JPH08271636A - Method and container for measurement of spontaneous gamma ray dose at bottom of sea or lake - Google Patents

Method and container for measurement of spontaneous gamma ray dose at bottom of sea or lake

Info

Publication number
JPH08271636A
JPH08271636A JP9770495A JP9770495A JPH08271636A JP H08271636 A JPH08271636 A JP H08271636A JP 9770495 A JP9770495 A JP 9770495A JP 9770495 A JP9770495 A JP 9770495A JP H08271636 A JPH08271636 A JP H08271636A
Authority
JP
Japan
Prior art keywords
measuring
sea
container
lake
measuring container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9770495A
Other languages
Japanese (ja)
Other versions
JP2893573B2 (en
Inventor
Shigehiko Kimura
重彦 木村
Fumio Nagashima
文雄 長島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NISSAKU KK
NITSUSAKU KK
Original Assignee
NISSAKU KK
NITSUSAKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NISSAKU KK, NITSUSAKU KK filed Critical NISSAKU KK
Priority to JP9770495A priority Critical patent/JP2893573B2/en
Publication of JPH08271636A publication Critical patent/JPH08271636A/en
Application granted granted Critical
Publication of JP2893573B2 publication Critical patent/JP2893573B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To provide a measuring container which is useful to detect the boundary of geological features, the crushing zone of a fault or the like, to analyze a crushing degree and an opening degree and to analyze the continuity conditions or the like at the bottom of the sea or a lake. CONSTITUTION: As a detection body for a detector, the crystal of Na 1 in which the diameter and the height of a crystal are 12.7cm or higher is used. Ten or more detectors are used for one station, and a measuring container 3 is formed in such a way that its bottom face is a cylindrical shape and that its grounding part is a thin plane. The bottom of the measuring container is not dragged, measuring containers are installed at an interval of 1 to 2m on an arbitrary course 10, and the course 10 is set in such a way that a plane distribution can be analyzed. When the position of a barge 15 is to be confirmed, the bare is positioned by GPS method using two measuring instruments and by a macroscopic optical wave measuring method. When the barge 15 is to be moved and fixed, two or four winches 13 are used, the lengths of wire ropes 14 between anchors 12 and the winches 13 are adjusted so as to fixed the barge. When its position is to be confirmed, a sound wave transmitter 8 is used. When the measuring container 3 is to be lowered, a crane 16 is used, the measuring container 3 is landed so as to control its lowering speed and its lowering position while observing the bottom part of the sea with a light and a television camera and confirming the present position.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、海・湖底の表層の内部
や表面に存在する放射性核種から放出させるガンマ線量
の測定方法及びその測定容器に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring gamma dose emitted from radionuclides existing inside or on the surface of the sea / lake bottom, and a measuring container therefor.

【0002】[0002]

【従来の技術】表層に含まれた3核種からの放出ガンマ
線量の地表分布をNal 検出器で測定して表層地質を解析
する方法は、1964年にAdams & Fryer (The Natural Rad
iationEnvironment, The University of Chicago Press
p.557)が発表し、またその海底への利用は1972年にBow
ie 等が取り上げ、原子力施設周辺の海底の汚染解析や
表層地質解析に利用されてきた。後者の測定方法では、
直径と高さが10〜12.7cmのNal 結晶をもつ検出器1〜2
本を海底に引きずる方法が用いられている。この検出器
で各核種の一次ガンマ線量を精度1%で得るには、測定
時間に約1時間を要するので、この方法は、広域の平均
的な地質条件を把握できても、断層破砕帯や開口性割れ
目等のような幅が数m以下の詳しい地質変化の解析する
ことは困難である。
2. Description of the Related Art The method of analyzing the surface geology by measuring the surface distribution of gamma doses emitted from the three nuclides contained in the surface layer with a Nal detector is described in 1964 by Adams & Fryer (The Natural Rad
iationEnvironment, The University of Chicago Press
p.557) and its use on the seabed in Bow in 1972.
ie, etc. have picked it up and used it for sea floor pollution analysis and surface geological analysis around the nuclear facilities. In the latter measurement method,
Detectors 1-2 with Nal crystals with diameter and height of 10-12.7 cm
The method of dragging a book to the seabed is used. This detector takes about 1 hour to obtain the primary gamma dose of each nuclide with an accuracy of 1%. Therefore, this method can detect fault fracture zones and It is difficult to analyze detailed geological changes such as open cracks with a width of several meters or less.

【0003】[0003]

【発明が解決しようとする課題】海・湖底で表層に含む
自然放射性核種から放出される1.1 〜2.6Mevという高エ
ネルギーのガンマ線でさえも、海・湖水ではガンマ線の
遮閉効果が大きく作用し、測定されるガンマ線量は表層
が同じ状態にある陸上でのガンマ線量の約1/10になる。
さらに、海・湖底面から10cm離れると、このガンマ線量
は表層上の約50〜65%、20cm離れると約25〜40%にも減
少してしまう。このため、海・湖底で短時間に解析精度
の高いガンマ線量を得るには、検出器のガンマ線計数効
率を高めること、検出器の数を増やすこと、そして検出
器をなるべく底面表層に近づけることが必要になる。
[Problems to be Solved by the Invention] Even high-energy gamma rays of 1.1 to 2.6 Mev emitted from natural radionuclides contained in the surface layer at the sea / lake bottom have a large gamma-ray shielding effect in sea / lake water, The measured gamma dose is about 1/10 of the gamma dose on land with the same surface.
Furthermore, when the distance from the bottom of the sea / lake is 10 cm, this gamma dose decreases to about 50 to 65% on the surface layer, and to 20 cm to 25 to 40%. Therefore, in order to obtain a highly accurate gamma dose in the sea / lake bottom in a short time, it is necessary to increase the gamma ray counting efficiency of the detector, increase the number of detectors, and bring the detectors as close to the bottom surface layer as possible. You will need it.

【0004】多数の検出器を安全な幾何学的条件で設定
するためには、検出器を測定容器に収容する方法とな
る。この場合、測定容器の材質を鉄材にすると、その厚
さ1cmではガンマ線量が50〜60%になり、厚さ2cmでは
26〜42%に減少することから、測定容器の材質の厚さへ
の対処が必要になる。
In order to set a large number of detectors under safe geometric conditions, a method of housing the detectors in a measuring container is used. In this case, if the material of the measuring container is iron, the gamma dose is 50 to 60% at a thickness of 1 cm and at a thickness of 2 cm.
Since it will be reduced to 26-42%, it will be necessary to deal with the thickness of the material of the measuring container.

【0005】測定容器の設置位置は、それを定めにくい
海・湖上にあって、かつ水流や風波の影響が大きな条件
下にあっては、で目的の解析に十分な間隔である所望の
位置に、より正確に設置できる方法を確立することが必
要になる。
The measuring container should be installed at a desired position, which is at a sufficient interval for the target analysis, under the conditions where it is difficult to determine the position on the sea or lake, and when the influence of water flow and wind waves is large. , It is necessary to establish a method that can be installed more accurately.

【0006】本発明の主目的は、海・湖下にある石油・
天然ガス・地熱・地下水・諸鉱石等の探査、海・湖下に
トンネル施工やさく井、人造湖等からの漏水機構の解析
や地震・地すべりの予知調査等で必要となる海・湖底の
表層にある地質境界、断層破砕帯、開口性割れ目等の検
出とそれらの破砕度や開口度の解析、並びに海・湖底面
における連続状態等の解析に役立てようとするものであ
る。これらの目的に対する自然ガンマ線量の測定値から
解析する方法については、本発明の出願人は陸上の場合
も含めてすでに平成7年3月7日に特許出願した。
[0006] The main purpose of the present invention is to
It is on the surface of the sea / lake bottom that is required for exploration of natural gas, geothermal heat, groundwater, various ores, tunnel construction under the sea / lake, analysis of leakage mechanism from wells and artificial lakes, and earthquake / landslide prediction research. It is intended to be useful for detecting geological boundaries, fault crush zones, open cracks, etc., and analyzing their crush degree and openness, as well as continuous states at the sea / lake bottom. Regarding the method of analyzing from the measured value of natural gamma dose for these purposes, the applicant of the present invention has already applied for a patent on March 7, 1995, including the case of land.

【0007】そこで、本発明にあっては、前記方法によ
る海・湖底の調査に必要な検出機能とそれを収容する測
定容器並びにその測定方法を提示するものである。
In view of the above, the present invention provides a detection function necessary for surveying the sea / lake bottom by the above-mentioned method, a measurement container that houses the detection function, and a measurement method therefor.

【0008】[0008]

【課題を解決するための手段】本発明は、海・湖底の任
意地点で、表層の内部や表面に存在する種々の放射性核
種から放出するガンマ線量を、特定の条件下で、任意の
エネルギー範囲別に、短時間内に高い効率で平面的に詳
細に測定する方法であり、そのためには次の条件から成
るものである。
The present invention provides a gamma dose emitted from various radionuclides existing in and on the surface layer at an arbitrary energy range under an arbitrary energy range at an arbitrary point on the sea / lake bottom. On the other hand, it is a method of performing detailed measurement in a plane with high efficiency in a short time, and for that purpose, it is composed of the following conditions.

【0009】(1) 検出器の検出体は、他の検出体よりも
Mev 台のガンマ線に対する計数効率が著しく高く、かつ
エネルギー分解能が目的とする数種のガンマ線を満足に
区分する分解能となる7%以下にできる条件をもつ結晶
の直径と高さが12.7cm以上のNal の結晶を用いる。
(1) The detector body of the detector is better than other detector bodies.
Nal has a diameter and height of 12.7 cm or more with a condition that the counting efficiency for gamma rays in the Mev range is remarkably high and the energy resolution is 7% or less that is a resolution that can satisfactorily classify several types of gamma rays of interest. Is used.

【0010】前記検出器で目的とする数種のガンマ線の
量を誤差1%台で評価するためには、1測点当り約60分
の測定時間を要する。この所要時間を数分にするため、
1測点での測定に10本以上の検出器を用いる。
In order to evaluate the desired amounts of several kinds of gamma rays in the detector with an error of 1%, a measuring time of about 60 minutes is required for each measuring point. To make this time a few minutes,
Use 10 or more detectors for measurement at one measurement point.

【0011】(2) 測定容器は検出体が海・湖底面に近づ
くように、検出器の底面をすべて立てて並べることがで
きる底面積をもつ円筒形とし、かつ検出器が接する底面
部分は他の底面部よりも肉厚の薄い平面に成る。
(2) The measuring container is a cylindrical shape having a bottom area where all the bottoms of the detectors can be set up and arranged so that the detectors come close to the bottom of the sea or lake, and the bottom part where the detectors contact is other. The surface is thinner than the bottom surface of the.

【0012】(3) 海・湖底面への密着度を高めるため、
測定は海・湖底上を引きずらさずに、測点を単位に密着
させて測定する。測定は任意な測線上を1〜2m 台の任
意の間隔に設けていく方法で、目的の状態の平面分布が
解析できるように測線を設定する。
(3) In order to increase the degree of adhesion to the sea / lake bottom,
The measurement is performed by closely adhering to the measurement points without dragging on the bottom of the sea or lake. The measurement is carried out by setting an arbitrary survey line at an interval of 1 to 2 m, and the survey line is set so that the plane distribution of the target state can be analyzed.

【0013】(4) 測定容器の測点への設置は、測定容器
を積んだ台船の位置を定めることで一次に近接させ、次
に台船上のウインチで測定容器を降下させる操作で二次
に近接させる。
(4) The measurement container is installed at the measuring point by deciding the position of the pedestal loaded with the measurement container so that the measurement container is brought close to the primary position, and then the winch on the pedestal lowers the measurement container. Close to.

【0014】(5) 海・湖上にある台船の位置確認は、2
台を使うGPS法で巨視的な位置決めをし、2個所以上
の基地と台船上の測定機間の光波測定法で詳しい位置決
めをする。
(5) Confirmation of the position of the pier on the sea / lake is 2
Macroscopic positioning is performed by the GPS method using a table, and detailed positioning is performed by a light wave measurement method between two or more bases and measuring instruments on the pontoon.

【0015】(6) 海・湖流や風波による台船のゆらぎに
対する目的位置への移動と固定は、それらの影響度に応
じて2個又は4個のウインチを用い、錨とウインチ間の
ワイヤロープを伸縮・固定させる方法で行う。
(6) Two or four winches are used to move and fix the ship to the target position against fluctuations of the pontoon due to sea / lake currents or wind waves, and the wire between the anchor and the winch is used depending on the degree of their influence. The method is to stretch and fix the rope.

【0016】(7) 海・湖底上の位置確認は、測定容器に
設置した音波発信機からの発信号により台船との位置関
係を求める方法を用いる。
(7) To confirm the position on the sea / lake bottom, a method of obtaining the positional relationship with the pontoon using a signal transmitted from a sound wave transmitter installed in the measuring container is used.

【0017】(8) 位置が固定された台船からの測定容器
の降下はウインチを用い、測定容器に備えたライトとテ
レビカメラによる海底部の観察と前記方法による現在位
置の確認とから、測定容器の沈降速度や沈降位置を制御
しながら着地させる。
(8) A winch is used to descend the measuring vessel from a ship whose position is fixed, and a measurement is performed by observing the sea bottom with a light provided on the measuring vessel and a TV camera and confirming the current position by the above method. Land the vessel while controlling the sedimentation speed and location of the vessel.

【0018】[0018]

【実施例】 検出器と測定装置(図1,図2参照) Nal 検出器1は、Nal 結晶2の直径と高さが12.7cmで、
分解能が5〜7%にあるものを12本使用する。
[Example] Detector and measuring device (see FIGS. 1 and 2) The Nal detector 1 has a Nal crystal 2 having a diameter and height of 12.7 cm.
Use 12 with a resolution of 5 to 7%.

【0019】前記検出器1は、測定容器3の底面部に並
置し、測定容器の底面部4を平面状にし、その底厚は33
mmとしたが、検出器1の収容接置する底面部5は座ぐり
によって厚さ5mmにした。この検出器を収容する底面部
5の厚さは薄ければ薄いほど良いが、水深との関係を考
慮して厚さを決める。
The detector 1 is juxtaposed to the bottom surface of the measuring container 3, and the bottom surface 4 of the measuring container is made flat, and its bottom thickness is 33.
However, the bottom surface portion 5 for accommodating and placing the detector 1 has a thickness of 5 mm due to spot facing. The thinner the bottom portion 5 that houses this detector, the better, but the thickness is determined in consideration of the relationship with the water depth.

【0020】測定容器3の外部には、ライト6とテレビ
カメラ7を設置し、また測定容器3内には音波発信器機
8と高圧電源波高選別機9を備えた。テレビカメラの照
射角度は62度とした。
A light 6 and a television camera 7 are installed outside the measuring container 3, and a sound wave transmitter 8 and a high-voltage power wave height selector 9 are provided inside the measuring container 3. The irradiation angle of the TV camera was 62 degrees.

【0021】 測線の設定と測定時間 想定断層を約800mの間隔で横切る3本の測線10を、各延
長とも200m宛設置し、測点11は測線10上を2m 間隔に設
けたので、全測点数は303 点になった。1測点での測定
時間を500 秒にすることで、測定した各ガンマ線量をほ
ぼ1%の誤差内に納めることができた。
Setting of measurement line and measurement time Three measurement lines 10 that cross the assumed fault at intervals of approximately 800 m are installed at 200 m in each extension, and measurement points 11 are set on the measurement line 10 at intervals of 2 m. The score was 303 points. By setting the measurement time at one station to 500 seconds, each measured gamma dose could be kept within an error of about 1%.

【0022】 台船の位置決め 図3では、EとFで示した2台のGPS装置を使い、4
個の人工衛星A〜Dからの信号を指標に位置決めする方
法を示しており、各測点は数秒ごとに誤差1〜3m の範
囲に測定できた。また、GとHで示す2個所の基地と台
船15上の測定機Iとを結ぶ光波測定法では、数秒ごとに
0.1m単位の位置を確認した。
Positioning of the Ship In FIG. 3, two GPS devices indicated by E and F are used.
It shows a method of positioning the signals from the artificial satellites A to D as indices, and each measurement point could be measured within an error range of 1 to 3 m every few seconds. In addition, in the light wave measurement method that connects the two bases indicated by G and H to the measuring machine I on the pier 15, every few seconds,
The position of 0.1m unit was confirmed.

【0023】測線10の両端とそれに交叉する方向とに錨
12,12,12,12 を落とす方法を用い、この錨とウインチ1
3,13,13,13 間のワイヤロープ14,14,14,14 を操作する
方法では、台船15の位置決めをした。
Anchors on both ends of the survey line 10 and in the direction intersecting with it.
This anchor and winch 1 using the method of dropping 12,12,12,12
In the method of operating the wire ropes 14,14,14,14 between 3,13,13,13, the pontoon 15 was positioned.

【0024】 測定容器の位置決め 台船15上の測定容器3は、台船の位置決め後にクレーン
16とワイヤロープ17で吊り下げ、図3に示すように、ラ
イト6とテレビカメラ7による観察と音波発信機8の音
波で示される方向と深さを配慮しながら着地させた。そ
の誤差は最大0.4mで、80%が±0.1m以内に設定すること
ができた。
Positioning of Measuring Container The measuring container 3 on the pedestal 15 is placed on the crane after positioning the pedestal.
It was hung with 16 and a wire rope 17, and as shown in FIG. 3, it was landed while considering the observation by the light 6 and the TV camera 7 and the direction and depth indicated by the sound wave of the sound wave transmitter 8. The error was 0.4m at maximum, and 80% could be set within ± 0.1m.

【0025】台船15上には音波受信機Jを設置し、前記
音波発信機8からの発信音波で台船上の音波受信機Jと
の間で位置関係を知る。
A sound wave receiver J is installed on the pontoon 15, and the positional relationship between the sound wave receiver J on the ship and the sound wave receiver J is known from the sound wave transmitted from the sound wave transmitter 8.

【0026】[0026]

【発明の効果】本発明にかかる測定方法は、深さ数100m
までの海・湖底にある任意地点の表層の内部や表面に存
在する種々の放射性核種から放出するガンマ線量を、任
意のエネルギー範囲別に短時間に高い計数効率によって
知ることができるものである。
The measuring method according to the present invention has a depth of several 100 m.
It is possible to know the gamma doses emitted from various radionuclides existing inside or on the surface of the surface at any point on the sea / lake bottom up to high energy efficiency in a short time for any energy range.

【0027】したがって、海・湖下にある石油・天然ガ
ス・地熱・地下水・諸鉱石の探査、海・湖下にトンネル
施工やさく井、人造湖等からの漏水機構解析や地震・地
すべりの予知調査等で必要となる、海・湖底表層の地質
境界、断層破砕帯、開口性割れ目等の検出と、それらの
破砕度や開口度の解析、並びにそれらの海・湖底面の連
続状態の解析に必要な測定方法として広く利用すること
ができるものである。
Therefore, exploration of oil, natural gas, geothermal, groundwater, ores under the sea / lake, tunnel construction under the sea / lake, analysis of leakage mechanism from wells, artificial lakes, etc., earthquake / landslide prediction research, etc. It is necessary to detect the geological boundary of the sea / lake bottom surface, fault crush zones, and open cracks, and to analyze the crushing degree and openness of the sea / lake bottom, and to analyze the continuous state of the sea / lake bottom. It can be widely used as a measuring method.

【図面の簡単な説明】[Brief description of drawings]

【図1 】測定容器の半截正面図[Fig. 1] Front view of measuring container

【図2 】同上の半截平面図[Figure 2] Plan view of the above

【図3】測定方法を示した例示図FIG. 3 is an exemplary diagram showing a measuring method.

【符号の説明】[Explanation of symbols]

1 Nal 検出器 2 Nal 結晶 3 測定容器 4 底面部 5 薄厚底面部 6 ライト 7 テレビカメラ 8 音波発信機 9 高圧電源波高選別機 10 測線 11 測点 12 錨 13 ウインチ 14 ワイヤロープ 15 台船 16 クレーン 17 ワイヤロープ A,B,C,D 人工衛星 E,F GPS装置 G,H 基地 I 測定機 J 音波受信機 1 Nal detector 2 Nal crystal 3 Measuring container 4 Bottom part 5 Thin bottom part 6 Light 7 TV camera 8 Sound wave transmitter 9 High-voltage power wave height sorter 10 Measuring line 11 Measuring point 12 Anchor 13 Winch 14 Wire rope 15 Ship 16 Crane 17 Wire rope A, B, C, D Artificial satellite E, F GPS device G, H Base I Measuring machine J Sound wave receiver

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成7年5月2日[Submission date] May 2, 1995

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0002[Name of item to be corrected] 0002

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0002】[0002]

【従来の技術】表層に含まれた3核種からの放出ガンマ
線量の地表分布をNal検出器で測定して表層地質を解
析する方法は、1964年にAdams & Frye
r(The Natural Radiation E
nvironment,TheUniversity
of Chicago Press p.557)が発
表し、またその海底への利用は1972年にBowie
等が取り上げ、原子力施設周辺の海底の汚染解析や表層
地質解析に利用されてきた。後者の測定方法では、直径
と高さが10〜12.7cmのNal結晶をもつ検出器
1〜2本を海底に引きずる方法が用いられている。この
検出器で各核種の一次ガンマ線量を精度1%で得るに
は、測定時間に約1時間を要するので、この方法は、広
域の平均的な地質条件を把握できても、断層破砕帯や開
口性割れ目等のような幅が数m以下の詳しい地質変化
解析することは困難である。
2. Description of the Related Art A method of analyzing the surface geology by measuring the surface distribution of gamma doses emitted from the three nuclides contained in the surface layer with a Nal detector is described in Adams & Freee in 1964.
r (The Natural Radiation E
nvironment, TheUniversity
of Chicago Press p. 557) and its use on the seabed was Bowie in 1972.
Have been used for pollution analysis and surface geological analysis of the sea floor around nuclear facilities. In the latter measuring method, a method of dragging one or two detectors having a Nal crystal having a diameter and a height of 10 to 12.7 cm to the seabed is used. This detector takes about 1 hour to obtain the primary gamma dose of each nuclide with an accuracy of 1%. Therefore, this method can detect fault fracture zones and it is difficult to width, such as opening of fractures is <br/> analyzing detailed geological changes in less than several m.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0003[Name of item to be corrected] 0003

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0003】[0003]

【発明が解決しようとする課題】海・湖底で表層に含む
自然放射性核種から放出される1.1〜2.6Mevと
いう高エネルギーのガンマ線でさえも、海・湖水ではガ
ンマ線の遮効果が大きく作用し、測定されるガンマ線
量は表層が同じ状態にある陸上でのガンマ線量の約1/
10になる。さらに、海・湖底面から10cm離れる
と、このガンマ線量は表層上の約50〜65%、20c
m離れると約25〜40%にも減少してしまう。このた
め、海・湖底で短時間に解析精度の高いガンマ線量を得
るには、検出器のガンマ線計数効率を高めること、検出
器の数を増やすこと、そして検出器をなるべく底面表層
に近づけることが必要になる。
Even gamma high energy of 1.1~2.6Mev emitted from the natural radioactive nuclides, including the surface layer in the sea, lake [0005] In the sea, lake large effect shielding of gamma rays The gamma dose acting and measured is about 1 / g of the gamma dose on land where the surface is in the same state.
Becomes 10. Furthermore, at a distance of 10 cm from the bottom of the sea / lake, this gamma dose is about 50-65% on the surface, 20c.
When the distance is m, it is reduced to about 25 to 40%. Therefore, in order to obtain a highly accurate gamma dose in the sea / lake bottom in a short time, it is necessary to increase the gamma ray counting efficiency of the detector, increase the number of detectors, and bring the detectors as close to the bottom surface layer as possible. You will need it.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 海・湖底の任意地点で、表層の内部や表
面に存在する種々の放射性核種から放出するガンマ線量
を、任意のエネルギー範囲別に、短時間内に高い効率で
平面的に詳細に測定する方法において、すべての検出器
を底面部に立てることができる底面積を有する円筒形に
成りかつ検出器が接する底面部分は他の底面部分よりも
肉薄の平板面に成り、前記検出器はNal 検出器でそのNa
l 結晶は直径と高さが12.7cm以上の大型で分解能が7%
以下のものとし、それを10本以上収容して成る測定容
器。
1. The gamma dose emitted from various radionuclides existing inside or on the surface of the sea at an arbitrary point of the sea / lake bottom is classified into a specific energy range in a highly efficient and planar manner within a short time. In the measuring method, all the detectors are cylindrical with a bottom area capable of standing on the bottom, and the bottom part where the detector contacts is a flat plate surface thinner than the other bottom parts, and the detector is Na in the Nal detector
l Crystal is large with a diameter and height of 12.7 cm or more and has a resolution of 7%
A measuring container that contains 10 or more of the following:
【請求項2】 海・湖底の任意地点で、表層の内部や表
面に存在する種々の放射性核種から放出するガンマ線量
を、任意のエネルギー範囲別に、短時間内に高い効率で
平面的に詳細に測定する次の条件から成る測定方法。 (1) 検出器はNal 検出器とし、利用するNal 結晶は直径
と高さが12.7cm以上の大型でかつ分解能が7%以下のも
のとし、それを10本以上を測定容器内に収容する。 (2) 測定容器はすべての検出器を測定容器の底面部に立
てることができる底面積を有する円筒形とし、検出器が
接する底面部分は他の底面部分よりも肉厚の薄い平板面
に成る。 (3) 測定は測点を単位とし、測点を任意の測線上の1〜
2m 台の任意の間隔に設け、目的とする状態の平面分布
が解析できるように測線を設定する。 (4) 測定容器の希望する測点上への設置は、測定容器を
積載した台船の位置を定めることで一次に近接させ、台
船上のウインチで測定容器を降下させる操作で二次に近
接させる。 (5) 台船の位置確認は、2台を使うGPS法で一次に近
接させ、2個所以上の基地と台船上の測定機間の光波測
定法で二次に近接させる。 (6) 台船位置の移動と固定は、台船に設けた2個又は4
個のウインチを用い、海・湖の流速と風速に応じて錨と
ウインチ間のワイヤロープを伸縮・固定する方法で行
う。 (7) 測定容器の設置位置の確認は、測定容器に設置した
音波発信機からの発信音波で台船上の音波受信機との位
置関係を求める。 (8) 測定容器は台船からクレーンで降下し、測定容器に
備えたライトとテレビカメラによる海底部の観察と前記
測定容器の位置とから、測定容器の沈降速度や設定位置
を制御しながら海・湖底に着地させる。
2. The gamma dose emitted from various radionuclides existing inside or on the surface of the sea at an arbitrary point on the sea or lake bottom is detailed in a planar manner with high efficiency within a short time for each energy range. A measuring method consisting of the following conditions to be measured. (1) The detector shall be a Nal detector, and the Nal crystal used shall be large in diameter and height of 12.7 cm or more and have a resolution of 7% or less, and 10 or more of them shall be stored in the measuring container. (2) The measuring container shall be a cylindrical shape with a bottom area that allows all detectors to stand on the bottom of the measuring container, and the bottom part in contact with the detector shall be a flat plate surface thinner than other bottom parts. . (3) Measurement is performed in units of measurement points, and measurement points can be
It is provided at arbitrary intervals of 2m and the survey line is set so that the plane distribution of the target state can be analyzed. (4) To set the measuring container on the desired measuring point, determine the position of the pedestal on which the measuring container is loaded to bring it closer to the primary position, and lower the measuring container with a winch on the pedestal to bring it to the secondary position. Let (5) To confirm the position of the pontoon, use the GPS method that uses two units to make the primary approach, and make the secondary approach using the optical wave measurement method between two or more bases and the measuring instruments on the pier. (6) Moving or fixing the position of the ship is either two or four provided on the ship.
Using a single winch, the wire rope between the anchor and winch is expanded and contracted and fixed according to the sea and lake flow velocity and wind speed. (7) To confirm the installation position of the measurement container, determine the positional relationship with the sound wave receiver on the pontoon using the sound waves emitted from the sound wave transmitter installed in the measurement container. (8) The measuring vessel descends from the ship by crane, and the sea bottom is observed by the light and TV camera equipped with the measuring vessel and the position of the measuring vessel, while controlling the sedimentation speed and setting position of the measuring vessel.・ Land on the bottom of the lake.
JP9770495A 1995-03-31 1995-03-31 Measurement method and measuring container of natural gamma dose at sea and lake bottom Expired - Fee Related JP2893573B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9770495A JP2893573B2 (en) 1995-03-31 1995-03-31 Measurement method and measuring container of natural gamma dose at sea and lake bottom

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9770495A JP2893573B2 (en) 1995-03-31 1995-03-31 Measurement method and measuring container of natural gamma dose at sea and lake bottom

Publications (2)

Publication Number Publication Date
JPH08271636A true JPH08271636A (en) 1996-10-18
JP2893573B2 JP2893573B2 (en) 1999-05-24

Family

ID=14199317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9770495A Expired - Fee Related JP2893573B2 (en) 1995-03-31 1995-03-31 Measurement method and measuring container of natural gamma dose at sea and lake bottom

Country Status (1)

Country Link
JP (1) JP2893573B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008058113A (en) * 2006-08-30 2008-03-13 Central Res Inst Of Electric Power Ind Radiation sensing apparatus
JP2009047656A (en) * 2007-08-22 2009-03-05 Central Res Inst Of Electric Power Ind Detector of sea spring fluid
CN102253419A (en) * 2002-06-12 2011-11-23 俄亥俄昆泰尔公司 Method and apparatus for detection of radioactive material
CN103149862A (en) * 2013-02-05 2013-06-12 中国矿业大学 Automatic sound emission monitoring method and automatic sound emission monitoring device
JP2013253867A (en) * 2012-06-07 2013-12-19 Furukawa Co Ltd Radiation detector, food product radiation detector, manufacturing method of radiation detector and radiation detection method
JP2013257159A (en) * 2012-06-11 2013-12-26 Horiba Ltd Measuring device and measuring method for measuring radiation or radioactivity
JP2014106189A (en) * 2012-11-29 2014-06-09 Kajima Corp Radioactive concentration measurement device, spatial dose rate measurement device and radioactive concentration measurement method
JP2014163927A (en) * 2013-02-25 2014-09-08 Areva Nc Measuring method and measuring device for radioactivity deposited in sediment bottom of aqueous medium
JP5674230B1 (en) * 2014-03-31 2015-02-25 池田 和隆 Underwater radioactivity exploration device using liquid shielding effect
JP2015175731A (en) * 2014-03-14 2015-10-05 国立研究開発法人農業・食品産業技術総合研究機構 Radiation measurement device and radiation measurement method using the same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102253419A (en) * 2002-06-12 2011-11-23 俄亥俄昆泰尔公司 Method and apparatus for detection of radioactive material
JP2008058113A (en) * 2006-08-30 2008-03-13 Central Res Inst Of Electric Power Ind Radiation sensing apparatus
JP2009047656A (en) * 2007-08-22 2009-03-05 Central Res Inst Of Electric Power Ind Detector of sea spring fluid
JP2013253867A (en) * 2012-06-07 2013-12-19 Furukawa Co Ltd Radiation detector, food product radiation detector, manufacturing method of radiation detector and radiation detection method
JP2013257159A (en) * 2012-06-11 2013-12-26 Horiba Ltd Measuring device and measuring method for measuring radiation or radioactivity
JP2014106189A (en) * 2012-11-29 2014-06-09 Kajima Corp Radioactive concentration measurement device, spatial dose rate measurement device and radioactive concentration measurement method
CN103149862A (en) * 2013-02-05 2013-06-12 中国矿业大学 Automatic sound emission monitoring method and automatic sound emission monitoring device
JP2014163927A (en) * 2013-02-25 2014-09-08 Areva Nc Measuring method and measuring device for radioactivity deposited in sediment bottom of aqueous medium
CN105074502A (en) * 2013-02-25 2015-11-18 阿雷瓦核废料回收公司 Method and device for determining the radiological activity deposited in a sea bed
US9689992B2 (en) 2013-02-25 2017-06-27 Areva Nc Method and device for determining the radiological activity deposited in a sea bed
CN105074502B (en) * 2013-02-25 2017-11-10 阿雷瓦核废料回收公司 For the method and apparatus for the radiological operations for determining to be deposited in sea bed
JP2015175731A (en) * 2014-03-14 2015-10-05 国立研究開発法人農業・食品産業技術総合研究機構 Radiation measurement device and radiation measurement method using the same
JP5674230B1 (en) * 2014-03-31 2015-02-25 池田 和隆 Underwater radioactivity exploration device using liquid shielding effect

Also Published As

Publication number Publication date
JP2893573B2 (en) 1999-05-24

Similar Documents

Publication Publication Date Title
De Meijer Heavy minerals: fromEdelstein'to Einstein
JPH08271636A (en) Method and container for measurement of spontaneous gamma ray dose at bottom of sea or lake
Alexandrov et al. Muon radiography method for fundamental and applied research
US3651395A (en) Method for exploring the surface of the earth with electromagnetic energy including comparing reradiation characteristics of gases to locate escaping hydrocarbon gases at the surface emitted by deposits of petroleum and/or natural gas at depth
Tanaka et al. Radiographic imaging below a volcanic crater floor with cosmic-ray muons
NO165466B (en) PROCEDURE AND PIPES FOR AA DETERMINE THE WHOLE OF THE COVER MATERIAL OVER A PIPE PIPE.
RU2456644C2 (en) Geochemical exploration method
JP2005127983A (en) Valuation methods of implant, underground resources, underground waste, underground cache, and geological structure, and in-building monitoring method, using hard ray or gamma ray
US3862418A (en) Apparatus and method for using the same to ascertain the angular position of a discontinuity in the medium surrounding a test bore
Noakes et al. Overview of nuclear techniques for marine mineral survey and environmental assessment
US4146791A (en) Method and measuring device for testing the support and or covering of an oil or gas pipeline
Schulze Verification for CTBT Compliance: Developments during the 1995 Negotiations
Caldwell Development and tests of a radioactive sediment density probe
Rona Exploration methods for the continental shelf: geology, geophysics, geochemistry
Oláh et al. Structural health monitoring of sabo check dams with cosmic-ray muography
Morang et al. Technologies for assessing the geologic and geomorphic history of coasts
Zhukouski et al. Gamma-spectrometer for water areas and bottom sediments radiation monitoring
Gao et al. Development status of digital detection technology for unfavorable geological structure of submarine tunnel
Waltham et al. Through-going muons in the Sudbury Neutrino Observatory
Seo et al. Study on the Applicability of Muography Exploration Technology in Underground Space Development
Kusagaya et al. Muon radiography in Exploration Geophysics
Saksa et al. Geophysical radar method for safeguards application at Olkiluoto spent fuel disposal site in Finland
National Academies of Sciences, Engineering, and Medicine Radioactive Sources and Alternative Technologies in Industrial Applications
Kazennov et al. Method for performing rapid radiation surveys of the water areas at shore bases of the naval fleet using submersible gamma spectrometers
Apalin et al. Continual radiation monitoring of submerged or sunken objects containing spent nuclear fuel in arctic seas.

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees