JPH08285777A - Faint light measuring apparatus - Google Patents

Faint light measuring apparatus

Info

Publication number
JPH08285777A
JPH08285777A JP8686695A JP8686695A JPH08285777A JP H08285777 A JPH08285777 A JP H08285777A JP 8686695 A JP8686695 A JP 8686695A JP 8686695 A JP8686695 A JP 8686695A JP H08285777 A JPH08285777 A JP H08285777A
Authority
JP
Japan
Prior art keywords
sample
light
temperature
sample container
weak
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8686695A
Other languages
Japanese (ja)
Inventor
Katsu Motosawa
克 本澤
Hiroe Satou
洋江 佐藤
Masami Sugie
正美 杉江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP8686695A priority Critical patent/JPH08285777A/en
Publication of JPH08285777A publication Critical patent/JPH08285777A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To measure the quantity of faint light emitted from a biological sample with high sensitivity by setting the upper surface temperature of a sample case higher than the lower surface temperature and measuring quantity of light emitted from the sample by means of a light quantity sensor. CONSTITUTION: A plurality of laboratory dishes 30 containing sterilized water and a biological sample are set in the recesses of a rotary stage 20 and then the door of a sample chamber 10 is closed to bring about dark room state. Based on a command delivered from a controller/processor 70, a temperature regulator 41 heats up the upper surface of the laboratory dish 30 by means of a silicon rubber heater 40 depending on the temperature measured by means of a temperature sensor 60 thus setting the upper surface temperature higher by 0.1-1 deg.C than the lower surface temperature. Subsequently, the controller 70 controls a pulse motor 21 to turn the stage 20 thus transferring the laboratory dishes 30 sequentially under the light receiving surface of a photomultiplier 50. When the the laboratory dishes 30 containing the sample is arranged under the photomultiplier 50, the controller 70 commands an electromagnetic shutter 50 to open for a predetermined time and the quantity of faint light emitted from the sample is measured by means of the photomultiplier 50 and a photocounter 53 thus measuring a faint light accurately with high sensitivity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、生体試料が発する微弱
光を測定する技術に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for measuring weak light emitted from a biological sample.

【0002】[0002]

【従来の技術】従来、生体試料から発する微弱発光を観
察するための装置として、特開平6−315320に開
示されている装置が知られている。これは、例えば病原
微生物が植物体内に侵入した時に該植物が積極的に防御
反応を行いその結果として該直物から発する微弱発光を
測定する為の装置である。
2. Description of the Related Art Conventionally, as a device for observing weak light emission emitted from a biological sample, a device disclosed in Japanese Patent Laid-Open No. 6-315320 is known. This is an apparatus for measuring the faint luminescence emitted from the spot, as a result of which the plant actively performs a protective reaction when a pathogenic microorganism invades the plant.

【0003】この装置は、雑菌が混入して生体試料が汚
染されるのを防ぎ更に生体試料が乾燥するのを防止する
為に蓋が透明の密閉された試料容器に生体試料を入れ、
内部が暗室の試料室内に当該試料容器を置き、生体試料
が発する微弱光が試料容器の透明な蓋を透過して試料容
器外部にある光量センサに到達した光の光量を測定する
ものである。
This device puts a biological sample in a sealed sample container with a transparent lid in order to prevent contamination of the biological sample due to contamination by bacteria and further to prevent the biological sample from drying.
The sample container is placed inside a dark chamber, and the weak light emitted from the biological sample is transmitted through the transparent lid of the sample container to reach the light amount sensor outside the sample container to measure the amount of light.

【0004】又、図7に示す装置が、試料室内に置かれ
た試料容器の中の生体試料を観察する為の装置として、
「特開昭60−137279」に開示されている。この
装置は、試料室1の壁面に設けられた透明窓2の近傍に
加熱器3を設けて透明窓2の結露を防止して、試料室1
の外部に設けられた顕微鏡等5で透明窓2を通して試料
室1内の試料容器4の中の生体試料を観察する装置であ
る。
The apparatus shown in FIG. 7 is used as an apparatus for observing a biological sample in a sample container placed in the sample chamber.
It is disclosed in JP-A-60-137279. In this device, a heater 3 is provided in the vicinity of the transparent window 2 provided on the wall surface of the sample chamber 1 to prevent dew condensation on the transparent window 2,
This is an apparatus for observing a biological sample in a sample container 4 in a sample chamber 1 through a transparent window 2 with a microscope 5 provided outside the.

【0005】[0005]

【発明が解決しようとする課題】特開平6−31532
0に開示されている装置では、一般に生体試料は水分を
多く含んでいるので、試料容器内壁に結露が生ずること
がある。試料容器内壁に結露が付着した場合には、生体
試料から発した微弱光がこの結露に吸収、散乱されて、
試料容器外部に透過して光量センサに到達する光の光量
が弱まるので、生体試料から発した微弱光の光量を光量
センサで効率よく測定できないという問題点があった。
[Patent Document 1] Japanese Unexamined Patent Publication No. 6-31532
In the apparatus disclosed in No. 0, since the biological sample generally contains a large amount of water, dew condensation may occur on the inner wall of the sample container. When condensation adheres to the inner wall of the sample container, the weak light emitted from the biological sample is absorbed and scattered by this condensation,
Since the amount of light that passes through the outside of the sample container and reaches the light amount sensor is weakened, there is a problem that the amount of weak light emitted from the biological sample cannot be efficiently measured by the light amount sensor.

【0006】特に、生体試料の生育条件を保つことを目
的として試料台を温めることにより間接的に生体試料を
温める時には、生体試料よりも試料容器の蓋が低温にな
り、試料容器内壁に結露が生じ易い。更に、試料台を温
める場合には、その試料台からの輻射光をも光量センサ
が受光することとなり、生体試料から発した微弱光の光
量測定に際してこの輻射光はノイズとなるので、生体試
料から発した微弱光の光量を光量センサで精度よく測定
できないという問題点があった。
In particular, when the biological sample is indirectly heated by warming the sample table for the purpose of maintaining the growth condition of the biological sample, the lid of the sample container becomes lower in temperature than the biological sample, and dew condensation occurs on the inner wall of the sample container. It is easy to occur. Further, when the sample table is heated, the light amount sensor also receives the radiant light from the sample table, and this radiant light becomes noise when measuring the light amount of the weak light emitted from the biological sample. There is a problem that the amount of weak light emitted cannot be accurately measured by the light amount sensor.

【0007】図7に示した装置では、試料室1の壁面に
設けられた透明窓2の結露を防止することはできるが、
試料容器4の内壁の結露に対しては何等対策がなされて
いないので、試料容器4内の生体試料を光学的な手法で
観察あるいは評価を有効に行うことはできないという問
題点がある。又、本装置は、試料容器4内の生体試料を
顕微鏡等5で観察するものであって、透明窓2を通じて
外部から光が入り込むことから、試料容器4内の生体試
料から発する微弱光を測定するには適さない。
In the apparatus shown in FIG. 7, it is possible to prevent dew condensation on the transparent window 2 provided on the wall surface of the sample chamber 1, but
Since no measures are taken against the dew condensation on the inner wall of the sample container 4, there is a problem that the biological sample in the sample container 4 cannot be effectively observed or evaluated by an optical method. In addition, this device is for observing a biological sample in the sample container 4 with a microscope 5 or the like, and since light enters from the outside through the transparent window 2, weak light emitted from the biological sample in the sample container 4 is measured. Not suitable for.

【0008】本発明は、上記問題点を解消する為になさ
れたものであり、生体試料が発した微弱光の光量を高感
度かつ高精度に測定する微弱光測定装置を提供すること
を目的とする。
The present invention has been made to solve the above problems, and an object of the present invention is to provide a weak light measuring device for measuring the light amount of weak light emitted from a biological sample with high sensitivity and accuracy. To do.

【0009】[0009]

【課題を解決するための手段】本発明に係る微弱光測定
装置は、透明な蓋を有する試料容器に入れた試料が発す
る光を測定する微弱光測定装置であって、(1)前記試
料容器の下面に対して前記試料容器の上面の温度を高く
設定する温度設定器と、(2)前記試料容器の上方に配
され、受光面で前記試料容器内の試料から発する光の光
量を測定する光量センサと、(3)前記試料容器と前記
光量センサの受光面とをその内部に含む密封可能な試料
室とを備えることを特徴とする。
The weak light measuring device according to the present invention is a weak light measuring device for measuring the light emitted from a sample placed in a sample container having a transparent lid. A temperature setting device for setting the temperature of the upper surface of the sample container higher than the lower surface of the sample container; and (2) arranged above the sample container to measure the amount of light emitted from the sample in the sample container at the light receiving surface. A light quantity sensor, and (3) a sealable sample chamber that includes the sample container and a light receiving surface of the light quantity sensor therein.

【0010】前記温度設定器は、それからの輻射光が
前記光量センサの受光面に到達しない位置に配された、
前記試料容器の上面を加熱する加熱器を備えてもよい
し、前記試料容器の下面を冷却する冷却器を備えても
よいし、それからの輻射光が前記光量センサの受光面
に到達しない位置に配された、前記試料容器の上面を加
熱する加熱器と、前記試料容器の下面を冷却する冷却器
とを共にを備えてもよい。
The temperature setting device is arranged at a position where radiant light from the temperature setting device does not reach the light receiving surface of the light amount sensor,
A heater for heating the upper surface of the sample container may be provided, or a cooler for cooling the lower surface of the sample container may be provided, and the radiant light therefrom may not reach the light receiving surface of the light amount sensor. A heater for heating the upper surface of the sample container and a cooler for cooling the lower surface of the sample container may both be provided.

【0011】又、前記温度設定器は、前記試料容器の
上面温度、下面温度または前記試料容器が置かれた位置
の近傍の温度を測定する温度センサと、前記温度セン
サによる温度情報を基に前記試料容器の下面に対して前
記試料容器の上面の温度を高く維持する制御手段とを更
に備えてもよい。
Further, the temperature setting device measures the upper surface temperature, the lower surface temperature of the sample container or the temperature in the vicinity of the position where the sample container is placed, and based on the temperature information from the temperature sensor, A control means for maintaining the temperature of the upper surface of the sample container higher than the lower surface of the sample container may be further provided.

【0012】又、前記光量センサは光電子増倍管を備
え、光子計数法により光量を測定してもよい。
The light quantity sensor may be equipped with a photomultiplier tube and the light quantity may be measured by a photon counting method.

【0013】又、本発明に係る微弱光測定装置は、複
数の前記試料容器を載置する試料台と、前記光量セン
サと前記試料台との相対的位置関係を変更し、複数の前
記試料容器のそれぞれを前記測定位置に順次配置する搬
送手段と、前記光量センサに対して測定位置にある試
料容器中の試料が発する光の光量のみを前記光量センサ
の受光面に到達させる遮光手段とを更に備えてもよい。
Further, the weak light measuring apparatus according to the present invention changes the relative positional relationship between the sample stage on which the plurality of sample containers are mounted and the light amount sensor and the sample stage to change the plurality of sample containers. A transporting means for sequentially arranging each of them in the measurement position, and a light shielding means for causing only the light amount of the light emitted by the sample in the sample container at the measurement position with respect to the light amount sensor to reach the light receiving surface of the light amount sensor. You may prepare.

【0014】又、この場合、前記温度設定器は、前記試
料台を介して前記試料容器の下面を冷却する冷却器を備
えてもよい。
Further, in this case, the temperature setting device may include a cooler for cooling the lower surface of the sample container via the sample table.

【0015】[0015]

【作用】本発明の微弱光測定装置では、先ず、測定対象
となる試料、例えば生体試料が入れられた試料容器が試
料室内に置かれる。この時、試料容器は光量センサに対
する測定位置に配置される。試料室の扉が閉じられ試料
室内は密閉状態になる。密閉された状態では試料室内は
暗室となる。
In the weak light measuring device of the present invention, first, a sample container, in which a sample to be measured, for example, a biological sample, is placed is placed in the sample chamber. At this time, the sample container is placed at the measurement position for the light amount sensor. The sample chamber door is closed and the sample chamber is sealed. In the sealed state, the sample chamber becomes a dark room.

【0016】次に、温度設定器により試料容器上面が加
熱または試料容器下面が冷却される。これに際して、試
料容器内の生体試料は所定温度、例えば培養温度に維持
され、又、試料容器上面の温度は試料容器下面の温度よ
り高く設定される。これにより試料容器の上面内壁に結
露を生じることはない。
Then, the temperature setter heats the upper surface of the sample container or cools the lower surface of the sample container. At this time, the biological sample in the sample container is maintained at a predetermined temperature, for example, the culture temperature, and the temperature of the upper surface of the sample container is set higher than the temperature of the lower surface of the sample container. This prevents dew condensation on the inner wall of the upper surface of the sample container.

【0017】この試料容器内の生体試料から発した微弱
光が試料容器の透明な上面を透過して、その上方にある
光量センサの受光面に到達し、光量が光量センサで測定
される。
The faint light emitted from the biological sample in the sample container passes through the transparent upper surface of the sample container and reaches the light receiving surface of the light amount sensor above it, and the light amount is measured by the light amount sensor.

【0018】尚、試料容器の上面と下面それぞれの温度
を所定値に保持する為に、加熱器により試料容器の上
面を加熱する。又は、冷却器により試料容器の下面を
冷却する。又は、加熱器により試料容器の上面を加熱
すると共に、冷却器により試料容器の下面を冷却する。
試料容器上面の加熱と試料容器下面の冷却を同時に行う
ことなく、場合により使い分けてもよい。
The upper surface of the sample container is heated by a heater in order to maintain the temperatures of the upper surface and the lower surface of the sample container at predetermined values. Alternatively, the lower surface of the sample container is cooled by a cooler. Alternatively, the upper surface of the sample container is heated by the heater and the lower surface of the sample container is cooled by the cooler.
The upper surface of the sample container and the lower surface of the sample container may not be simultaneously heated, but may be selectively used depending on the case.

【0019】尚、加熱器により試料容器の上面が加熱さ
れる時、加熱器からの輻射光は光量センサの受光面に達
しない構造としてあるので、加熱器からの輻射光が光量
測定に悪影響を与えることはない。
When the upper surface of the sample container is heated by the heater, the radiant light from the heater does not reach the light receiving surface of the light quantity sensor, so that the radiant light from the heater has a bad influence on the light quantity measurement. Never give.

【0020】試料容器の上面温度、下面温度または試料
台の温度が温度センサで測定され、そこで得られた温度
情報に基づいて加熱器により試料容器上面を加熱、又
は、冷却器により試料容器の下面を冷却すると、試料容
器内の生体試料の培養温度を所定値に維持しつつ、培養
温度より試料容器の上面の温度を高く設定することが安
定性よく行える。
The upper surface temperature, the lower surface temperature of the sample container or the temperature of the sample table is measured by a temperature sensor, and the upper surface of the sample container is heated by a heater or the lower surface of the sample container by a cooler based on the temperature information obtained there. By cooling, the temperature of the upper surface of the sample container can be set higher than the culture temperature with good stability while maintaining the culture temperature of the biological sample in the sample container at a predetermined value.

【0021】光量センサの測定ヘッドとして光電子増倍
管を用いて光子計数法により光量を測定すれば、生体試
料から発し透明な試料容器の上面を透過して受光面に達
した微弱光を高感度に測定することができる。
When the light quantity is measured by the photon counting method using a photomultiplier tube as the measuring head of the light quantity sensor, the weak light emitted from the biological sample and transmitted through the upper surface of the transparent sample container and reaching the light receiving surface is highly sensitive. Can be measured.

【0022】複数の生体試料を評価したい場合には、複
数の試料容器を載置するための試料台を試料室内に備え
る。生体試料が複数の試料容器それぞれに入れられて、
これら試料容器が試料台の所定位置に配置される。搬送
手段により光量センサまたは試料台が移動し、光量セン
サに対する測定位置にそれぞれの試料容器が順次配置さ
れ、その測定位置にある試料容器内の生体試料から発す
る微弱光が光量センサで測定される。この時、測定位置
にある試料容器内の生体試料から発する微弱光のみが測
定される。
When it is desired to evaluate a plurality of biological samples, a sample table for mounting a plurality of sample containers is provided in the sample chamber. A biological sample is placed in each of a plurality of sample containers,
These sample containers are arranged at predetermined positions on the sample table. The light quantity sensor or the sample table is moved by the conveying means, the respective sample containers are sequentially arranged at the measurement positions with respect to the light quantity sensor, and the weak light emitted from the biological sample in the sample container at the measurement position is measured by the light quantity sensor. At this time, only weak light emitted from the biological sample in the sample container at the measurement position is measured.

【0023】この場合には、冷却器により試料台を冷却
することによっても、試料台の上に載置されている試料
容器の下面が間接的に冷却される。
In this case, the lower surface of the sample container placed on the sample table is also indirectly cooled by cooling the sample table with the cooler.

【0024】[0024]

【実施例】以下、添付図面を参照して本発明の実施例を
詳細に説明する。尚、図面の説明において同一の要素に
は同一の符号を付し、重複する説明を省略する。
Embodiments of the present invention will now be described in detail with reference to the accompanying drawings. In the description of the drawings, the same elements will be denoted by the same reference symbols, without redundant description.

【0025】(第1の実施例)図1は、本発明の第1の
実施例に係る微弱光測定装置の構成図である。又、図2
は、本発明の第1の実施例に係る微弱光測定装置の一部
断面図である。これらの図に示した実施例に係る微弱光
測定装置は略一定温度に維持された部屋の中に置かれ測
定に供され、その部屋の室温よりも生体試料の培養設定
温度が高い場合に有用なものである。
(First Embodiment) FIG. 1 is a block diagram of a weak light measuring apparatus according to a first embodiment of the present invention. Moreover, FIG.
FIG. 3 is a partial cross-sectional view of the weak light measurement device according to the first embodiment of the present invention. The weak light measurement device according to the embodiment shown in these figures is placed in a room maintained at a substantially constant temperature for measurement, and is useful when the culture set temperature of the biological sample is higher than the room temperature of the room. It is something.

【0026】試料室10は密封可能な暗室であって、円
盤型の回転ステージ20をその内部に含み、回転ステー
ジ20上にシャーレ30を載置することができる。試料
室10の上面内壁には、シリコンラバーヒータ40が設
置される。又、試料室10の上面には光電子増倍管50
の受光面が下方を向いて設置される。
The sample chamber 10 is a dark chamber which can be sealed, and includes a disk-shaped rotary stage 20 therein, and a Petri dish 30 can be placed on the rotary stage 20. A silicon rubber heater 40 is installed on the inner wall of the upper surface of the sample chamber 10. Further, a photomultiplier tube 50 is provided on the upper surface of the sample chamber 10.
The light-receiving surface of is installed facing downward.

【0027】試料室下部筺体11は、試料室10の下部
にあって、回転ステージ20を回転させるためのパルス
モータ21と、シリコンラバーヒータ40を制御する温
度調整器41をその内部に含む。
The lower chamber 11 of the sample chamber is located below the sample chamber 10 and includes a pulse motor 21 for rotating the rotary stage 20 and a temperature controller 41 for controlling the silicon rubber heater 40 therein.

【0028】制御処理装置(例えば、パーソナルコンピ
ュータ)70は、試料室10および試料室下部筺体11
とは別に設けられる。
The control processing device (for example, a personal computer) 70 includes a sample chamber 10 and a lower chamber 11 of the sample chamber.
It is provided separately from.

【0029】回転ステージ20はパルスモータ21の回
転に従い回転する。回転ステージ20の上面には遮光手
段として回転中心から等距離に複数の凹部形状を有す
る。これらの凹部にはシャーレ30が納められる。回転
ステージ20の上面には温度センサ60が設けられる。
The rotary stage 20 rotates as the pulse motor 21 rotates. The upper surface of the rotary stage 20 has a plurality of recessed portions as light-shielding means equidistant from the rotation center. The petri dish 30 is housed in these recesses. A temperature sensor 60 is provided on the upper surface of the rotary stage 20.

【0030】シャーレ30は、その中に生体試料を入れ
た後、回転ステージ20の凹部に置かれる。シャーレ3
0の蓋は透明であり、シャーレ30に入れられた生体試
料から発する光の一部はその透明蓋を透過して上方に向
かう。
The petri dish 30 is placed in the concave portion of the rotary stage 20 after the biological sample is put therein. Petri dish 3
The lid of No. 0 is transparent, and a part of the light emitted from the biological sample put in the dish 30 passes through the transparent lid and goes upward.

【0031】回転ステージ20の凹部に置かれたシャー
レ30a、30b、30c、...の内、光電子増倍管
50の下方の測定位置にある唯一のシャーレ30bの中
にある生体試料から発する光のみが光電子増倍管50の
受光面に到達することができる。しかし、その他のシャ
ーレ30a、30c、...の中にある生体試料から発
する光は光電子増倍管50の受光面には到達しない。即
ち、光電子増倍管50の下方の測定位置にある唯一のシ
ャーレ30bの中にある生体試料から発する光のみの光
量が光電子増倍管50で測定される。
Petri dishes 30a, 30b, 30c ,. . . Among them, only the light emitted from the biological sample in the only petri dish 30b at the measurement position below the photomultiplier tube 50 can reach the light receiving surface of the photomultiplier tube 50. However, the other petri dishes 30a, 30c ,. . . The light emitted from the biological sample in the inside does not reach the light receiving surface of the photomultiplier tube 50. That is, the photomultiplier tube 50 measures the light amount of only the light emitted from the biological sample in the unique petri dish 30b at the measurement position below the photomultiplier tube 50.

【0032】シリコンラバーヒータ40は、光電子増倍
管50のハウジング51が配される部分に開口部を設け
てあって試料室10の上面に置かれ、シャーレ30の上
面を加熱する。シリコンラバーヒータ40は、温度セン
サ60で測定された温度情報に基づいて温度調整器41
により制御され、培養設定温度よりもシャーレ30上面
温度が所定値だけ高く設定される。
The silicon rubber heater 40 has an opening at a portion where the housing 51 of the photomultiplier tube 50 is arranged, is placed on the upper surface of the sample chamber 10, and heats the upper surface of the dish 30. The silicon rubber heater 40 uses the temperature controller 41 based on the temperature information measured by the temperature sensor 60.
The upper surface temperature of the dish 30 is set higher than the culture set temperature by a predetermined value.

【0033】光電子増倍管50はハウジング51内に収
納され、ハウジング51はシリコンラバーヒータ40の
開口部に配置され、光電子増倍管50の受光面の前面に
近接して電磁シャッタ52が配されている。光電子増倍
管50の下方の測定位置に一つのシャーレ30が輸送さ
れてくると、電磁シャッタ52が所定時間の間だけ開
き、当該シャーレ30内の生体試料から発し該シャーレ
30の蓋を透過して光電子増倍管50の受光面に到達し
た光の光量を光電子増倍管50とフォトンカウンタ53
で測定する。所定時間の測定が終了すると電磁シャッタ
52は閉じられる。続いて、パルスモータ21により回
転ステージ20が回転し、次の測定対象となる生体試料
が入れられているシャーレ30が光電子増倍管50の下
方の測定位置に輸送され同様に測定される。
The photomultiplier tube 50 is housed in a housing 51, the housing 51 is arranged in the opening of the silicon rubber heater 40, and an electromagnetic shutter 52 is arranged in proximity to the front surface of the light receiving surface of the photomultiplier tube 50. ing. When one petri dish 30 is transported to the measurement position below the photomultiplier tube 50, the electromagnetic shutter 52 is opened for a predetermined time, emitted from the biological sample in the petri dish 30, and transmitted through the lid of the petri dish 30. The amount of light reaching the light receiving surface of the photomultiplier tube 50 is measured by the photomultiplier tube 50 and the photon counter 53.
To measure. When the measurement for the predetermined time is completed, the electromagnetic shutter 52 is closed. Then, the rotary stage 20 is rotated by the pulse motor 21, and the petri dish 30 containing the biological sample to be measured next is transported to the measurement position below the photomultiplier tube 50 and similarly measured.

【0034】シリコンラバーヒータ40からの輻射光が
到達し得ない位置に、光電子増倍管50の受光面が配置
されている。したがって、シリコンラバーヒータ40か
らの輻射光が光電子増倍管50の測定にかかることはな
い。
The light receiving surface of the photomultiplier tube 50 is arranged at a position where the radiant light from the silicon rubber heater 40 cannot reach. Therefore, the radiant light from the silicon rubber heater 40 does not affect the measurement of the photomultiplier tube 50.

【0035】制御処理装置70により温度調整器41に
指令を与えてシリコンラバーヒータ40を制御し、培養
設定温度よりもシャーレ30上面の温度を所定値だけ高
く設定する。又、パルスモータ21を回転させて回転ス
テージ20を回転させることにより、回転ステージ20
上に載置されたシャーレ30を順次に光電子増倍管50
の受光面の下方の測定位置に輸送する。又、電磁シャッ
タ52の開閉を制御し、光電子増倍管50の受光面の下
方の測定位置にあるシャーレ30の中にある生体試料か
ら発しシャーレ30の蓋を透過して光電子増倍管50の
受光面に到達した光の光量を所定時間の間だけフォトン
カウンタ53で測定した結果の値を獲得する。尚、制御
処理装置70は、上記の測定値の獲得と制御を有機的に
行いながら、生体試料からの微弱発光の光量を測定す
る。
The control processor 70 gives a command to the temperature controller 41 to control the silicon rubber heater 40 to set the temperature of the upper surface of the dish 30 higher than the culture set temperature by a predetermined value. Further, by rotating the pulse motor 21 to rotate the rotary stage 20, the rotary stage 20
The petri dish 30 placed on the photomultiplier tube 50
It is transported to the measurement position below the light receiving surface of. In addition, the opening and closing of the electromagnetic shutter 52 is controlled so that the photomultiplier tube 50 emits light from a biological sample in the petri dish 30 at the measurement position below the light receiving surface of the photomultiplier tube 50 and transmits through the lid of the petri dish 30. The value of the result of measuring the amount of light reaching the light receiving surface by the photon counter 53 for a predetermined time is acquired. The control processing device 70 measures the amount of weakly emitted light from the biological sample while organically acquiring and controlling the above-mentioned measured values.

【0036】次に上述の実施例の微弱光測定装置を用い
た測定例を以下に述べる。
Next, a measurement example using the weak light measuring device of the above embodiment will be described below.

【0037】具体的な測定例の説明に先立ち、測定で用
いた生体試料について説明する。生体試料として紅高系
品種のサツマイモの塊根とフザリウム(Fusarium)菌と
を用いた。フザリウム菌は土壌中に見られる菌であり、
フザリウム菌による代表的な病害として根腐れ性の病害
を生じさせる萎凋性のつる割れ病がある。フザリウム菌
は、サツマイモ等の植物に感染した後は導管内に一般に
非病原性の(感染しても病症を示さない)糸状菌の菌糸
として存在し、サツマイモの苗や塊根には高頻度に存在
する。フザリウム菌をサツマイモに予め少量だけ接種す
ると、つる割れ病に対する抵抗力が付与され、つる割れ
病の発生を顕著に抑制できることが見いだされている。
しかし、多量のフザリウム菌がサツマイモに強制的に接
種されると、サツマイモはつる割れ病を発病する。この
フザリウム菌がサツマイモ塊根に侵入するとサツマイモ
が積極的に防御反応を行う結果、サツマイモから微弱光
が発生する。下記に述べる測定例は、この微弱光を測定
したものである。
Prior to the description of a specific measurement example, the biological sample used in the measurement will be described. As the biological samples, tuber roots and Fusarium fungi of the red high variety were used. Fusarium is a fungus found in soil,
A typical disease caused by Fusarium is a wilting vine cracking disease that causes root rot disease. After infecting plants such as sweet potatoes, Fusarium fungi generally exist in the conduit as hyphae of non-pathogenic filamentous fungi that do not show disease even after infection, and are frequently present in sweet potato seedlings and tuberous roots. To do. It has been found that pre-inoculation of sweet potatoes with a small amount of Fusarium bacterium imparts resistance against creeping cracking disease and can significantly suppress the occurrence of creeping cracking disease.
However, when a large amount of Fusarium is forcibly inoculated into sweet potato, sweet potato develops vine cracking disease. When the Fusarium bacterium invades the sweet potato roots, the sweet potato positively reacts as a result of which a weak light is emitted from the sweet potato. The measurement example described below is a measurement of this weak light.

【0038】最初に準備としてフザリウム菌の調整処理
を以下の手順で行い、実験のサンプルとした。(1)寒
天(1.5%)を含むPotato Dextrose Broth (培養
液)のスラント倍地表面上のフザリウム菌を少量取り出
し、寒天を含まないPotato Dextrose Broth 倍地中で温
度28℃の条件の下、72時間振盪培養した。(2)次
に、そこからフザリウム菌を更に少量取り出し、寒天を
含まないPotato Dextrose Broth 倍地中で温度28℃の
条件の下、24時間振盪培養した。(3)次に、分光器
で測定しながらフザリウム菌入りのPotato Dextrose Br
oth 液を調整して波長600nmにおける濁度を1.4
ないし1.8に設定した。
First, as a preparation, adjustment treatment of Fusarium bacterium was carried out by the following procedure to prepare an experimental sample. (1) Sludge of Potato Dextrose Broth (culture solution) containing agar (1.5%) A small amount of Fusarium bacteria on the surface of slant medium was taken out and the temperature was 28 ° C in agar without Potato Dextrose Broth medium. The cells were cultured with shaking for 72 hours. (2) Next, a further small amount of Fusarium bacterium was taken out from it, and cultured in agar-free Potato Dextrose Broth medium under shaking at a temperature of 28 ° C. for 24 hours. (3) Next, while measuring with a spectroscope, Potato Dextrose Br containing Fusarium bacteria
Adjust the oth solution to reduce the turbidity at a wavelength of 600 nm to 1.4.
Set to 1.8.

【0039】次にサツマイモ塊根を以下の手順で処理を
行い無菌状態に調製した。(1)市販のサツマイモ塊根
の表面に70%エタノール液を噴霧し消毒した。(2)
次に、このサツマイモ塊根を有効塩素1%の次亜塩素酸
ナトリウム液に10分間浸し表面を滅菌した。(3)次
に、サツマイモ塊根の表面を滅菌水で洗浄し次亜塩素酸
ナトリウム液を洗い流した。(4)次に、サツマイモ塊
根を8mm程度の厚さに切り、滅菌したコルクボーラで
中心部を直径18mmの円盤状に切り出した。
Next, the sweet potato roots were processed according to the following procedure to prepare a sterile state. (1) A 70% ethanol solution was sprayed on the surface of a commercially available sweet potato root to disinfect it. (2)
Next, this sweet potato root was immersed in a sodium hypochlorite solution containing 1% of available chlorine for 10 minutes to sterilize the surface. (3) Next, the surface of the sweet potato root was washed with sterilized water to wash away the sodium hypochlorite solution. (4) Next, sweet potato roots were cut to a thickness of about 8 mm, and the center portion was cut into a disc shape having a diameter of 18 mm with a sterilized cork boula.

【0040】以上で準備したサツマイモ塊根とフザリウ
ム菌とを材料として、本実施例の第1の構成に係る微弱
光測定装置を用いて、サツマイモ塊根から発する微弱光
の測定を以下のように行った。尚、本測定は温度制御さ
れた室内で行った。
The weak light emitted from the sweet potato roots was measured as follows by using the sweet potato roots and the Fusarium bacterium prepared above as materials and using the weak light measuring device according to the first configuration of the present embodiment. . The measurement was carried out in a temperature-controlled room.

【0041】シャーレ30に滅菌水を入れ、更にフザリ
ウム菌を接種したサツマイモ塊根を入れた。複数のサン
プルを用意した。これらのシャーレ30を回転ステージ
20の凹部のそれぞれに載置した後、試料室10の扉を
閉じて試料室10を暗室状態とする。
Sterilized water was placed in the petri dish 30, and further sweet potato roots inoculated with Fusarium fungi were placed. Multiple samples were prepared. After placing the petri dish 30 in each of the recesses of the rotary stage 20, the door of the sample chamber 10 is closed to bring the sample chamber 10 into a dark room state.

【0042】制御処理装置70の指令により、温度セン
サ60で測定された温度に基づき温度調整器41はシリ
コンラバーヒータ40でシャーレ30の上面を加熱す
る。この時、シャーレ30下面の温度よりもシャーレ3
0上面の温度を0.1ないし1.0℃高く設定する。
The temperature controller 41 heats the upper surface of the petri dish 30 by the silicon rubber heater 40 based on the temperature measured by the temperature sensor 60 according to a command from the control processing device 70. At this time, the temperature of the bottom surface of the dish 30 should be lower than
0 The temperature of the upper surface is set 0.1 to 1.0 ° C. higher.

【0043】制御処理装置70によりパルスモータ21
を制御し回転ステージ20を回転させて、光電子増倍管
50の受光面の下方にシャーレ30のそれぞれを順次輸
送する。測定しようとするサツマイモ塊根の入ったシャ
ーレ30が光電子増倍管50の下方に配されると、制御
処理装置70の指令により電磁シャッタ52が所定の時
間だけ開き、光電子増倍管50とフォトンカウンタ53
とでサツマイモ塊根から発する微弱光の光量を測定し、
その結果は制御処理装置70に取り込まれ保存または処
理がなされる。所定の測定時間が経過すると、制御処理
装置70の指令により電磁シャッタ52が閉じられる。
The pulse motor 21 is controlled by the control processor 70.
Is controlled to rotate the rotary stage 20 to sequentially transport each of the petri dishes 30 below the light receiving surface of the photomultiplier tube 50. When the petri dish 30 containing the sweet potato roots to be measured is placed below the photomultiplier tube 50, the electromagnetic shutter 52 is opened for a predetermined time according to a command from the control processing unit 70, and the photomultiplier tube 50 and the photon counter. 53
And measure the amount of weak light emitted from the sweet potato root,
The result is taken into the control processing device 70 and stored or processed. When the predetermined measurement time has elapsed, the electromagnetic shutter 52 is closed according to a command from the control processing device 70.

【0044】以上のようにして或1つのシャーレ30内
にあるサツマイモ塊根から発した微弱光の測定値の時間
変化を測定した。図3は、その結果を示すグラフであ
る。フザリウム菌を接種してから7時間にサツマイモ塊
根から発する微弱光の光量が最大になるのが認められ
る。
As described above, the time change of the measured value of the weak light emitted from the sweet potato root in one petri dish 30 was measured. FIG. 3 is a graph showing the result. It is observed that the amount of weak light emitted from the sweet potato roots reaches its maximum 7 hours after inoculation with Fusarium.

【0045】又、7つのサツマイモ塊根サンプルについ
て、フザリウム菌を接種してから7時間後におけるサツ
マイモ塊根から発する微弱光の光量を測定した。表1は
その結果を示す表であり、図4はその結果を示すグラフ
である。表1と図4には同時に、それぞれのサンプルに
おいてシャーレ30の内壁の結露が生じた場合の結果を
も示す。シャーレ30内壁の結露の有無によるサツマイ
モ塊根から発する微弱光の測定値の違いが認められる。
即ち、シャーレ30内壁に結露が生じた場合に比較して
結露が生じなかった場合には、サツマイモ塊根から発し
た微弱光の測定において10.7ないし18.1%効率
良く測定できたことが認められる。
Further, with respect to seven sweet potato tuber samples, the amount of weak light emitted from the sweet potato tubers was measured 7 hours after the inoculation with Fusarium. Table 1 is a table showing the results, and FIG. 4 is a graph showing the results. At the same time, Table 1 and FIG. 4 also show the results when dew condensation occurs on the inner wall of the dish 30 in each sample. There is a difference in the measured value of the weak light emitted from the sweet potato root depending on the presence or absence of dew condensation on the inner wall of the dish 30.
That is, when dew condensation did not occur in comparison with the case where dew condensation occurred on the inner wall of the dish 30, it was confirmed that it was possible to measure 10.7 to 18.1% efficiently in the measurement of the weak light emitted from the sweet potato root. To be

【0046】[0046]

【表1】 [Table 1]

【0047】以上述べた実施例では、シャーレ30上方
にシリコンラバーヒータ40を配しシャーレ30の上面
を加熱し、シャーレ30の下面よりも上面の温度を高く
するものである。従って、本実施例に係る微弱光測定装
置が置かれ測定に供される部屋の室温よりも、生体試料
の培養設定温度が高い場合に有効に用いられる。
In the embodiment described above, the silicon rubber heater 40 is arranged above the petri dish 30 to heat the upper surface of the petri dish 30 so that the temperature of the upper surface is higher than that of the lower surface of the petri dish 30. Therefore, it is effectively used when the set culture temperature of the biological sample is higher than the room temperature of the room where the weak light measurement apparatus according to the present embodiment is placed and used for measurement.

【0048】(第2の実施例)図5は、本発明の第2の
実施例に係る微弱光測定装置の構成図である。この図に
示した実施例に係る微弱光測定装置は、本装置が置かれ
測定に供される部屋の室温よりも生体試料の培養設定温
度が低い場合に、生体試料からの微弱発光の光量を効率
よく測定できるものである。本実施例では、シャーレ3
0の下面を冷却する手段を備えることにより、シャーレ
30下面を生体試料の培養温度に維持すると共に、シャ
ーレ30の下面よりも上面を相対的に高温にする。
(Second Embodiment) FIG. 5 is a block diagram of a weak light measuring apparatus according to a second embodiment of the present invention. The weak light measurement device according to the embodiment shown in this figure, when the culture set temperature of the biological sample is lower than the room temperature of the room where the device is placed and used for measurement, the amount of weakly emitted light from the biological sample is reduced. It can be measured efficiently. In this embodiment, the petri dish 3
By providing a means for cooling the lower surface of the dish 0, the lower surface of the dish 30 is maintained at the culture temperature of the biological sample, and the upper surface of the dish 30 is heated to a relatively higher temperature than the lower surface.

【0049】シャーレ30の下面を冷却するために冷却
水循環装置42を設ける。冷却水循環装置42は、制御
処理装置70の指令に従い、温度センサ60で測定した
温度情報に基づいて冷却水の温度や流量を制御し、回転
ステージ20内部に冷却水を循環させ回転ステージ20
を冷却し、回転ステージ20に載置されているシャーレ
30の下面を冷却する。
A cooling water circulation device 42 is provided to cool the lower surface of the petri dish 30. The cooling water circulation device 42 controls the temperature and flow rate of the cooling water based on the temperature information measured by the temperature sensor 60 in accordance with the instruction of the control processing device 70, and circulates the cooling water inside the rotary stage 20 to rotate the rotary stage 20.
And the lower surface of the petri dish 30 placed on the rotary stage 20 is cooled.

【0050】尚、試料室10、パルスモータ21、光電
子増倍管50、ハウジング51、電磁シャッタ52、フ
ォトンカウンタ53、および、これらと制御処理装置7
0との協働関係は、前記第1の実施例の場合と同様であ
る。
The sample chamber 10, the pulse motor 21, the photomultiplier tube 50, the housing 51, the electromagnetic shutter 52, the photon counter 53, and these and the control processing unit 7 are provided.
The cooperative relationship with 0 is the same as in the case of the first embodiment.

【0051】このように回転ステージ20を冷却して間
接的にシャーレ30下面を冷却することにより、前記第
1の実施例の場合と同様に、シャーレ30下面を生体試
料の培養温度に維持すると共に、シャーレ30の下面に
対して上面を相対的に高温にすることができ、シャーレ
30の蓋の内壁の結露を防止し、シャーレ30内にある
生体試料から発する微弱光を効率良く測定することがで
きる。
By thus cooling the rotary stage 20 and indirectly cooling the lower surface of the dish 30, the lower surface of the dish 30 is maintained at the culture temperature of the biological sample as in the case of the first embodiment. In addition, the upper surface of the dish 30 can be heated to a relatively high temperature relative to the lower surface thereof, condensation on the inner wall of the lid of the dish 30 can be prevented, and weak light emitted from a biological sample in the dish 30 can be efficiently measured. it can.

【0052】(第3の実施例)図6は、本発明の第3の
実施例に係る微弱光測定装置の構成図である。この図に
示した実施例に係る微弱光測定装置は、本装置が置かれ
測定に供される部屋の室温に依存しないで、生体試料か
らの微弱発光の光量を効率よく測定できるものである。
本実施例では、シャーレ30の上面を加熱する手段とシ
ャーレ30の下面を冷却する手段の双方を備えることに
より、シャーレ30下面を生体試料の培養温度に維持す
ると共に、シャーレ30の下面よりも上面を相対的に高
温にする。
(Third Embodiment) FIG. 6 is a block diagram of a weak light measuring apparatus according to a third embodiment of the present invention. The weak light measuring device according to the embodiment shown in this figure can efficiently measure the amount of weak light emission from a biological sample without depending on the room temperature of the room in which the device is placed and used for measurement.
In this embodiment, by providing both means for heating the upper surface of the dish 30 and means for cooling the lower surface of the dish 30, the lower surface of the dish 30 is maintained at the culture temperature of the biological sample, and the upper surface of the dish 30 is higher than the lower surface. To a relatively high temperature.

【0053】シャーレ30の上面を加熱するために前記
第1の実施例と同様に試料室上面にシリコンラバーヒー
タ40と温度調整器41を設ける。同時に、シャーレ3
0の下面を冷却するために前記第2の実施例と同様に冷
却水循環装置42を設ける。
In order to heat the upper surface of the dish 30, a silicon rubber heater 40 and a temperature controller 41 are provided on the upper surface of the sample chamber as in the first embodiment. At the same time, petri dish 3
In order to cool the lower surface of No. 0, a cooling water circulation device 42 is provided as in the second embodiment.

【0054】本実施例に係る微弱光測定装置が置かれ測
定に供される部屋の室温よりも生体試料の培養設定温度
が高い場合には、シリコンラバーヒータ40と温度調整
器41を動作させシャーレ30の上面を加熱する。温度
調整器41は、制御処理装置70の指令に従い、温度セ
ンサ60で測定した温度情報に基づいてシリコンラバー
ヒータ40を制御し、回転ステージ20に載置されてい
るシャーレ30の上面を加熱する。
When the culture set temperature of the biological sample is higher than the room temperature of the room in which the weak light measuring device according to the present embodiment is placed and used for the measurement, the silicone rubber heater 40 and the temperature controller 41 are operated and the petri dish is operated. The top surface of 30 is heated. The temperature adjuster 41 controls the silicon rubber heater 40 based on the temperature information measured by the temperature sensor 60 in accordance with a command from the control processing device 70 to heat the upper surface of the petri dish 30 placed on the rotary stage 20.

【0055】逆に本実施例に係る微弱光測定装置が置か
れ測定に供される部屋の室温よりも生体試料の培養設定
温度が低い場合には、冷却水循環装置42を動作させシ
ャーレ30の下面を冷却する。冷却水循環装置42は、
制御処理装置70の指令に従い、温度センサ60で測定
した温度情報に基づいて冷却水の温度や流量を制御し、
回転ステージ20内部に冷却水を循環させ回転ステージ
20を冷却し、回転ステージ20に載置されているシャ
ーレ30の下面を冷却する。
On the contrary, when the set temperature of the biological sample is lower than the room temperature of the room where the weak light measuring device according to the present embodiment is placed and used for the measurement, the cooling water circulating device 42 is operated and the lower surface of the dish 30 is operated. To cool. The cooling water circulation device 42 is
According to the instruction of the control processing device 70, the temperature and flow rate of the cooling water are controlled based on the temperature information measured by the temperature sensor 60,
Cooling water is circulated inside the rotary stage 20 to cool the rotary stage 20, and the lower surface of the petri dish 30 placed on the rotary stage 20 is cooled.

【0056】又、本実施例に係る微弱光測定装置が置か
れ測定に供される部屋の室温に依らず、シリコンラバー
ヒータ40、温度調整器41および冷却水循環装置42
を同時に動作させ、シャーレ30の上面を加熱し同時に
シャーレ30の下面を冷却してもよい。
Further, the silicon rubber heater 40, the temperature controller 41, and the cooling water circulation device 42 are irrespective of the room temperature of the room in which the weak light measuring device according to this embodiment is placed and used for measurement.
May be simultaneously operated to heat the upper surface of the dish 30 and cool the lower surface of the dish 30 at the same time.

【0057】尚、試料室10、パルスモータ21、光電
子増倍管50、ハウジング51、電磁シャッタ52、フ
ォトンカウンタ53、および、これらと制御処理装置7
0との協働関係は、前記第1の実施例の場合と同様であ
る。
The sample chamber 10, the pulse motor 21, the photomultiplier tube 50, the housing 51, the electromagnetic shutter 52, the photon counter 53, and these and the control processing unit 7 are provided.
The cooperative relationship with 0 is the same as in the case of the first embodiment.

【0058】このようにシャーレ30上面を加熱し、シ
ャーレ30下面を間接的に冷却することにより、本装置
が置かれる部屋の室温に関係なく、前記第1および第2
の実施例の場合と同様に、シャーレ30下面を生体試料
の培養温度に維持すると共に、シャーレ30の下面に対
して上面を相対的に高温にすることができ、シャーレ3
0の蓋の内壁の結露を防止し、シャーレ30内にある生
体試料から発する微弱光を効率良く測定することができ
る。
By heating the upper surface of the dish 30 and indirectly cooling the lower surface of the dish 30 as described above, the first and second chambers are set regardless of the room temperature of the room in which the apparatus is placed.
In the same manner as in the above example, the lower surface of the dish 30 can be maintained at the culture temperature of the biological sample, and the upper surface of the dish 30 can be heated to a relatively high temperature with respect to the lower surface.
It is possible to prevent dew condensation on the inner wall of the No. 0 lid and to efficiently measure the weak light emitted from the biological sample in the dish 30.

【0059】本発明は、上記実施例に限定されるもので
はなく、種々の変形が可能である。
The present invention is not limited to the above embodiment, but various modifications can be made.

【0060】例えば、シャーレの上面を加熱する手段
は、ドライヤ等で温風を送ることによってもよい。シャ
ーレの下面を冷却する手段は、水以外の冷却媒体を用い
てもよいし、ペルチェ素子のような電子冷却器でもよ
い。温度センサは、個々のシャーレの下部や上部に設置
してもよい。
For example, as a means for heating the upper surface of the petri dish, warm air may be sent by a dryer or the like. As a means for cooling the lower surface of the petri dish, a cooling medium other than water may be used, or an electronic cooler such as a Peltier element may be used. The temperature sensor may be installed in the lower part or the upper part of each petri dish.

【0061】試料台上に複数のシャーレを載置する場
合、試料台の上にシャーレを直線状に載置し、該試料台
を直線方向に移動させてもよい。試料台が移動する替わ
りに光電子増倍管が移動してもよい。
When a plurality of petri dishes are placed on the sample table, the petri dish may be linearly placed on the sample table and the sample table may be moved in the linear direction. Instead of moving the sample table, the photomultiplier tube may move.

【0062】遮光手段としては、個々のシャーレの間に
隔壁を設けて、測定位置にある生体試料以外からの光が
その隔壁に遮られて光量センサの受光面に到達しない構
造にしてもよい。又、試料室の上面に凹部または隔壁を
設け、その凹部または隔壁の中に光量センサの受光面を
配して、測定位置にある生体試料以外からの光がその凹
部または隔壁の中にある光量センサの受光面に到達しな
い構造にしてもよい。
As the light-shielding means, a partition may be provided between individual petri dishes so that light from other than the biological sample at the measurement position is blocked by the partition and does not reach the light-receiving surface of the light amount sensor. In addition, a concave portion or a partition is provided on the upper surface of the sample chamber, and the light receiving surface of the light amount sensor is arranged in the concave portion or the partition so that the light other than the biological sample at the measurement position is in the concave portion or the partition. The structure may not reach the light receiving surface of the sensor.

【0063】[0063]

【発明の効果】以上、詳細に説明したとおり本発明によ
れば、試料室内に設けた温度設定器により試料室内に置
かれた試料容器の下面温度よりも上面温度を高く保つこ
とができるので、試料容器内に水分を多く含む生体試料
が入っていても試料容器の蓋内壁に結露が生じない。生
体試料から発した微弱光は、結露によって吸収、散乱さ
れることがないので、試料容器の透明な蓋を高い透過率
で透過して光量センサの受光面に到達する。従って、生
体試料が発した微弱光を高感度で測定することができ
る。
As described above in detail, according to the present invention, since the temperature setting device provided in the sample chamber can keep the upper surface temperature higher than the lower surface temperature of the sample container placed in the sample chamber, Condensation does not occur on the inner wall of the lid of the sample container even if a biological sample containing a large amount of water is contained in the sample container. Since the weak light emitted from the biological sample is not absorbed or scattered by the dew condensation, it passes through the transparent lid of the sample container with high transmittance and reaches the light receiving surface of the light amount sensor. Therefore, the weak light emitted from the biological sample can be measured with high sensitivity.

【0064】又、試料容器の上面を加熱するに際して加
熱器からの輻射光が光量センサの受光面に到達すること
がない位置関係に光量センサと加熱器を配置するので、
この輻射光が測定ノイズとなることがなく、高精度の測
定が可能となる。
Further, since the radiant light from the heater does not reach the light receiving surface of the light quantity sensor when heating the upper surface of the sample container, the light quantity sensor and the heater are arranged so that
This radiated light does not become measurement noise, and high-precision measurement is possible.

【0065】更に、試料室内に設けた温度設定器は試料
容器内の生体試料の温度条件を設定し保持する機能をも
兼ねることができるので、装置全体の部品点数を増やす
ことはないという効果もある。
Further, since the temperature setting device provided in the sample chamber can also have the function of setting and holding the temperature condition of the biological sample in the sample container, there is an effect that the number of parts of the entire apparatus is not increased. is there.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例に係る微弱光測定装置の
構成図である。
FIG. 1 is a configuration diagram of a weak light measuring apparatus according to a first embodiment of the present invention.

【図2】本発明の第1の実施例に係る微弱光測定装置の
一部断面図である。
FIG. 2 is a partial cross-sectional view of the weak light measuring device according to the first embodiment of the present invention.

【図3】本発明の第1の実施例に係る微弱光測定装置を
用いた測定の結果を示すグラフである。
FIG. 3 is a graph showing a result of measurement using the weak light measurement apparatus according to the first embodiment of the present invention.

【図4】本発明の第1の実施例に係る微弱光測定装置を
用いた測定の結果を示すグラフである。
FIG. 4 is a graph showing a result of measurement using the weak light measurement apparatus according to the first embodiment of the present invention.

【図5】本発明の第2の実施例に係る微弱光測定装置の
構成図である。
FIG. 5 is a configuration diagram of a weak light measurement apparatus according to a second embodiment of the present invention.

【図6】本発明の第3の実施例に係る微弱光測定装置の
構成図である。
FIG. 6 is a configuration diagram of a weak light measurement device according to a third embodiment of the present invention.

【図7】従来の試料室内の生体試料を観察する装置の構
成図である。
FIG. 7 is a configuration diagram of a conventional device for observing a biological sample in a sample chamber.

【符号の説明】[Explanation of symbols]

10…試料室、11…試料室下部筺体、20…回転ステ
ージ、21…パルスモータ、30,30a,30b,3
0c…シャーレ、40…シリコンラバーヒータ、41…
温度調整器、42…冷却水循環装置、50…光電子増倍
管、51…ハウジング、52…電磁シャッタ、53…フ
ォトンカウンタ、60…温度センサ、70…制御処理装
置。
10 ... Sample chamber, 11 ... Sample chamber lower housing, 20 ... Rotating stage, 21 ... Pulse motor, 30, 30a, 30b, 3
0c ... Petri dish, 40 ... Silicon rubber heater, 41 ...
Temperature regulator, 42 ... Cooling water circulation device, 50 ... Photomultiplier tube, 51 ... Housing, 52 ... Electromagnetic shutter, 53 ... Photon counter, 60 ... Temperature sensor, 70 ... Control processing device.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 透明な蓋を有する試料容器に入れた試料
が発する光を測定する微弱光測定装置であって、 前記試料容器の下面に対して前記試料容器の上面の温度
を高く設定する温度設定器と、 前記試料容器の上方に配され、受光面で前記試料容器内
の試料から発する光の光量を測定する光量センサと、 前記試料容器と前記光量センサの受光面とをその内部に
含む密封可能な試料室とを備えることを特徴とする微弱
光測定装置。
1. A weak light measuring device for measuring the light emitted from a sample contained in a sample container having a transparent lid, wherein the temperature for setting the temperature of the upper surface of the sample container to be higher than the lower surface of the sample container. A setter, a light amount sensor which is arranged above the sample container and which measures a light amount of light emitted from a sample in the sample container at a light receiving surface, and a light receiving surface of the sample container and the light amount sensor are included therein. A weak light measurement device comprising a sample chamber that can be sealed.
【請求項2】 前記温度設定器は、それからの輻射光が
前記光量センサの受光面に到達しない位置に配された、
前記試料容器の上面を加熱する加熱器を備えることを特
徴とする請求項1記載の微弱光測定装置。
2. The temperature setting device is arranged at a position where radiated light from the temperature setting device does not reach a light receiving surface of the light amount sensor,
The weak light measurement device according to claim 1, further comprising a heater that heats an upper surface of the sample container.
【請求項3】 前記温度設定器は、前記試料容器の下面
を冷却する冷却器を備えることを特徴とする請求項1記
載の微弱光測定装置。
3. The weak light measurement device according to claim 1, wherein the temperature setting device includes a cooler for cooling the lower surface of the sample container.
【請求項4】 前記温度設定器は、 それからの輻射光が前記光量センサの受光面に到達しな
い位置に配された、前記試料容器の上面を加熱する加熱
器と、 前記試料容器の下面を冷却する冷却器と を備えることを特徴とする請求項1記載の微弱光測定装
置。
4. The temperature setting device, which is arranged at a position where radiant light from the temperature setting device does not reach the light receiving surface of the light quantity sensor, heats the upper surface of the sample container, and cools the lower surface of the sample container. The weak light measuring device according to claim 1, further comprising:
【請求項5】 前記温度設定器は、 前記試料容器の上面温度、下面温度または前記試料容器
が置かれた位置の近傍の温度を測定する温度センサと、 前記温度センサによる温度情報を基に前記試料容器の下
面に対して前記試料容器の上面の温度を高く維持する制
御手段とを更に備えることを特徴とする請求項1記載の
微弱光測定装置。
5. The temperature setting device measures a top surface temperature, a bottom surface temperature of the sample container or a temperature in the vicinity of a position where the sample container is placed, and the temperature setting device, based on temperature information from the temperature sensor. The weak light measurement device according to claim 1, further comprising: a control unit that maintains the temperature of the upper surface of the sample container higher than the lower surface of the sample container.
【請求項6】 前記光量センサは光電子増倍管を備え、
光子計数法により光量を測定することを特徴とする請求
項1記載の微弱光測定装置。
6. The light quantity sensor comprises a photomultiplier tube,
The weak light measuring device according to claim 1, wherein the light quantity is measured by a photon counting method.
【請求項7】 複数の前記試料容器を載置する試料台
と、 前記光量センサと前記試料台との相対的位置関係を変更
し、複数の前記試料容器のそれぞれを前記測定位置に順
次配置する搬送手段と、 前記光量センサに対して測定位置にある試料容器中の試
料が発する光の光量のみを前記光量センサの受光面に到
達させる遮光手段とを更に備えることを特徴とする請求
項1記載の微弱光測定装置。
7. A sample table on which a plurality of sample containers are placed, and a relative positional relationship between the light amount sensor and the sample table is changed, and each of the plurality of sample containers is sequentially arranged at the measurement position. The transport means and the light-shielding means which makes only the light quantity of the light emitted by the sample in the sample container at the measurement position with respect to the light quantity sensor reach the light receiving surface of the light quantity sensor are further provided. Weak light measurement device.
【請求項8】 前記温度設定器は、前記試料台を介して
前記試料容器の下面を冷却する冷却器を備えることを特
徴とする請求項7記載の微弱光測定装置。
8. The weak light measurement device according to claim 7, wherein the temperature setting device includes a cooler that cools the lower surface of the sample container via the sample table.
JP8686695A 1995-04-12 1995-04-12 Faint light measuring apparatus Pending JPH08285777A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8686695A JPH08285777A (en) 1995-04-12 1995-04-12 Faint light measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8686695A JPH08285777A (en) 1995-04-12 1995-04-12 Faint light measuring apparatus

Publications (1)

Publication Number Publication Date
JPH08285777A true JPH08285777A (en) 1996-11-01

Family

ID=13898751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8686695A Pending JPH08285777A (en) 1995-04-12 1995-04-12 Faint light measuring apparatus

Country Status (1)

Country Link
JP (1) JPH08285777A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004083857A1 (en) * 2003-03-17 2004-09-30 Shizuoka Prefecture Method of assaying physiological activity and apparatus
KR100668223B1 (en) * 2002-11-28 2007-01-11 한국원자력연구소 Apparatus for measuring a radioactive surface contamination using inorganic fluor-impregnated membranes
WO2007145198A1 (en) * 2006-06-16 2007-12-21 Sanyo Electric Co., Ltd. Culture monitoring system
JP2009092668A (en) * 2001-12-06 2009-04-30 Biocontrol Systems Inc Sample collection and testing system
WO2014002653A1 (en) * 2012-06-27 2014-01-03 株式会社日立ハイテクノロジーズ Luminescence measuring device
US9446406B2 (en) 2012-06-29 2016-09-20 Biocontrol Systems, Inc. Sample collection and bioluminescent analysis system
JP2017510303A (en) * 2014-04-07 2017-04-13 アドベンシス Culture and detection equipment
JP2020518829A (en) * 2017-03-15 2020-06-25 スウォンジー・ユニバーシティ Method and apparatus for use in diagnosing and monitoring colorectal cancer

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009092668A (en) * 2001-12-06 2009-04-30 Biocontrol Systems Inc Sample collection and testing system
KR100668223B1 (en) * 2002-11-28 2007-01-11 한국원자력연구소 Apparatus for measuring a radioactive surface contamination using inorganic fluor-impregnated membranes
WO2004083857A1 (en) * 2003-03-17 2004-09-30 Shizuoka Prefecture Method of assaying physiological activity and apparatus
JP2014128290A (en) * 2006-06-16 2014-07-10 Panasonic Healthcare Co Ltd Culture observation system
WO2007145198A1 (en) * 2006-06-16 2007-12-21 Sanyo Electric Co., Ltd. Culture monitoring system
US8455241B2 (en) 2006-06-16 2013-06-04 Panasonic Healthcare Co., Ltd. Culture observation system
JP5841304B2 (en) * 2006-06-16 2016-01-13 パナソニックヘルスケアホールディングス株式会社 Culture observation system
JP2014006213A (en) * 2012-06-27 2014-01-16 Hitachi High-Technologies Corp Luminescence measuring apparatus
WO2014002653A1 (en) * 2012-06-27 2014-01-03 株式会社日立ハイテクノロジーズ Luminescence measuring device
US9683942B2 (en) 2012-06-27 2017-06-20 Hitachi High-Technologies Corporation Luminescence measuring device
US9446406B2 (en) 2012-06-29 2016-09-20 Biocontrol Systems, Inc. Sample collection and bioluminescent analysis system
US10684232B2 (en) 2012-06-29 2020-06-16 Biocontrol Systems, Inc. Sample collection and bioluminescent analysis system
JP2017510303A (en) * 2014-04-07 2017-04-13 アドベンシス Culture and detection equipment
JP2020518829A (en) * 2017-03-15 2020-06-25 スウォンジー・ユニバーシティ Method and apparatus for use in diagnosing and monitoring colorectal cancer

Similar Documents

Publication Publication Date Title
JP4912869B2 (en) A method for effective inactivation of pathogens in biological fluids by irradiation
EP1032822B1 (en) Apparatus for reading a plurality of biological indicators
JP5702738B2 (en) Diagnostic analysis apparatus and related method
KR101650017B1 (en) Methods for the characterization of microorganisms on solid or semi-solid media
CN101065154B (en) Methods for the inactivation of microorganisms in biological fluids, flow through reactors and methods of controlling the light sum dose to effectively inactivate microorganisms in batch reactors
JP2018503842A (en) Laser scatter measurement instrument with rotating horse fluid sample configuration
JPH08285777A (en) Faint light measuring apparatus
EP3408404B1 (en) Biological indicators for steam sterilization
US20060023299A1 (en) Biological sample observation system and biological sample observation method
JP2005261260A (en) System and method for examining microorganism or cell
CN1036404A (en) Sterilizable gas permeable container for use in culturing living cells
CN102803959A (en) System and methods for rapid identification and/or characterization of a microbial agent in a sample
JP2019521682A (en) Integrated device for performing diagnostic analysis
DK2737076T3 (en) Method and apparatus for detecting and quantifying thermoresistant microorganisms in a product
JP7148517B2 (en) Measuring device for measuring the concentration of gaseous substances
JPH06509720A (en) Device for culturing and detecting bacteria in human tissues
US5919647A (en) Methods and apparatuses for examining pathogen resistance of plant, for evaluating ability to impart pathogen resistance to plant, and for evaluating agricultural chemical
WO2016174766A1 (en) Light emission measurement device
US11347203B2 (en) Learning processor, learning processing method, production method of compound semiconductor, and recording medium
EP0593306B1 (en) Method and apparatus for evaluating an interaction between a plant and a microbe
Rotem Techniques of controlled-condition experiments
US20090142796A1 (en) Detection of Inducible Resistance to Macrolide-Lincosamide-Streptogramin b
Labouriau Effects of deuterium oxide on the lower temperature limit of seed germination
JP2003093040A (en) Device and method for biospecimen observation
Khismatoullin et al. Modification of microbiological detection method of tetracycline in honey

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040510

A131 Notification of reasons for refusal

Effective date: 20040607

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041019