JPH08277389A - Mixed working fluid and heat pump device using the same - Google Patents

Mixed working fluid and heat pump device using the same

Info

Publication number
JPH08277389A
JPH08277389A JP7080933A JP8093395A JPH08277389A JP H08277389 A JPH08277389 A JP H08277389A JP 7080933 A JP7080933 A JP 7080933A JP 8093395 A JP8093395 A JP 8093395A JP H08277389 A JPH08277389 A JP H08277389A
Authority
JP
Japan
Prior art keywords
weight
working fluid
trifluoroiodomethane
temperature
difluoromethane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7080933A
Other languages
Japanese (ja)
Inventor
Yuji Yoshida
雄二 吉田
Shozo Funakura
正三 船倉
Mitsuharu Matsuo
光晴 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP7080933A priority Critical patent/JPH08277389A/en
Publication of JPH08277389A publication Critical patent/JPH08277389A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE: To obtain a mixed working fluid comprising trifluoroiodomethane and difluoromethane, etc., in a specific ratio, hardly having influence on an ozone layer of the stratosphere, having slight global waring action, capable of enlarging the width of a working fluid, useful as a heat pump, etc. CONSTITUTION: This mixed working fluid comprises (A) 35-80wt.% of trifuoroiodomethane and either or both of (B) <=40wt.% of a difluoromethane and (C) <=65wt.% of pentafluoroethane. The mixed working fluid is preferably obtained by mixing 25-50wt.% of an azeotropic mixture of 40-60wt.% of the component B and 60-40wt.% of the component C with 50-75wt.% of the component A.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、トリフルオロイオドメ
タンを含む混合作動流体およびそれを用いたエアコン、
冷凍機、冷蔵庫等のヒートポンプ装置に関する。
The present invention relates to a mixed working fluid containing trifluoroiodomethane and an air conditioner using the same.
The present invention relates to a heat pump device such as a refrigerator and a refrigerator.

【0002】[0002]

【従来の技術】従来、エアコン、冷凍機、冷蔵庫等のヒ
ートポンプ装置は、圧縮機、凝縮器、キャピラリーチュ
ーブや膨張弁等の絞り装置、蒸発器を配管接続し、その
内部に作動流体を循環させることにより、冷却作用を行
っている。これらのヒートポンプ装置においては、作動
流体としてフロン類(以下R○○またはR○○○と記
す)と呼ばれるメタンまたはエタンから誘導されたハロ
ゲン化炭化水素が知られており、利用温度としては凝縮
温度は略50℃、蒸発温度は略0℃の範囲において通常
使用される。中でもクロロジフルオロメタン(CHClF2
R22、沸点−40.8℃)はエアコン、冷凍機、冷蔵
庫等の作動流体として幅広く用いられていたが、近年フ
ロンによる成層圏オゾン層破壊が地球規模の環境問題と
なっており、成層圏オゾン破壊能力があるため、すでに
モントリオール国際条約によって使用量及び生産量の規
制が決定され、さらに将来的にはその使用・生産を廃止
しようという動きがある。成層圏オゾン層に及ぼす影響
をほとんどなくするためには、分子構造中に塩素を含ま
ないことが必要条件とされており、この可能性のあるも
のとして塩素を含まないフッ化炭化水素類が提案されて
いる。
2. Description of the Related Art Conventionally, in heat pump devices such as air conditioners, refrigerators and refrigerators, compressors, condensers, throttle devices such as capillary tubes and expansion valves, and evaporators are connected by piping, and a working fluid is circulated therein. By doing so, a cooling action is performed. In these heat pump devices, halogenated hydrocarbons derived from methane or ethane called CFCs (hereinafter referred to as R ○○ or R ○○○) are known as working fluids, and the usage temperature is the condensation temperature. Is generally used at a temperature of about 50 ° C. and an evaporation temperature of about 0 ° C. Among them, chlorodifluoromethane (CHClF 2 ,
R22, boiling point -40.8 ° C) was widely used as a working fluid for air conditioners, refrigerators, refrigerators, etc., but in recent years, the depletion of the stratospheric ozone layer due to CFCs has become a global environmental problem, and the stratospheric ozone depletion capacity is high. Therefore, the Montreal International Convention has already decided the regulation of the usage and production, and there is a movement to abolish the usage and production in the future. In order to have almost no effect on the stratospheric ozone layer, it is required that the molecular structure does not contain chlorine, and as a possible possibility, chlorine-free fluorohydrocarbons have been proposed. ing.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、フッ化
炭化水素類の作動流体は、もう一つの環境問題である地
球温暖化に対する影響を示す地球温暖化係数(以下GW
Pと記す)は、R22と同程度の影響があるとされてい
る。1994年のIPCC(IntergovermentalPanel on
Climate Change、気候変動政府間パネル)報告によれ
ば、炭酸ガス(CO2)のGWPを1としたときの積算
時水平軸100年の比較値は、R22のGWPは170
0、塩素を含まないフッ化炭化水素類の内、ジフルオロ
メタン(CH2F2、R32、沸点−52℃)のGWPは5
80、ペンタフルオロエタン(CF3-CHF2、R125、沸
点−48℃)のGWPは3200、1,1,1−トリフ
ルオロエタン(CF3-CH3、R143a、沸点−48℃)
のGWPは4400、1,1,1,2−テトラフルオロ
エタン(CF3-CH2F、R134a、沸点−27℃)のGW
Pは1300、1,1−ジフルオロエタン(CHF2-CH3
R152a、沸点−25℃)のGWPは140とされて
いる。ここでR32、R125、R143aはR22よ
り沸点が低く、ヒートポンプ装置の凝縮圧力が非常に高
くなるため、単一ではR22の代替物とはなりえない。
R134aやR152aはR22より沸点が高く、ヒー
トポンプ装置の冷凍能力が低下するため、同じく単一で
はR22の代替物とはなりえない。さらにR32、R1
43a、R152aは、可燃性があるという欠点があ
る。
However, the working fluid of fluorohydrocarbons has a global warming potential (hereinafter referred to as GW) which has an effect on global warming which is another environmental problem.
(Denoted as P) is said to have the same effect as R22. IPCC (Intergovermental Panel on 1994)
According to a report by Climate Change, an intergovernmental panel on climate change, when the GWP of carbon dioxide (CO 2 ) is set to 1, the comparison value for 100 years on the horizontal axis at the time of accumulation is 170 for the GWP of R22.
0, among fluorohydrocarbons that do not contain chlorine, difluoromethane (CH 2 F 2 , R32, boiling point -52 ° C) has a GWP of 5
80, pentafluoroethane (CF 3 -CHF 2, R125, boiling point -48 ° C.) is GWP of 3200,1,1,1- trifluoroethane (CF 3 -CH 3, R143a, boiling point -48 ° C.)
GW of the GWP 4400,1,1,1,2- tetrafluoroethane (CF 3 -CH 2 F, R134a , boiling point -27 ° C.)
P is 1300, 1,1-difluoroethane (CHF 2 —CH 3 ,
R152a, boiling point -25 ° C) has a GWP of 140. Here, R32, R125, and R143a have lower boiling points than R22, and the condensing pressure of the heat pump device becomes very high. Therefore, R32, R125, and R143a cannot be used alone as a substitute for R22.
Since R134a and R152a have a higher boiling point than R22 and the refrigerating capacity of the heat pump device is lowered, R134a and R152a cannot be replaced by R22 alone. Further R32, R1
43a and R152a have the drawback of being flammable.

【0004】本発明は、上述の問題に鑑みて試されたも
ので、成層圏オゾン層に及ぼす影響がほとんどなく、地
球温暖化に対する影響も小さくできる可能性のあるR2
2の代替となる作動流体を提供するものであり、本発明
では塩素を含まないトリフルオロイオドメタンを含む混
合作動流体を提案しようとするものである。
The present invention has been tried in view of the above-mentioned problems, and has almost no effect on the stratospheric ozone layer, and may have a small effect on global warming.
The present invention provides an alternative working fluid of No. 2, and the present invention seeks to propose a mixed working fluid containing chlorine-free trifluoroiodomethane.

【0005】ここでトリフルオロイオドメタン(CF3I、
沸点−22.7℃)は、別名イオドトリフルオロメタン
やトリフルオロメチルイオダイドとも呼ばれ、1の炭素
原子と3の弗素原子と1の沃素原子のみから成り、分子
構造中に塩素を含まないため、オゾン破壊能力がほとん
どなく、かつ不燃性である。またトリフルオロイオドメ
タンのGWPは、フッ化炭化水素類のGWPよりもかな
り小さくほとんど炭酸ガス(CO2)と同程度になる可
能性のある代替物として研究が行われている。しかしな
がらトリフルオロイオドメタンは、大気圧下の沸点が−
22.7℃であるため、ジフルオロメタン(R32)や
ペンタフルオロエタン(R125)と混合し、組成範囲
を特定することによって、R22と同等の沸点を有する
混合物を構成することができるものである。ここでジフ
ルオロメタン(R32)とペンタフルオロエタン(R1
25)は、特公平6−914(USP4,978,46
7)において共沸様混合物を構成することが知られてい
るため、R32/R125混合物にトリフルオロイオド
メタンを混合させてもよい。
Here, trifluoroiodomethane (CF 3 I,
(Boiling point −22.7 ° C.) is also known as iodotrifluoromethane or trifluoromethyliodide, and is composed of only 1 carbon atom, 3 fluorine atoms and 1 iodine atom, and does not contain chlorine in the molecular structure. Therefore, it has almost no ozone depletion capability and is nonflammable. The GWP of trifluoroiodomethane is much smaller than that of fluorohydrocarbons, and is being studied as an alternative that can be almost the same as carbon dioxide (CO 2 ). However, trifluoroiodomethane has a boiling point at atmospheric pressure of −
Since it is 22.7 ° C., it is possible to form a mixture having a boiling point equivalent to that of R22 by mixing with difluoromethane (R32) or pentafluoroethane (R125) and specifying the composition range. Here, difluoromethane (R32) and pentafluoroethane (R1)
25) is Japanese Patent Publication No. 6-914 (USP 4,978,46).
Since it is known to form an azeotrope-like mixture in 7), the R32 / R125 mixture may be mixed with trifluoroiodomethane.

【0006】[0006]

【課題を解決するための手段】本発明は上述の課題を解
決するため、塩素を含まないトリフルオロイオドメタン
と弗化炭化水素類からなる混合作動流体であり、弗化炭
化水素類はジフルオロメタン(R32)やペンタフルオ
ロエタン(R125)のいづれかまたは両方を含むもの
である。さらに本発明は、これらの混合物の組成範囲
を、混合物の蒸気圧がほぼR22と同等となるように特
定するものである。また本発明は、その作動流体を用い
たヒートポンプ装置である。
In order to solve the above-mentioned problems, the present invention is a mixed working fluid composed of trifluoroiodomethane containing no chlorine and fluorohydrocarbons, wherein the fluorohydrocarbons are difluoromethane. (R32) and / or pentafluoroethane (R125). Furthermore, the present invention specifies the composition range of these mixtures such that the vapor pressure of the mixtures is approximately equal to R22. Further, the present invention is a heat pump device using the working fluid.

【0007】[0007]

【作用】本発明は、上述の組合せによって、作動流体
を、塩素を含まないトリフルオロイオドメタンと弗化炭
化水素類から成る混合物となすことにより、成層圏オゾ
ン層に及ぼす影響をほとんどなくすることを可能とする
ものである。特に上述の組合せおよび特定された組成範
囲におけるODPも0と予想され、R22の代替として
極めて有望な作動流体となるものである。
The present invention, by the combination described above, makes the working fluid a mixture of trifluoroiodomethane and fluorohydrocarbons containing no chlorine so that the working fluid has almost no influence on the stratospheric ozone layer. It is possible. In particular, the ODP in the above-mentioned combination and in the specified composition range is also expected to be 0, which is a very promising working fluid as an alternative to R22.

【0008】さらにかかる混合物は、フッ化炭化水素類
のGWPよりもかなり小さくほとんど炭酸ガス(C
2)と同程度になる可能性のあるトリフルオロイオド
メタンと、ジフルオロメタン(R32)やペンタフルオ
ロエタン(R125)のいづれかまたは両方のみから構
成されるため、混合物の蒸気圧がほぼR22と同等とな
るように特定されたジフルオロメタン(R32)やペン
タフルオロエタン(R125)の組成範囲に応じて、地
球温暖化に対する影響も小さくできるものである。
Furthermore, such a mixture is considerably smaller than the GWP of fluorohydrocarbons, and almost no carbon dioxide (C
O 2 ), which may be about the same as trifluoroiodomethane and difluoromethane (R 32) or pentafluoroethane (R 125), or both, so the vapor pressure of the mixture is almost equal to R 22. According to the composition range of difluoromethane (R32) and pentafluoroethane (R125) specified as follows, the influence on global warming can be reduced.

【0009】またトリフルオロイオドメタンは不燃性で
あるため、R125との混合物も不燃性であるばかりで
なく、R32の組成範囲をさらに不燃性の範囲に限定す
ることにより、通常のヒートポンプ装置にそのまま使用
可能である。
Further, since trifluoroiodomethane is nonflammable, not only the mixture with R125 is nonflammable, but the composition range of R32 is further limited to the nonflammable range, so that it can be used as it is in a normal heat pump device. It can be used.

【0010】また本発明は、R22より低沸点であるR
32、R125と、R22より高沸点であるトリフルオ
ロイオドメタンを混合し、その組成範囲を特定すること
によって、エアコン、冷凍機、冷蔵庫等のヒートポンプ
装置の利用温度である略0〜略50℃において、R22
と同程度の蒸気圧を有し、R22と同等の冷凍能力を期
待でき、R22を用いた現行機器でも使用可能な作動流
体を提供することを可能とするものである。
The present invention also provides R, which has a lower boiling point than R22.
32, R125, and trifluoroiodomethane, which has a higher boiling point than R22, are mixed and the composition range thereof is specified, so that the temperature of the heat pump device such as an air conditioner, a refrigerator, and a refrigerator is about 0 to about 50 ° C. , R22
It is possible to provide a working fluid that has a vapor pressure similar to that of R22 and can be expected to have a refrigerating capacity equivalent to that of R22, and that can be used in existing equipment using R22.

【0011】またかかる混合物は、沸点差が約25de
g以内のジフルオロメタン(R32)、ペンタフルオロ
エタン(R125)、トリフルオロイオドメタンの混合
物であるため、ほとんど近共沸の非共沸混合物になると
予想され、凝縮過程および蒸発過程において小さな温度
勾配をもつため、空気等の熱源流体との温度差を近接さ
せたロレンツサイクルを構成することにより、R22よ
りも高い成績係数(COP)のヒートポンプ装置を構成
できるものである。
The mixture has a boiling point difference of about 25 de
Since it is a mixture of difluoromethane (R32), pentafluoroethane (R125), and trifluoroiodomethane within g, it is expected to be a near-azeotropic non-azeotropic mixture, and a small temperature gradient is generated in the condensation process and the evaporation process. Therefore, by constructing a Lorentz cycle in which the temperature difference with a heat source fluid such as air is made close, a heat pump device having a coefficient of performance (COP) higher than that of R22 can be constructed.

【0012】[0012]

【実施例】本発明の作動流体は、トリフルオロイオドメ
タンと、ジフルオロメタン(R32)やペンタフルオロ
エタン(R125)のいづれかまたは両方を含む。また
これらの混合物の組成範囲を、混合物の蒸気圧がほぼR
22と同等となるように特定する。以下、本発明による
作動流体の実施例について、蒸気圧の図を用いて説明す
る。
The working fluid of the present invention contains trifluoroiodomethane and / or difluoromethane (R32) and pentafluoroethane (R125). The composition range of these mixtures is such that the vapor pressure of the mixture is almost R.
It is specified to be equivalent to 22. Examples of working fluids according to the present invention will be described below with reference to vapor pressure diagrams.

【0013】図1は、ジフルオロメタン(CH2F2、R3
2、沸点−52℃)、ペンタフルオロエタン(CF3-CH
F2、R125、沸点−48℃)、トリフルオロイオドメ
タン(CF3I、沸点−22.7℃)の三種の混合物によっ
て構成される作動流体の、一定温度・一定圧力における
平衡状態を三角座標を用いて示したものである。
FIG. 1 shows difluoromethane (CH 2 F 2 , R3
2, boiling point -52 ° C.), pentafluoroethane (CF 3 -CH
F 2, R125, boiling point -48 ° C.), trifluoroiodomethane (CF 3 I, the three types constituted the working fluid by a mixture of the boiling point -22.7 ℃), triangular coordinates an equilibrium state at a constant temperature and constant pressure It is shown by using.

【0014】本三角座標においては、三角形の各頂点
に、上側頂点を基点として反時計回りに沸点の低い順に
単一物質を配置しており、座標平面上のある点における
各成分の組成比(重量比)は、点と三角形の各辺との距
離の比で表される。またこのとき、点と三角形の辺との
距離は、辺に相対する側にある三角座標の頂点に記され
た物質の組成比に対応する。
In the present triangular coordinates, a single substance is arranged at each vertex of the triangle counterclockwise from the upper vertex in the ascending order of the boiling points, and the composition ratio of each component at a certain point on the coordinate plane ( The weight ratio) is represented by the ratio of the distance between the point and each side of the triangle. At this time, the distance between the point and the side of the triangle corresponds to the composition ratio of the substance described at the vertex of the triangular coordinates on the side opposite to the side.

【0015】図1において1は、温度0℃・圧力0.4
98MPaにおける混合物の気液平衡線であり、この温
度・圧力はR22の温度0℃における飽和状態に相当す
る。気液平衡線(R22 0℃相当)1の上側の線1V
は飽和気相線、気液平衡線(R22 0℃相当)1の下
側の線1Lは飽和液相線を表わし、この両線で挟まれた
範囲においては気液平衡状態となる。また2は、温度5
0℃・圧力1.943MPaにおける混合物の気液平衡
線であり、この温度・圧力もR22の温度50℃におけ
る飽和状態に相当する。
In FIG. 1, 1 indicates a temperature of 0 ° C. and a pressure of 0.4.
It is a vapor-liquid equilibrium line of the mixture at 98 MPa, and this temperature / pressure corresponds to the saturated state of R22 at a temperature of 0 ° C. Line 1V above the vapor-liquid equilibrium line (equivalent to R220 ° C) 1
Represents a saturated vapor phase line, and a line 1L below the vapor-liquid equilibrium line (corresponding to R220 of 0 ° C.) 1 represents a saturated liquidus line, and a vapor-liquid equilibrium state is established in a range sandwiched by these lines. 2 is temperature 5
This is a vapor-liquid equilibrium line of the mixture at 0 ° C. and a pressure of 1.943 MPa, and this temperature / pressure also corresponds to the saturated state of R22 at a temperature of 50 ° C.

【0016】飽和気相線V上の組成物は、R22と同じ
温度では、R22より高い圧力で気化し、R22と同じ
圧力で液化する。飽和液相線L上の組成物は、R22と
同じ温度では、R22と同じ圧力で気化し、R22より
低い圧力で液化する。これら2つの線の間のエリアにあ
る組成物は、R22と同じ温度では、R22より高い圧
力で気化し、R22より低い圧力で液化する。すなわち
50℃の気液平衡線2の間のエリアにある組成物は、5
0℃においてはR22より低い圧力で気相から液相に変
化し、R22と同じ圧力では50℃より高い気相が凝縮
して、50℃より低い液相に変化する。また0℃の気液
平衡線1の間のエリアにある組成物は、0℃においては
R22より高い圧力で液相から気相に変化し、R22と
同じ圧力では0℃より低い液相が蒸発して、0℃より高
い気相に変化する。すなわち、気液平行線1および2の
間にある組成物は、温度0℃においてR22とほとんど
同じ蒸発圧力をもち、温度50℃においてR22とほと
んど同じ凝縮圧力をもつため、エアコン、冷凍機、冷蔵
庫等に好適である。
The composition on the saturated vapor phase line V vaporizes at a pressure higher than that of R22 at the same temperature as R22 and liquefies at the same pressure as R22. The composition on the saturated liquidus line L is vaporized at the same temperature as R22 at the same pressure as R22 and liquefied at a pressure lower than R22. The composition in the area between these two lines vaporizes at a pressure higher than R22 and liquefies at a pressure lower than R22 at the same temperature as R22. That is, the composition in the area between the vapor-liquid equilibrium lines 2 at 50 ° C. is 5
At 0 ° C, the gas phase changes to a liquid phase at a pressure lower than R22, and at the same pressure as R22, a gas phase higher than 50 ° C condenses and changes to a liquid phase lower than 50 ° C. The composition in the area between the vapor-liquid equilibrium line 1 at 0 ° C changes from the liquid phase to the vapor phase at a pressure higher than R22 at 0 ° C, and the liquid phase lower than 0 ° C evaporates at the same pressure as R22. Then, the gas phase changes to a temperature higher than 0 ° C. That is, the composition between the gas-liquid parallel lines 1 and 2 has almost the same evaporation pressure as that of R22 at a temperature of 0 ° C. and has the same condensation pressure as that of R22 at a temperature of 50 ° C. And so on.

【0017】図からわかるように、R32、R125及
びトリフルオロイオドメタンがそれぞれ0〜略40重量
%、0〜略65重量%、略35〜略80重量%となるよ
うな組成範囲は、略0〜略50℃の利用温度においてR
22とほぼ同等の蒸気圧を有するため望ましい。さら
に、R32、R125及びトリフルオロイオドメタンが
それぞれ0〜略35重量%、0〜略60重量%、略40
〜略80重量%となるような組成範囲は、0℃と50℃
の間のすべての利用温度においてR22とほぼ同等の蒸
気圧を有するため特に望ましい。
As can be seen from the figure, the composition range in which R32, R125 and trifluoroiodomethane are 0 to about 40% by weight, 0 to about 65% by weight and about 35 to about 80% by weight, respectively, is about 0. ~ R at a usage temperature of about 50 ° C
It is desirable because it has a vapor pressure almost equal to 22. Furthermore, R32, R125, and trifluoroiodomethane are 0 to about 35% by weight, 0 to about 60% by weight, and about 40%, respectively.
The composition range of about 80% by weight is 0 ° C and 50 ° C.
It is particularly desirable because it has a vapor pressure almost equal to R22 at all utilization temperatures between.

【0018】図1中の点A1〜点F1における作動流体の
組成を(表1)に示す。
The composition of the working fluid at points A 1 to F 1 in FIG. 1 is shown in (Table 1).

【0019】[0019]

【表1】 [Table 1]

【0020】点A1〜点C1は気液平衡線(R22 50
℃相当)2の飽和気相線2V上にあると共に、気液平衡
線(R22 0℃相当)1の飽和気相線1V及び気液平
衡線(R22 0℃相当)1の飽和液相線1Lの両線で
挟まれた範囲にあることから、温度0℃・圧力0.49
8MPa(R22の飽和状態に相当)においては気液平
衡状態となり、温度50℃・圧力1.943MPa(R
22の飽和状態に相当)においては飽和気相平衡状態と
なる。また、点D1〜点F1は気液平衡線(R22 50
℃相当)2の飽和液相線2L上にあると共に、気液平衡
線(R22 0℃相当)1の飽和気相線1V及び気液平
衡線(R22 0℃相当)1の飽和液相線1Lの両線で
挟まれた範囲にあることから、温度0℃・圧力0.49
8MPa(R22の飽和状態に相当)においては気液平
衡状態となり、温度50℃・圧力1.943MPa(R
22の飽和状態に相当)においては飽和液相状態とな
る。従って、(表1)に示された組成を有する作動流体
は、0℃・50℃におけるR22の飽和蒸気圧の条件下
で飽和状態あるいは気液平衡状態を実現し、略0〜略5
0℃の利用温度において、同温度におけるR22の飽和
蒸気圧で操作することにより、R22とほぼ等しい凝縮
温度・蒸発温度を得ることが可能となるものである。
Points A 1 to C 1 are gas-liquid equilibrium lines (R2250
(Equivalent to ° C) 2 on the saturated vapor line 2V, and the saturated liquidus line 1V of the vapor-liquid equilibrium line (R22 0 ° C equivalent) 1 and the saturated liquidus line 1L of the vapor-liquid equilibrium line (R22 0 ° C equivalent) The temperature is 0 ° C and the pressure is 0.49 because it is in the range between both lines.
At 8 MPa (corresponding to the saturated state of R22), a gas-liquid equilibrium state is reached, and the temperature is 50 ° C. and the pressure is 1.943 MPa (R
(Corresponding to the saturated state of 22), a saturated vapor phase equilibrium state is reached. Further, points D 1 to F 1 are gas-liquid equilibrium lines (R2250
℃ 2) saturated liquidus line 2L, gas-liquid equilibrium line (R22 0 ° C equivalent) 1 saturated gas phase line 1V and gas-liquid equilibrium line (R220 0 ° C equivalent) 1 saturated liquidus line 1L The temperature is 0 ° C and the pressure is 0.49 because it is in the range between both lines.
At 8 MPa (corresponding to the saturated state of R22), a gas-liquid equilibrium state is reached, and the temperature is 50 ° C. and the pressure is 1.943 MPa (R
(Corresponding to the saturated state of No. 22), it becomes a saturated liquid phase state. Therefore, the working fluid having the composition shown in (Table 1) achieves a saturated state or a gas-liquid equilibrium state under the conditions of the saturated vapor pressure of R22 at 0 ° C and 50 ° C, and the working fluid has a temperature of approximately 0 to approximately 5.
By operating at a saturated vapor pressure of R22 at the same temperature at a use temperature of 0 ° C., it becomes possible to obtain a condensation temperature / evaporation temperature almost equal to that of R22.

【0021】ここでは、気液平衡線(R22 0℃相
当)1あるいは気液平衡線(R2250℃相当)2上の
点についてのみ説明したが、点A1〜点F1の内側にある
点、すなわち、温度0℃・圧力0.498MPa及び温
度50℃・圧力1.943MPa(両者ともR22の飽
和状態に相当)において気液平衡状態となる組成を有す
る作動流体についても同様に操作することにより、略0
〜略50℃の利用温度においてR22とほぼ等しい凝縮
温度・蒸発温度を得ることが可能となるものである。
Here, only the points on the gas-liquid equilibrium line (corresponding to R220 ° C.) 1 or the gas-liquid equilibrium line (corresponding to R2250 ° C.) 2 are described, but points inside the points A 1 to F 1 That is, the same operation is performed on the working fluid having a composition in a gas-liquid equilibrium state at a temperature of 0 ° C. and a pressure of 0.498 MPa and at a temperature of 50 ° C. and a pressure of 1.943 MPa (both correspond to the saturated state of R22). Almost 0
It is possible to obtain a condensation temperature / evaporation temperature almost equal to R22 at a use temperature of about 50 ° C.

【0022】例えば、共沸様混合物である50重量%/
50重量%のR32/R125混合物にトリフルオロイ
オドメタンを混合させる場合には、図1の破線上で示さ
れる。この場合にはR32/R125混合物及びトリフ
ルオロイオドメタンがそれぞれ略25〜略50重量%、
略50〜略75重量%となるような組成範囲、すなわ
ち、R32、R125及びトリフルオロイオドメタンが
それぞれ略12.5〜略25重量%、略12.5〜略2
5重量%、略50〜略75重量%となるような組成範囲
は、略0〜略50℃の利用温度においてR22とほぼ同
等の蒸気圧を有するため望ましい。R32/R125混
合物(50重量%/50重量%)のGWPは、1900
であるため、これにほとんど無視できるGWPしかない
トリフルオロイオドメタンを混合した作動流体は、R3
2/R125混合物の組成範囲の略25〜略50重量%
に相当する500〜950にまでGWPを低減でき、地
球温暖化に対する影響をR22よりも小さくできるもの
である。共沸様混合物であるR32/R125混合物
は、R32が40〜60重量%、R125が60〜40
重量%であることが望ましく、これにトリフルオロイオ
ドメタンを混合させた混合作動流体のGWPも、同様に
地球温暖化に対する影響を小さくできるものである。
For example, 50% by weight, which is an azeotropic mixture,
When 50 wt% R32 / R125 mixture is mixed with trifluoroiodomethane, it is shown on the dashed line in FIG. In this case, the R32 / R125 mixture and trifluoroiodomethane are each about 25 to about 50% by weight,
The composition range is about 50 to about 75% by weight, that is, R32, R125 and trifluoroiodomethane are about 12.5 to about 25% by weight, and about 12.5 to about 2 respectively.
The composition range of 5% by weight, about 50 to about 75% by weight, is desirable because it has a vapor pressure almost equal to that of R22 at a use temperature of about 0 to about 50 ° C. The GWP of the R32 / R125 mixture (50 wt% / 50 wt%) is 1900.
Therefore, the working fluid mixed with trifluoroiodomethane which has almost negligible GWP is R3
About 25 to about 50% by weight of the composition range of the 2 / R125 mixture
The GWP can be reduced to 500 to 950 which is equivalent to, and the influence on global warming can be made smaller than that of R22. The R32 / R125 mixture, which is an azeotrope-like mixture, contains 40 to 60% by weight of R32 and 60 to 40 of R125.
The GWP of the mixed working fluid, in which the content is preferably wt% and mixed with trifluoroiodomethane, can similarly reduce the influence on global warming.

【0023】(表2)は、50重量%/50重量%のR
32/R125混合物とトリフルオロイオドメタンから
なる3成分系の理想的な冷凍性能である。条件は、凝縮
平均温度が50℃、蒸発平均温度が0℃、凝縮器出口過
冷却度が0deg、蒸発器出口過熱度が0degの場合
である。(表2)からわかるように、R22と同等の蒸
気圧とするための組成範囲であるR32/R125(5
0重量%/50重量%)が25〜50重量%と、トリフ
ルオロイオドメタンが50〜75重量%からなる3成分
系、すなわちR32が12.5〜25重量%、R125
が12.5〜25重量%、トリフルオロイオドメタンが
50〜75重量%からなる3成分系は、ほとんどR22
と同等の特性を示す。特にR32が20重量%、R12
5が20重量%、トリフルオロイオドメタンが60重量
%からなる3成分系は、冷凍能力と成績係数の両方がほ
とんどR22と同じ特性を示す。また凝縮過程と蒸発過
程における温度勾配は10deg以下であり、近共沸混
合物となる。この温度勾配を逆に利用して、熱源流体と
の温度差を近接させたロレンツサイクルを構成すること
により、(表1)よりも高い成績係数を期待できる。
(Table 2) shows 50% by weight / 50% by weight of R
It is the ideal refrigeration performance of a ternary system consisting of a 32 / R125 mixture and trifluoroiodomethane. The conditions are the case where the condensation average temperature is 50 ° C., the evaporation average temperature is 0 ° C., the condenser outlet supercooling degree is 0 deg, and the evaporator outlet superheat degree is 0 deg. As can be seen from (Table 2), R32 / R125 (5 which is the composition range for making the vapor pressure equivalent to that of R22
0 to 50% by weight) and 50 to 75% by weight of trifluoroiodomethane, that is, R32 is 12.5 to 25% by weight and R125 is 125% by weight.
12.5 to 25% by weight and trifluoroiodomethane 50 to 75% by weight, the three-component system is almost R22.
Shows the same characteristics as. 20% by weight of R32, R12
The three-component system in which 5 is 20% by weight and trifluoroiodomethane is 60% by weight exhibits almost the same characteristics as R22 in both refrigerating capacity and coefficient of performance. In addition, the temperature gradient in the condensation process and the evaporation process is 10 deg or less, and a near azeotropic mixture is formed. By utilizing this temperature gradient in reverse to construct a Lorentz cycle in which the temperature difference with the heat source fluid is close to each other, a higher coefficient of performance can be expected than in (Table 1).

【0024】[0024]

【表2】 [Table 2]

【0025】またトリフルオロイオドメタンとジフルオ
ロメタン(R32)のみから成る二種の混合作動流体の
場合には、R22と同等の蒸気圧とするための組成範囲
は、図1の三角座標のトリフルオロイオドメタンとR3
2を結ぶ辺上の範囲が好適となる。この場合にはトリフ
ルオロイオドメタン及びR32がそれぞれ略60〜略8
0重量%、略20〜略40重量%となるような組成範囲
が望ましく、R32の可燃性をトリフルオロメタンの不
燃性で緩和することができる。R32単独のGWPは5
80とR22よりも小さく、これにほとんど無視できる
GWPしかないトリフルオロイオドメタンを混合した作
動流体は、R32の組成範囲の略20〜略40重量%に
相当する120〜230にまでGWPを低減でき、地球
温暖化に対する影響をR22よりもおおいに小さくでき
るものである。従って、トリフルオロイオドメタンとジ
フルオロメタン(R32)のみからなる2成分系も、R
22の代替物として有用なものである。
Further, in the case of a mixed working fluid of two kinds consisting only of trifluoroiodomethane and difluoromethane (R32), the composition range for making the vapor pressure equivalent to that of R22 is the trifluoride trigonometric coordinates in FIG. Odomethane and R3
The range on the side connecting the two is suitable. In this case, trifluoroiodomethane and R32 are about 60 to about 8 respectively.
The composition range is preferably 0% by weight, approximately 20 to approximately 40% by weight, and the flammability of R32 can be mitigated by the incombustibility of trifluoromethane. R32 alone GWP is 5
The working fluid, which is smaller than 80 and R22, and mixed with trifluoroiodomethane, which has almost negligible GWP, can reduce the GWP to 120 to 230 corresponding to about 20 to about 40 wt% of the composition range of R32. The effect on global warming can be made much smaller than that of R22. Therefore, the binary system consisting only of trifluoroiodomethane and difluoromethane (R32) is
It is useful as a substitute for No. 22.

【0026】(表3)は、R32とトリフルオロイオド
メタンのみからなる2成分系の理想的な冷凍性能であ
る。条件は、凝縮平均温度が50℃、蒸発平均温度が0
℃、凝縮器出口過冷却度が0deg、蒸発器出口過熱度
が0degの場合である。(表3)からわかるように、
R22と同等の蒸気圧とするための組成範囲であるトリ
フルオロイオドメタンが60〜80重量%と、ジフルオ
ロメタン(R32)が20〜40重量%のみからなる2
成分系は、ほとんどR22と同等の特性を示す。特にト
リフルオロイオドメタンが70重量%と、ジフルオロメ
タン(R32)が30重量%のみからなる2成分系は、
冷凍能力と成績係数の両方がR22よりも向上する。ま
た凝縮過程と蒸発過程における温度勾配は10deg以
下であり、近共沸混合物となる。この温度勾配を逆に利
用して、熱源流体との温度差を近接させたロレンツサイ
クルを構成することにより、(表3)よりも高い成績係
数を期待できる。
Table 3 shows the ideal refrigerating performance of a binary system consisting only of R32 and trifluoroiodomethane. The conditions are that the condensation average temperature is 50 ° C and the evaporation average temperature is 0.
C., the supercooling degree at the condenser outlet is 0 deg, and the superheat degree at the evaporator outlet is 0 deg. As can be seen from (Table 3),
Trifluoroiodomethane, which is a composition range for making the vapor pressure equivalent to that of R22, 60 to 80% by weight, and difluoromethane (R32) is 20 to 40% by weight.
The component system exhibits almost the same characteristics as R22. Especially, the two-component system consisting of 70% by weight of trifluoroiodomethane and 30% by weight of difluoromethane (R32) is
Both freezing capacity and coefficient of performance are improved over R22. In addition, the temperature gradient in the condensation process and the evaporation process is 10 deg or less, and a near azeotropic mixture is formed. By utilizing this temperature gradient in reverse to construct a Lorentz cycle in which the temperature difference with the heat source fluid is close, a higher coefficient of performance can be expected than in (Table 3).

【0027】[0027]

【表3】 [Table 3]

【0028】さらにトリフルオロイオドメタンとペンタ
フルオロエタン(R125)のみから成る二種の混合作
動流体の場合には、R22と同等の蒸気圧とするための
組成範囲は、図1の三角座標のトリフルオロイオドメタ
ンとR125を結ぶ辺上の範囲が好適となる。この場合
にはトリフルオロイオドメタン及びR125がそれぞれ
略35〜略60重量%、略40〜略65重量%となるよ
うな組成範囲が望ましく、いづれも不燃性であるため、
この二種混合物も不燃性となる。R125単独のGWP
は3200とR22よりも大きいが、これにほとんど無
視できるGWPしかないトリフルオロイオドメタンを混
合した作動流体は、R125の組成範囲の略40〜略6
5重量%に相当する1300〜2100にまでGWPを
低減でき、R125の組成範囲を略40〜略53重量%
まで限定すれば、地球温暖化に対する影響をR22より
も小さい1300〜1700にまでGWPを低減できる
ものである。従って、トリフルオロイオドメタンとペン
タフルオロエタン(R125)のみからなる2成分系
も、R22の代替物として有用なものである。
Further, in the case of a mixed working fluid of two kinds consisting only of trifluoroiodomethane and pentafluoroethane (R125), the composition range for making the vapor pressure equivalent to that of R22 is the trifluoride of triangular coordinates in FIG. The range on the side connecting the loiodomethane and R125 is preferable. In this case, it is desirable that the composition range is such that trifluoroiodomethane and R125 are approximately 35 to approximately 60% by weight and approximately 40 to approximately 65% by weight, respectively, and both are nonflammable.
The binary mixture is also nonflammable. R125 alone GWP
Is larger than R22, but the working fluid mixed with trifluoroiodomethane, which has almost negligible GWP, is about 40 to about 6 in the composition range of R125.
The GWP can be reduced to 1300 to 2100, which corresponds to 5% by weight, and the composition range of R125 is about 40 to about 53% by weight.
If it is limited to, it is possible to reduce the GWP to 1300 to 1700, which is smaller than R22 and has an influence on global warming. Therefore, a binary system consisting only of trifluoroiodomethane and pentafluoroethane (R125) is also a useful alternative to R22.

【0029】(表4)は、R125とトリフルオロイオ
ドメタンのみからなる2成分系の理想的な冷凍性能であ
る。条件は、凝縮平均温度が50℃、蒸発平均温度が0
℃、凝縮器出口過冷却度が0deg、蒸発器出口過熱度
が0degの場合である。(表4)からわかるように、
R22と同等の蒸気圧とするための組成範囲であるトリ
フルオロイオドメタンが35〜60重量%と、ペンタフ
ルオロエタン(R125)が40〜65重量%のみから
なる2成分系は、R22よりも劣る特性を示すが、吐出
温度を低減できるという効果がある。また凝縮過程と蒸
発過程における温度勾配は10deg以下であり、近共
沸混合物となる。この温度勾配を逆に利用して、熱源流
体との温度差を近接させたロレンツサイクルを構成する
ことにより、(表4)よりも高い成績係数を期待でき
る。
Table 4 shows the ideal refrigeration performance of a binary system consisting of R125 and trifluoroiodomethane only. The conditions are that the condensation average temperature is 50 ° C and the evaporation average temperature is 0.
C., the supercooling degree at the condenser outlet is 0 deg, and the superheat degree at the evaporator outlet is 0 deg. As can be seen from (Table 4),
A two-component system consisting of 35 to 60% by weight of trifluoroiodomethane and 40 to 65% by weight of pentafluoroethane (R125), which is a composition range for obtaining a vapor pressure equivalent to that of R22, is inferior to R22. Although exhibiting characteristics, it has an effect of reducing the discharge temperature. In addition, the temperature gradient in the condensation process and the evaporation process is 10 deg or less, and a near azeotropic mixture is formed. By utilizing this temperature gradient in reverse to construct a Lorentz cycle in which the temperature difference with the heat source fluid is close, a higher coefficient of performance can be expected than in (Table 4).

【0030】[0030]

【表4】 [Table 4]

【0031】[0031]

【発明の効果】以上の説明から明らかなように、本発明
は、35〜80重量%のトリフルオロイオドメタンと、
40重量%以下のジフルオロメタン(R32)および6
5重量%以下のペンタフルオロエタン(R125)のい
づれかまたは両方を含み、作動流体を、分子構造中に塩
素を含まない化合類のみからなる混合物となし、その組
成範囲を特定したことにより、 (1)成層圏オゾン層に及ぼす影響をR22と同じく、
ほとんどなしとする作動流体の選択の幅を拡大すること
が可能である。 (2)かかる混合物は、地球温暖化係数をほとんど無視
できるトリフルオロイオドメタンと、ジフルオロメタン
(R32)やペンタフルオロエタン(R125)から構
成されるため、地球温暖化に対する影響をトリフルオロ
イオドメタンの組成範囲に応じて小さくできる。 (3)トリフルオロイオドメタンは不燃性であるため、
R125との混合物も不燃性であるばかりでなく、R3
2の組成範囲をさらに不燃性の範囲に限定することによ
り、通常のヒートポンプ装置にそのまま使用可能であ
る。 (4)エアコン、冷凍機、冷蔵庫等のヒートポンプ装置
の利用温度である略0〜略50℃において、R22と同
程度の蒸気圧を有し、R22と同等の冷凍能力を期待で
き、R22を用いた現行機器でも使用可能である。 (5)かかる混合物はほとんど近共沸の非共沸混合物に
なると予想され、ロレンツサイクルを構成することによ
り、R22よりも高い成績係数を期待できる。等の効果
を有するものである。
As is apparent from the above description, the present invention comprises 35 to 80% by weight of trifluoroiodomethane,
40% by weight or less of difluoromethane (R32) and 6
By including 5 wt% or less of either or both of pentafluoroethane (R125), the working fluid as a mixture consisting only of compounds having no chlorine in the molecular structure, and by specifying its composition range, (1 ) The effect on the stratospheric ozone layer is the same as R22.
It is possible to expand the range of choices of working fluid that are almost eliminated. (2) Since such a mixture is composed of trifluoroiodomethane (R32) and pentafluoroethane (R125), which have almost no negligible global warming potential, the effect of trifluoroiodomethane on global warming can be reduced. It can be reduced depending on the composition range. (3) Since trifluoroiodomethane is nonflammable,
The mixture with R125 is not only non-flammable but also R3
By further limiting the composition range of 2 to the non-flammable range, it can be used as it is in a normal heat pump device. (4) At the operating temperature of a heat pump device such as an air conditioner, a refrigerator, or a refrigerator, which is approximately 0 to approximately 50 ° C., has a vapor pressure similar to that of R22 and can be expected to have the same refrigerating capacity as R22. It can be used with existing equipment. (5) It is expected that such a mixture will be an almost azeotropic non-azeotropic mixture, and by constructing the Lorentz cycle, a higher coefficient of performance than that of R22 can be expected. And so on.

【図面の簡単な説明】[Brief description of drawings]

【図1】R32、R125、トリフルオロイオドメタン
の三種の混合物によって構成される作動流体の、一定温
度・一定圧力における平衡状態の三角座標図
FIG. 1 is a triangular coordinate diagram of an equilibrium state of a working fluid composed of a mixture of R32, R125 and trifluoroiodomethane at a constant temperature and a constant pressure.

【符号の説明】[Explanation of symbols]

1 気液平衡線(R22 0℃相当) 2 気液平衡線(R22 50℃相当) V 飽和気相線 L 飽和気相線 1 Gas-liquid equilibrium line (R22 equivalent to 0 ° C) 2 Gas-liquid equilibrium line (R22 equivalent to 50 ° C) V Saturated vapor phase line L Saturated vapor phase line

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】40重量%以下のジフルオロメタンおよび
65重量%以下のペンタフルオロエタンの少なくとも一
方と、35〜80重量%のトリフルオロイオドメタンを
含むことを特徴とする混合作動流体。
1. A mixed working fluid comprising 40% by weight or less of difluoromethane and 65% by weight or less of pentafluoroethane and 35-80% by weight of trifluoroiodomethane.
【請求項2】35〜80重量%のトリフルオロイオドメ
タンと、40重量%以下のジフルオロメタンと、65重
量%以下のペンタフルオロエタンを含む3成分からなる
ことを特徴とする請求項1記載の混合作動流体。
2. A three-component composition comprising 35-80 wt% trifluoroiodomethane, 40 wt% or less difluoromethane, and 65 wt% or less pentafluoroethane. Mixed working fluid.
【請求項3】ジフルオロメタンが40〜60重量%、ペ
ンタフルオロエタンが60〜40重量%である共沸様混
合物を25〜50重量%と、50〜75重量%のトリフ
ルオロイオドメタンを混合したことを特徴とする請求項
2記載の混合作動流体。
3. An azeotrope-like mixture containing 40 to 60% by weight of difluoromethane and 60 to 40% by weight of pentafluoroethane is mixed with 25 to 50% by weight of trifluoroiodomethane. The mixed working fluid according to claim 2, wherein:
【請求項4】60〜80重量%のトリフルオロイオドメ
タンと、20〜40重量%のジフルオロメタンの2成分
からなることを特徴とする請求項1記載の混合作動流
体。
4. The mixed working fluid according to claim 1, which comprises two components of 60 to 80% by weight of trifluoroiodomethane and 20 to 40% by weight of difluoromethane.
【請求項5】35〜60重量%のトリフルオロイオドメ
タンと、40〜65重量%のペンタフルオロエタンの2
成分からなることを特徴とする請求項1記載の混合作動
流体。
5. Two parts of 35 to 60% by weight of trifluoroiodomethane and 40 to 65% by weight of pentafluoroethane.
The mixed working fluid of claim 1, wherein the mixed working fluid comprises components.
【請求項6】35〜80重量%のトリフルオロイオドメ
タンと、40重量%以下のジフルオロメタンおよび65
重量%以下のペンタフルオロエタンのいづれかまたは両
方を含む請求項1記載の混合作動流体を使用したヒート
ポンプ装置。
6. 35 to 80% by weight of trifluoroiodomethane and 40% by weight or less of difluoromethane and 65.
The heat pump apparatus using the mixed working fluid according to claim 1, which contains less than or equal to 1% by weight of pentafluoroethane.
JP7080933A 1995-04-06 1995-04-06 Mixed working fluid and heat pump device using the same Pending JPH08277389A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7080933A JPH08277389A (en) 1995-04-06 1995-04-06 Mixed working fluid and heat pump device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7080933A JPH08277389A (en) 1995-04-06 1995-04-06 Mixed working fluid and heat pump device using the same

Publications (1)

Publication Number Publication Date
JPH08277389A true JPH08277389A (en) 1996-10-22

Family

ID=13732257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7080933A Pending JPH08277389A (en) 1995-04-06 1995-04-06 Mixed working fluid and heat pump device using the same

Country Status (1)

Country Link
JP (1) JPH08277389A (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005103189A1 (en) * 2004-04-16 2005-11-03 Honeywell International, Inc. Azeotrope-like compositions of difluoromethane and trifluoroiodomethane
WO2006069362A3 (en) * 2004-12-21 2007-03-01 Honeywell Int Inc Stabilized iodocarbon compositions
JP2008504373A (en) * 2004-04-16 2008-02-14 ハネウェル・インターナショナル・インコーポレーテッド An azeotrope-like composition of difluoromethane and trifluoroiodomethane
WO2008136288A1 (en) * 2007-04-27 2008-11-13 Asahi Glass Company, Limited Stabilizer for working medium, working medium composition, and heat exchange method
US7465698B2 (en) 2004-04-16 2008-12-16 Honeywell International Inc. Azeotrope-like compositions of difluoromethane and trifluoroiodomethane
US7479477B2 (en) 2004-04-16 2009-01-20 Honeywell International Inc. Azeotrope-like compositions of difluoromethane and trifluoroiodomethane
JP2009024152A (en) * 2007-06-20 2009-02-05 Daikin Ind Ltd Nonflammable composition of low global warming factor comprising trifluoroiodomethane and difluoromethane
US7605117B2 (en) 2004-04-16 2009-10-20 Honeywell International Inc. Methods of replacing refrigerant
US7622435B2 (en) 2004-04-16 2009-11-24 Honeywell International Inc. Methods of replacing refrigerant
TWI384062B (en) * 2004-04-16 2013-02-01 Honeywell Int Inc Azeotrope-like compositions of tetrafluoropropene and trifluoroiodomethane
WO2014097161A1 (en) * 2012-12-18 2014-06-26 Tazzetti S.P.A. Low environmental impact refrigerant gas mixtures
US8809254B2 (en) * 2009-01-13 2014-08-19 Honeywell International Inc. Azeotrope-like compositions of pentafluoroethane and trifluoroiodomethane
US9175201B2 (en) 2004-12-21 2015-11-03 Honeywell International Inc. Stabilized iodocarbon compositions
WO2018022888A1 (en) 2016-07-29 2018-02-01 Honeywell International Inc. Heat transfer compositions, methods and systems
US9920230B2 (en) 2004-12-21 2018-03-20 Honeywell International Inc. Use of low GWP refrigerants comprising CF3I with stable lubricants
US10301521B2 (en) 2016-07-29 2019-05-28 Honeywell International Inc. Heat transfer methods, systems and compositions
WO2019138594A1 (en) 2018-01-15 2019-07-18 三菱電機株式会社 Air-conditioning device
WO2019245045A1 (en) * 2018-06-22 2019-12-26 ダイキン工業株式会社 Composition containing refrigerant, use thereof, refrigerator having same, and operation method for said refrigerator
JP2020003163A (en) * 2018-06-29 2020-01-09 株式会社富士通ゼネラル Air conditioner
JP2020518694A (en) * 2017-05-05 2020-06-25 ハネウェル・インターナショナル・インコーポレーテッドHoneywell International Inc. Heat transfer compositions, methods and systems
JP2020536994A (en) * 2017-10-06 2020-12-17 ハネウェル・インターナショナル・インコーポレーテッドHoneywell International Inc. Heat transfer compositions, methods, and systems
US10953257B2 (en) 2019-04-19 2021-03-23 Kidde Technologies, Inc. Fire suppression composition
US11291876B2 (en) * 2019-04-19 2022-04-05 Kidde Technologies, Inc. Fire suppression agent composition
US11326998B2 (en) 2019-04-19 2022-05-10 Kidde Technologies, Inc. System and method for monitoring a fire suppression blend
US11421137B2 (en) 2018-06-12 2022-08-23 Daikin Industries, Ltd. Refrigerant-containing composition, heat transfer medium, and heat cycle system
WO2022266620A1 (en) * 2021-06-16 2022-12-22 Honeywell International Inc. Heat transfer compositions. methods and systems

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI384062B (en) * 2004-04-16 2013-02-01 Honeywell Int Inc Azeotrope-like compositions of tetrafluoropropene and trifluoroiodomethane
WO2005103190A1 (en) * 2004-04-16 2005-11-03 Honeywell International Inc. Azeotrope-like compositions of tetrafluoropropene and trifluoroiodomethane
WO2005103189A1 (en) * 2004-04-16 2005-11-03 Honeywell International, Inc. Azeotrope-like compositions of difluoromethane and trifluoroiodomethane
JP2008504373A (en) * 2004-04-16 2008-02-14 ハネウェル・インターナショナル・インコーポレーテッド An azeotrope-like composition of difluoromethane and trifluoroiodomethane
JP2008506793A (en) * 2004-04-16 2008-03-06 ハネウェル・インターナショナル・インコーポレーテッド Azeotropic composition of tetrafluorofluoromethane and trifluoroiodomethane
AU2005236038B2 (en) * 2004-04-16 2008-10-02 Honeywell International Inc. Azeotrope-like compositions of difluoromethane and trifluoroiodomethane
KR101331778B1 (en) * 2004-04-16 2013-11-21 허니웰 인터내셔널 인코포레이티드 Azeotrope-like compositions of difluoromethane and trifluoroiodomethane
US7465698B2 (en) 2004-04-16 2008-12-16 Honeywell International Inc. Azeotrope-like compositions of difluoromethane and trifluoroiodomethane
US7479477B2 (en) 2004-04-16 2009-01-20 Honeywell International Inc. Azeotrope-like compositions of difluoromethane and trifluoroiodomethane
US8492327B2 (en) 2004-04-16 2013-07-23 Honeywell International Inc. Azeotrope-like compositions of difluoromethane and trifluoroiodomethane
US7605117B2 (en) 2004-04-16 2009-10-20 Honeywell International Inc. Methods of replacing refrigerant
US7622435B2 (en) 2004-04-16 2009-11-24 Honeywell International Inc. Methods of replacing refrigerant
EP2272936A1 (en) * 2004-04-16 2011-01-12 Honeywell International Inc. Azeotrope-like compositions of difluo-romethane and trifluoroiodomethane
EP2292715A1 (en) * 2004-04-16 2011-03-09 Honeywell International Inc. Azeotrope-like compositions of tetrafluoropropene and trifluoroiodomethane
JP2012067309A (en) * 2004-04-16 2012-04-05 Honeywell Internatl Inc Azeotrope-like composition of difluoromethane and trifluoroiodomethane
JP2012067308A (en) * 2004-04-16 2012-04-05 Honeywell Internatl Inc Azeotropic composition of tetrafluoropropene and trifluoroiodomethane
US8163689B2 (en) 2004-04-16 2012-04-24 Honeywell International Inc. Azeotrope-like compositions of difluoromethane and trifluoroiodomethane
US9175201B2 (en) 2004-12-21 2015-11-03 Honeywell International Inc. Stabilized iodocarbon compositions
WO2006069362A3 (en) * 2004-12-21 2007-03-01 Honeywell Int Inc Stabilized iodocarbon compositions
US9920230B2 (en) 2004-12-21 2018-03-20 Honeywell International Inc. Use of low GWP refrigerants comprising CF3I with stable lubricants
WO2008136288A1 (en) * 2007-04-27 2008-11-13 Asahi Glass Company, Limited Stabilizer for working medium, working medium composition, and heat exchange method
JP2009024152A (en) * 2007-06-20 2009-02-05 Daikin Ind Ltd Nonflammable composition of low global warming factor comprising trifluoroiodomethane and difluoromethane
US8809254B2 (en) * 2009-01-13 2014-08-19 Honeywell International Inc. Azeotrope-like compositions of pentafluoroethane and trifluoroiodomethane
US9999794B2 (en) 2012-12-18 2018-06-19 Tazzetti S.P.A. Low environmental impact refrigerant gas mixtures
WO2014097161A1 (en) * 2012-12-18 2014-06-26 Tazzetti S.P.A. Low environmental impact refrigerant gas mixtures
AU2017302342B2 (en) * 2016-07-29 2020-06-18 Honeywell International Inc. Heat transfer compositions, methods and systems
EP3828245A1 (en) * 2016-07-29 2021-06-02 Honeywell International Inc. Heat transfer compositions, methods and systems
US10301521B2 (en) 2016-07-29 2019-05-28 Honeywell International Inc. Heat transfer methods, systems and compositions
AU2017302342C1 (en) * 2016-07-29 2021-09-09 Honeywell International Inc. Heat transfer compositions, methods and systems
EP3365408A4 (en) * 2016-07-29 2019-01-02 Honeywell International Inc. Heat transfer compositions, methods and systems
WO2018022888A1 (en) 2016-07-29 2018-02-01 Honeywell International Inc. Heat transfer compositions, methods and systems
CN113563848A (en) * 2017-05-05 2021-10-29 霍尼韦尔国际公司 Heat transfer compositions, methods, and systems
JP2020518694A (en) * 2017-05-05 2020-06-25 ハネウェル・インターナショナル・インコーポレーテッドHoneywell International Inc. Heat transfer compositions, methods and systems
JP2020536994A (en) * 2017-10-06 2020-12-17 ハネウェル・インターナショナル・インコーポレーテッドHoneywell International Inc. Heat transfer compositions, methods, and systems
EP3692110A4 (en) * 2017-10-06 2021-07-07 Honeywell International Inc. Heat transfer compositions, methods and systems
WO2019138594A1 (en) 2018-01-15 2019-07-18 三菱電機株式会社 Air-conditioning device
US11421137B2 (en) 2018-06-12 2022-08-23 Daikin Industries, Ltd. Refrigerant-containing composition, heat transfer medium, and heat cycle system
WO2019245045A1 (en) * 2018-06-22 2019-12-26 ダイキン工業株式会社 Composition containing refrigerant, use thereof, refrigerator having same, and operation method for said refrigerator
JP2021075733A (en) * 2018-06-22 2021-05-20 ダイキン工業株式会社 Composition including refrigerant, use of the same, refrigerating machine having the same and method for operating the refrigerating machine
CN112313305A (en) * 2018-06-22 2021-02-02 大金工业株式会社 Composition containing refrigerant, use thereof, refrigerator having same, and method for operating refrigerator
JP2020002354A (en) * 2018-06-22 2020-01-09 ダイキン工業株式会社 Composition containing refrigerant, use thereof, refrigerator having the same, and operation method of refrigerator
JP2020003163A (en) * 2018-06-29 2020-01-09 株式会社富士通ゼネラル Air conditioner
US11291876B2 (en) * 2019-04-19 2022-04-05 Kidde Technologies, Inc. Fire suppression agent composition
US11326998B2 (en) 2019-04-19 2022-05-10 Kidde Technologies, Inc. System and method for monitoring a fire suppression blend
US10953257B2 (en) 2019-04-19 2021-03-23 Kidde Technologies, Inc. Fire suppression composition
WO2022266620A1 (en) * 2021-06-16 2022-12-22 Honeywell International Inc. Heat transfer compositions. methods and systems

Similar Documents

Publication Publication Date Title
JPH08277389A (en) Mixed working fluid and heat pump device using the same
US5736063A (en) Non-azeotropic refrigerant compositions containing carbon dioxide
JP2568774B2 (en) Working fluid
JP2869038B2 (en) Heat pump device using ternary mixed refrigerant
JPH08313120A (en) Three-constituent mixture refrigerant filling device and filling method
JPH0655942B2 (en) Working fluid
JP2002228307A (en) Mixed refrigerant filling method and apparatus filled with mixed refrigerant
JP2580350B2 (en) Working fluid
JP2548411B2 (en) Working fluid
JP2568775B2 (en) Working fluid
US6500358B2 (en) Non-azeotropic refrigerant compositions comprising difluoromethane; 1,1,1-trifluoroethane; or propane
JP2532695B2 (en) Working fluid
JP2580349B2 (en) Working fluid
JP2532697B2 (en) Working fluid
JPH0665561A (en) Working fluid
JP2001072966A (en) Mixed coolant and refrigeration cycle device using it
JP2532696B2 (en) Working fluid
JPH0655943B2 (en) Working fluid
JPH0517747A (en) Working fluid
JPH0517755A (en) Working fluid
JPH0517753A (en) Working fluid
JPH0517746A (en) Working fluid
JPH0517750A (en) Working fluid
JPH05117649A (en) Working fluid
JPH07126678A (en) Dimethyl ethereal mixed working fluid and heat pump device using the same