPH08292260A (en) Photoelectric sensor having self-diagnostic function
JPH09318736A (en) Distance measuring apparatus
KR100335597B1 (en) Apparatus and method for measuring optical distance
JPH11352226A (en) Highly accurate distance-measuring apparatus
JP2001043482A (en) Device for detecting vehicle
JP3090354B2 (en) Distance measuring intruder detector
JP3183592B2 (en) Distance measuring device
JPH06109842A (en) Distance detection apparatus
JPH07248374A (en) Distance measuring device
JP2680243B2 (en) Distance measuring device
JPS629212A (en) Range finding device using semiconductor light position detecting element
JP2696980B2 (en) Distance measuring device
JP2743038B2 (en) Underwater distance measuring device using laser light
JP2544733B2 (en) Photoelectric switch
JPH0763856A (en) Obstacle detector for vehicle
JPH07191143A (en) Distance measuring device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020702