JPH08271269A - Dislocation detection method of self-propelled vehicle - Google Patents

Dislocation detection method of self-propelled vehicle

Info

Publication number
JPH08271269A
JPH08271269A JP7073892A JP7389295A JPH08271269A JP H08271269 A JPH08271269 A JP H08271269A JP 7073892 A JP7073892 A JP 7073892A JP 7389295 A JP7389295 A JP 7389295A JP H08271269 A JPH08271269 A JP H08271269A
Authority
JP
Japan
Prior art keywords
self
propelled vehicle
positional deviation
magnetic
detecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7073892A
Other languages
Japanese (ja)
Other versions
JP2857703B2 (en
Inventor
Katsuhiko Asada
勝彦 浅田
Fumio Hatada
文男 畑田
Hideaki Minami
秀明 南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsubakimoto Chain Co
Original Assignee
Tsubakimoto Chain Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsubakimoto Chain Co filed Critical Tsubakimoto Chain Co
Priority to JP7073892A priority Critical patent/JP2857703B2/en
Publication of JPH08271269A publication Critical patent/JPH08271269A/en
Application granted granted Critical
Publication of JP2857703B2 publication Critical patent/JP2857703B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To provide a dislocation detection method, of a self-propelled vehicle, in which the dislocation amount of the self-propelled vehicle from a reference position can be detected at low costs. CONSTITUTION: The intensity of a magnetic field to be generated by a magnet 3, for guidance, which is installed on a floor face is detected by a plurality of magnetic sensors 21 which are installed at a self-propelled vehicle 1 in its right and left directions. While a length up to the magnetic sensor 21 situated on the other side from the magnetic sensor 21 situated on one side of the plurality of magnetic sensors 21 is used as one cycle of fundamental waves, a waveform obtained by connecting respective detection outputs by the plurality of magnetic sensors 21 is discrete-Fourier-transformed, and the displacement amount S (Δx) of the self-propelled vehicle 1 from the magnet 3 for guidance is detected on the basis of the phase of the fundamental waves.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は床面に所定間隔で設置し
たガイド用磁石によって誘導される自走車と、ガイド用
磁石との位置ズレを検出する、自走車の位置ズレ検出方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for detecting a positional deviation between a self-propelled vehicle guided by guide magnets installed at a predetermined distance on a floor and a guide magnet. .

【0002】[0002]

【従来の技術】床面に所定間隔で設置されたガイド用磁
石に沿って誘導される自走車は、設置されたガイド用磁
石を通過する時のガイド磁石に対する位置ズレ量を検出
し、その位置ズレ量を基に操舵量を決定し、次の走行目
標となるガイド用磁石まで自律走行をする。この際、走
行途中の床面の凹凸、又は車輪と床との滑り等により、
目標であるガイド用磁石に自走車が到達した時には、ガ
イド用磁石の設置間隔により異なるが、±100mm 程度の
位置ズレが発生することが起こり得る。
2. Description of the Related Art A self-propelled vehicle guided along guide magnets installed at predetermined intervals on a floor detects the amount of positional deviation with respect to the guide magnets when passing through the installed guide magnets. The steering amount is determined based on the position shift amount, and the vehicle travels autonomously up to the guide magnet, which is the next traveling target. At this time, due to unevenness of the floor surface during running, or slip between the wheel and the floor,
When the self-propelled vehicle reaches the target guide magnet, a positional deviation of about ± 100 mm may occur depending on the installation distance of the guide magnet.

【0003】そこで、このような位置ズレ量を検出する
方法として従来は、自走車に、その走行方向に対して直
交する方向に配置した磁気センサの差動出力をアナログ
的に取り出す方法、または走行方向に対して直交する方
向に一列に配置した複数の磁気検出スイッチのオン, オ
フ状態によりディジタル的に検出する方法、更に別の方
法として自走車の走行方向に対して直交する方向に百数
十個の磁気センサ (ホール素子) を配置し、ガイド用磁
石が発生する磁界の向きの反転位置を検出する方法があ
る。
Therefore, as a method of detecting such a positional deviation amount, conventionally, a method of analogly taking out the differential output of a magnetic sensor arranged in a vehicle in a direction orthogonal to the traveling direction, or A method of digitally detecting by the on / off state of a plurality of magnetic detection switches arranged in a line in the direction orthogonal to the traveling direction, or as another method, a method of detecting the magnetic field in a direction orthogonal to the traveling direction of the vehicle There is a method of arranging dozens of magnetic sensors (Hall elements) and detecting the reversal position of the direction of the magnetic field generated by the guide magnet.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、前述し
た従来の位置ズレ量を検出する場合、前述した第1番目
の方法では位置ズレに対してリニアに検出が可能な位置
ズレ範囲が±30m 程度と狭い。そのため、自走車とガイ
ド用磁石との位置ズレが±30mmを越えないようにガイド
用磁石の設置間隔を短くする必要があり、極めて多くの
ガイド用磁石を必要とし、設置コストがアップするとい
う問題がある。
However, in the case of detecting the above-mentioned conventional positional deviation amount, the first method described above provides a linear positional detection range of ± 30 m with respect to the positional deviation. narrow. Therefore, it is necessary to shorten the installation interval of the guide magnet so that the positional deviation between the self-propelled vehicle and the guide magnet does not exceed ± 30 mm, which requires an extremely large number of guide magnets, which increases the installation cost. There's a problem.

【0005】また第2番目の方法では、位置ズレ量を検
出する分解能が磁気検出スイッチのサイズで制約され、
2〜3mmが限界となり、自走車を高精度に円滑に操舵し
ようとする場合は問題がある。
In the second method, the resolution for detecting the positional deviation amount is restricted by the size of the magnetic detection switch,
The limit is 2-3 mm, and there is a problem when trying to steer a self-propelled vehicle smoothly with high accuracy.

【0006】更に第3番目の方法では、±100mm 程度の
位置ズレを1mm程度の分解能で検出することが可能であ
るが、極めて多くのホール素子を配置する必要があるた
め、信号処理回路が複雑になり、コストが極めて高いと
いう問題がある。
Further, in the third method, it is possible to detect a positional deviation of about ± 100 mm with a resolution of about 1 mm, but it is necessary to arrange an extremely large number of Hall elements, so the signal processing circuit is complicated. Therefore, there is a problem that the cost is extremely high.

【0007】本発明は斯かる問題に鑑み安価に自走車の
位置ズレを検出できる自走車の位置ズレ検出方法を提供
することを目的とする。
In view of the above problems, it is an object of the present invention to provide a method for detecting a positional deviation of a self-propelled vehicle that can detect the positional deviation of the self-propelled vehicle at low cost.

【0008】[0008]

【課題を解決するための手段】第1発明に係る自走車の
位置ズレ検出方法は、自走車が走行する床面に設置され
たガイド用磁石が発生する磁界の強さを検出して、自走
車に、その左右方向に一列に配置された複数の磁気セン
サで検出して、自走車とガイド用磁石との左右方向の位
置ズレを検出する自走車の位置ズレ検出方法において、
前記磁気センサの検出出力を連ねて得た波形を、一側に
位置する磁気センサから他側に位置する磁気センサまで
の長さを基本波の1周期として離散フーリエ変換し、基
本波の位相に基づいて位置ズレ量を検出することを特徴
とする。
According to a first aspect of the present invention, there is provided a method for detecting a displacement of a self-propelled vehicle by detecting the strength of a magnetic field generated by a guide magnet installed on a floor surface on which the self-propelled vehicle travels. In a method for detecting a positional deviation of a self-propelled vehicle, the lateral displacement between the self-propelled vehicle and a guide magnet is detected by a plurality of magnetic sensors arranged in a row in the left-right direction of the self-propelled vehicle. ,
The waveform obtained by connecting the detection outputs of the magnetic sensor is subjected to discrete Fourier transform with the length from the magnetic sensor located on one side to the magnetic sensor located on the other side as one cycle of the fundamental wave to obtain the phase of the fundamental wave. It is characterized in that the amount of positional deviation is detected based on this.

【0009】第2発明に係る自走車の位置ズレ検出方法
は、磁気センサの検出出力の総和の符号が反転したとき
に、位置ズレ量を確定することを特徴とする。
A method of detecting a positional deviation of a vehicle according to a second aspect of the present invention is characterized in that the positional deviation amount is determined when the sign of the total sum of the detection outputs of the magnetic sensor is reversed.

【0010】[0010]

【作用】位置ズレ量を演算する原理を説明する。左右方
向に設けたN個の磁気センサが、ガイド用磁石が発生す
る磁界の強さを検出すると、N個の磁気センサの各検出
出力は、縦軸を磁気センサ検出出力とし、横軸を磁気セ
ンサ番号としている図1に示すように、ガイド用磁石に
接近している程大になる。N個の磁気センサの検出出力
を連ねて得た波形を、N個の磁気センサを配設している
長さを基本波の1周期−π〜+πとして離散フーリエ変
換すると、基本波の位相は、ガイド用磁石がN個の磁気
センサの中央に位置しているときに零となり、磁気セン
サとガイド用磁石との位置ズレが生じると、位置ズレ量
に対応して基本波の位相が変わる。
The function of calculating the positional deviation amount will be described. When N magnetic sensors provided in the left-right direction detect the strength of the magnetic field generated by the guide magnets, the respective detection outputs of the N magnetic sensors have the vertical axis as the magnetic sensor detection output and the horizontal axis as the magnetic field. As shown in FIG. 1 in which the sensor number is used, the larger the guide magnet, the larger. When the waveform obtained by connecting the detection outputs of the N magnetic sensors is discrete-Fourier-transformed with the length of the arrangement of the N magnetic sensors as one cycle of the fundamental wave −π to + π, the phase of the fundamental wave becomes When the guide magnet is located at the center of the N magnetic sensors, it becomes zero, and when a positional deviation occurs between the magnetic sensor and the guide magnet, the phase of the fundamental wave changes in accordance with the amount of positional deviation.

【0011】そこで、下記(1) 式を演算すると、中央に
位置する磁気センサと対応する基本波の位相を算出して
位置ズレ量Sを検出することができる。
Therefore, by calculating the following equation (1), the phase shift amount S can be detected by calculating the phase of the fundamental wave corresponding to the magnetic sensor located at the center.

【0012】[0012]

【数1】 [Equation 1]

【0013】次に磁気センサがガイド用磁石の直上を通
過した時点を検出する原理をガイド用磁石の磁界分布に
基づいて説明する。ガイド用磁石は所定面積を有する
が、これを磁気双極子として磁界分布を近似的に求める
と、磁気モーメントmの磁気双極子の磁化の強さHは極
座標を用いて、 Hr =2m・ cosθ/4πr3 …(2) Hθ=m・ sinθ/4πr3 …(3) で表されるから、これらの式より磁界のy方向成分を求
めると Hy =yz/ (x2 +y2+z2 ) 5/2 …(4) が得られる。
Next, the principle of detecting the time when the magnetic sensor passes just above the guide magnet will be described based on the magnetic field distribution of the guide magnet. The guide magnet has a predetermined area, but if this is used as a magnetic dipole and the magnetic field distribution is approximately determined, the magnetization intensity H of the magnetic dipole at the magnetic moment m is expressed by polar coordinates, Hr = 2m · cos θ / 4πr 3 (2) Hθ = m · sin θ / 4πr 3 (3) Therefore, the y-direction component of the magnetic field is calculated from these equations, Hy = yz / (x 2 + y 2 + z 2 ) 5/2 . (4) is obtained.

【0014】ここで、xは磁気双極子を基準にした左右
方向距離、yは磁気双極子を基準にした自走車の走行方
向距離、zは磁気双極子を基準にした鉛直方向距離、r
は磁気双極子からの半径、θは磁気双極子を基準にした
回転角である。
Here, x is a lateral distance based on the magnetic dipole, y is a traveling direction distance of the self-propelled vehicle based on the magnetic dipole, z is a vertical distance based on the magnetic dipole, and r
Is the radius from the magnetic dipole, and θ is the rotation angle with respect to the magnetic dipole.

【0015】これを3次元で図示するとガイド用磁石を
基準に左右方向を位置ズレ量Δxとし、ガイド用磁石を
基準に走行方向をyとし、ガイド用磁石を基準に鉛直方
向を磁化の分布 (相対値) として示した図2のようにな
る。磁化の強さのy方向成分はy=0で丁度0になり、
y=0から離れるに従い徐々に増加しつつ、所定点を越
えたところで徐々に減少しはじめ、yが負の領域では同
様に負の分布を示し、x軸に対して対称となっている。
またxの絶対値が増大するにつれて減少する。
In a three-dimensional diagram, the lateral direction is the displacement amount Δx with the guide magnet as the reference, the traveling direction is y with the guide magnet as the reference, and the magnetization distribution in the vertical direction with the guide magnet as the reference ( 2 is shown as relative value). The y-direction component of the strength of magnetization becomes exactly 0 when y = 0,
It gradually increases as it goes away from y = 0, and then gradually starts to decrease when it exceeds a predetermined point. Similarly, in a negative y region, a negative distribution is shown, and it is symmetrical with respect to the x axis.
It also decreases as the absolute value of x increases.

【0016】このように、磁化の強さのy方向成分はガ
イド用磁石3の中心 (y=0) で0となり、その前後で
磁化の向きが反転する。従って、各磁気センサの検出出
力f(i) の総和Σf(i)(i=0, 1…N−1) を計算
し、検出出力の総和の符号の反転を検出することにより
位置検出センサ2がガイド用磁石3の直上を通過したこ
とを検出できる。
As described above, the y-direction component of the magnetization intensity becomes 0 at the center (y = 0) of the guide magnet 3, and the magnetization direction is reversed before and after that. Therefore, the position detection sensor 2 is calculated by calculating the sum Σf (i) (i = 0, 1 ... N-1) of the detection output f (i) of each magnetic sensor and detecting the inversion of the sign of the sum of the detection outputs. Can be detected just above the guide magnet 3.

【0017】そして、自走車1がガイド用磁石3の直上
に位置して、磁気センサの検出出力の和の符号が反転し
たとき、検出した位置ズレ量を確定する。これにより、
自走車の位置ズレを少数の磁気センサを用いて検出でき
る。また自走車がガイド用磁石の直上に位置したときの
位置ズレ量が得られる。
Then, when the self-propelled vehicle 1 is positioned directly above the guide magnet 3 and the sign of the sum of the detection outputs of the magnetic sensor is reversed, the detected positional deviation amount is determined. This allows
The displacement of the vehicle can be detected using a small number of magnetic sensors. Further, the amount of positional deviation when the self-propelled vehicle is positioned directly above the guide magnet can be obtained.

【0018】[0018]

【実施例】以下本発明をその実施例を示す図面に基づい
て詳述する。図3は自走車に設けた位置センサ及びガイ
ド用磁石の関係を示す模式的平面図である。床面に設置
されたガイド用磁石3に誘導されて走行する自走車1
は、矢符で示される走行方向へ移動し、理想的には自走
車1の中心がガイド用磁石3の中心を通るよう操舵され
る。自走車1には、長手方向が走行方向と直交する方向
つまり左右方向に位置センサ2が取付けられており、位
置センサ2は、その長手方向に、例えばホール素子から
なる磁気センサ21,21 …を複数個並設して構成されてい
る。この磁気センサ21はガイド用磁石3から所定高さに
設置され、ガイド用磁石3が発生する磁界の内、自走車
1の走行方向成分の強さを検出する向きに適宜間隔で一
列にN個、例えば長さ400mm の間に10〜20個配設されて
いる。ガイド用磁石3は自走車1がいずれの方向から通
過しても同じ磁界分布が得られるように円板形状となっ
ている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the drawings showing the embodiments. FIG. 3 is a schematic plan view showing the relationship between the position sensor and the guide magnet provided in the vehicle. A self-propelled vehicle 1 that is guided by a guide magnet 3 installed on the floor to travel.
Moves in the traveling direction indicated by the arrow, and ideally, the center of the self-propelled vehicle 1 is steered so as to pass through the center of the guide magnet 3. A position sensor 2 is attached to the self-propelled vehicle 1 in a direction in which the longitudinal direction is orthogonal to the traveling direction, that is, in the left-right direction. The position sensor 2 has magnetic sensors 21, 21 ... Are arranged in parallel. The magnetic sensors 21 are installed at a predetermined height from the guide magnets 3, and are arranged in a row at appropriate intervals in a direction in which the strength of the traveling direction component of the self-propelled vehicle 1 in the magnetic field generated by the guide magnets 3 is detected. For example, 10 to 20 pieces are arranged in a length of 400 mm. The guide magnet 3 has a disk shape so that the same magnetic field distribution can be obtained regardless of which direction the vehicle 1 passes.

【0019】図4は本発明に係る自走車の位置ズレ検出
方法を実施する装置の構成を示すブロック図である。N
個のホール素子からなる磁気センサ21,21 …の検出出力
はマルチプレクサ4により順次選択され、増幅器5を介
してアナログ/ディジタル (A/D ) コンバータ6へ入力
され、ディジタル信号に変換されて演算処理するCPU7
に入力され、CPU 7から位置ズレ量Sの演算結果が出力
される。
FIG. 4 is a block diagram showing the construction of an apparatus for carrying out the method for detecting the positional deviation of the vehicle according to the present invention. N
The detection outputs of the magnetic sensors 21, 21 ... Composed of Hall elements are sequentially selected by the multiplexer 4 and input to the analog / digital (A / D) converter 6 through the amplifier 5 and converted into digital signals for arithmetic processing. CPU7
The CPU 7 outputs the calculation result of the positional deviation amount S.

【0020】次にこのように構成した装置により、自走
車とガイド用磁石との位置ズレ量の検出を、CPU の制御
内容を示す図5に示すフローチャートとともに説明す
る。N個の磁気センサ21 (i=0, 1…N−1) の検出
出力をCPU 7が取り込む(S1)。続いて、前述した(1) 式
により位置ズレ量Sを演算する(S2)。続いて、磁気セン
サ21 (i=0, 1…N−1) の検出出力の総和を算出す
る(S3)。そして、磁気センサ21の各検出出力の総和の符
号が反転したか否かを判別し(S4)、反転するまで位置ズ
レ量Sの演算を続ける。符号が反転したときは、前述し
たように自走車、即ち位置センサ2がガイド用磁石3上
に位置した時点となる。
Next, the detection of the amount of positional deviation between the self-propelled vehicle and the guide magnets by the apparatus configured as described above will be described with reference to the flow chart shown in FIG. 5, which shows the control contents of the CPU. The CPU 7 takes in the detection outputs of the N magnetic sensors 21 (i = 0, 1 ... N-1) (S1). Then, the position shift amount S is calculated by the above-mentioned equation (1) (S2). Then, the total sum of the detection outputs of the magnetic sensor 21 (i = 0, 1 ... N-1) is calculated (S3). Then, it is determined whether or not the sign of the total sum of the respective detection outputs of the magnetic sensor 21 is reversed (S4), and the calculation of the positional deviation amount S is continued until it is reversed. When the sign is reversed, it is the time when the vehicle, that is, the position sensor 2 is positioned on the guide magnet 3 as described above.

【0021】そこで、符号が反転したと判別すると、判
別した時点の位置ズレ量Sを確定する(S5)。これにより
ガイド用磁石3の位置における自走車1とガイド用磁石
3との左右方向の位置ズレ量Sを確定できる。そして、
確定した位置ズレ量Sの信号をCPU 7から出力する。続
いて、走行動作終了か否かを判別し(S6)、走行動作終了
と判別するまで、ガイド用磁石3上に自走車1即ち位置
センサ2が位置する都度、位置ズレ量Sを確定してCPU
7から出力する。走行動作終了と判別すると位置ズレ量
Sを演算する制御動作を終了する。
Therefore, if it is determined that the sign is reversed, the position shift amount S at the time of the determination is determined (S5). As a result, the lateral displacement amount S between the self-propelled vehicle 1 and the guide magnet 3 at the position of the guide magnet 3 can be determined. And
The CPU 7 outputs the signal of the determined position deviation amount S. Subsequently, it is determined whether or not the traveling operation is completed (S6), and the positional deviation amount S is determined every time the self-propelled vehicle 1, that is, the position sensor 2 is located on the guide magnet 3 until it is determined that the traveling operation is completed. CPU
Output from 7. When it is determined that the traveling operation is completed, the control operation for calculating the positional deviation amount S is completed.

【0022】図6は自走車の中心とガイド用磁石との実
際の位置ズレ量Δx=Sと、z=50mm、L=400mm 、N
=10として求めた位置ズレ量Sの演算結果とを距離yを
パラメータとして示したものである。位置センサ2がガ
イド用磁石3に近づき、yが小さくなるにともない広い
範囲で良好な直線性を示している。従って、位置センサ
2がガイド用磁石3の直上 (y=0) 近辺を通過する時
点で上記(1) 式による位置ズレ量の演算結果を自走車1
の図示しない操舵制御回路に出力することにより、位置
ズレ量に応じて自走車1を操舵制御できる。なお、上記
(1) 式の演算は、安価な1チップマイクロコンピュータ
で簡単に行うことができる。
FIG. 6 shows the actual positional deviation Δx = S between the center of the vehicle and the guide magnet, z = 50 mm, L = 400 mm, N
The calculation result of the positional deviation amount S obtained as = 10 is shown with the distance y as a parameter. As the position sensor 2 approaches the guide magnet 3 and y becomes smaller, it exhibits good linearity in a wide range. Therefore, when the position sensor 2 passes immediately above the guide magnet 3 (y = 0), the calculation result of the amount of positional deviation according to the above equation (1) is calculated.
By outputting to the steering control circuit (not shown), the vehicle 1 can be steered according to the amount of positional deviation. The above
The calculation of equation (1) can be easily performed by an inexpensive one-chip microcomputer.

【0023】そして、全長400mm の間に10〜20個の磁気
センサを配置することにより、従来のような百数十個の
磁気センサを用いずに同様の精度で位置ズレ量Sを検出
できる。
By arranging 10 to 20 magnetic sensors over the entire length of 400 mm, the positional deviation amount S can be detected with the same accuracy without using the hundreds of magnetic sensors as in the prior art.

【0024】本実施例では検出出力の総和の符号が反転
する時点を検出したが、各磁気センサ21の内、検出出力
が最大を示している磁気センサに着目してその検出出力
がピーク値から減少に転じる時点を検出しても良い。ま
た、本実施例では磁気センサの個数を10〜20個とした
が、位置ズレを検出する範囲の広さ又は要求される分解
能に応じて増減させることは言うまでもない。
In the present embodiment, the time when the sign of the total sum of the detection outputs is detected is detected. However, among the magnetic sensors 21, the magnetic sensor showing the maximum detection output is focused and the detection output is determined from the peak value. You may detect the time when it starts to decrease. Although the number of magnetic sensors is 10 to 20 in the present embodiment, it goes without saying that the number of magnetic sensors may be increased or decreased according to the width of the range for detecting the positional deviation or the required resolution.

【0025】[0025]

【発明の効果】以上詳述した如く本発明に係る自走車の
位置ズレ検出方法では、所定間隔に配置した磁気センサ
の検出出力を連ねて得た波形を、一方の位置センサから
他方の位置センサまでの長さを基本波の一周期として離
散フーリエ変換し、その基本波成分の位相に基づき位置
ズレ量を算出しているので、少数の磁気センサと、ワン
チップのマイクロコンピュータとを用いて実現できるの
で大幅なコストダウンが図れる。また、基本波成分を求
めて演算するので、地磁気等によるオフセット誤差の影
響を避けることができる等、本発明は優れた効果を奏す
る。
As described above in detail, in the method for detecting the position deviation of the self-propelled vehicle according to the present invention, the waveform obtained by connecting the detection outputs of the magnetic sensors arranged at the predetermined intervals is obtained from one position sensor to the other position. Discrete Fourier transform is performed with the length to the sensor as one cycle of the fundamental wave, and the amount of positional deviation is calculated based on the phase of the fundamental wave component.Therefore, a small number of magnetic sensors and a one-chip microcomputer are used. Since it can be realized, a large cost reduction can be achieved. Further, since the fundamental wave component is obtained and calculated, the present invention has excellent effects such as being able to avoid the influence of offset error due to geomagnetism and the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】各磁気センサの検出出力を示すグラフである。FIG. 1 is a graph showing a detection output of each magnetic sensor.

【図2】磁化のy方向成分の分布を3次元的に示すグラ
フである。
FIG. 2 is a graph showing the distribution of the y-direction component of magnetization in a three-dimensional manner.

【図3】本発明に係る位置ズレ検出方法の実施に適用す
る磁気センサ及びガイド用磁石の関係を示す模式的平面
図である。
FIG. 3 is a schematic plan view showing the relationship between a magnetic sensor and a guide magnet that are applied to implement the positional deviation detection method according to the present invention.

【図4】本発明に係る位置ズレ検出方法を実施するため
の装置のブロック図である。
FIG. 4 is a block diagram of an apparatus for carrying out the positional deviation detection method according to the present invention.

【図5】CPU の制御内容を示すフローチャートである。FIG. 5 is a flowchart showing the control contents of the CPU.

【図6】位置ズレ量演算結果を示すグラフである。FIG. 6 is a graph showing the calculation result of the positional deviation amount.

【符号の説明】[Explanation of symbols]

1 自走車 2 位置センサ 21 磁気センサ 3 ガイド用磁石 4 マルチプレクサ 5 増幅器 6 A/D コンバータ 7 CPU 1 Self-propelled vehicle 2 Position sensor 21 Magnetic sensor 3 Guide magnet 4 Multiplexer 5 Amplifier 6 A / D converter 7 CPU

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 自走車が走行する床面に設置されたガイ
ド用磁石が発生する磁界の強さを検出して、自走車に、
その左右方向に一列に配置された複数の磁気センサで検
出して、自走車とガイド用磁石との左右方向の位置ズレ
を検出する自走車の位置ズレ検出方法において、 前記磁気センサの検出出力を連ねて得た波形を、一側に
位置する磁気センサから他側に位置する磁気センサまで
の長さを基本波の1周期として離散フーリエ変換し、基
本波の位相に基づいて位置ズレ量を検出することを特徴
とする自走車の位置ズレ検出方法。
1. A self-propelled vehicle that detects the strength of a magnetic field generated by a guide magnet installed on a floor on which the self-propelled vehicle travels,
In a method for detecting a positional deviation of a self-propelled vehicle, which detects the positional deviation in the left-right direction between the self-propelled vehicle and the guide magnet by detecting with a plurality of magnetic sensors arranged in a line in the left-right direction, the detection of the magnetic sensor The waveform obtained by connecting the outputs is discrete Fourier transformed with the length from the magnetic sensor located on one side to the magnetic sensor located on the other side as one cycle of the fundamental wave, and the amount of positional deviation based on the phase of the fundamental wave. A method for detecting a positional deviation of a self-propelled vehicle, which comprises detecting
【請求項2】 磁気センサの検出出力の総和の符号が反
転したときに、位置ズレ量を確定する請求項1に記載の
自走車の位置ズレ検出方法。
2. The method for detecting a positional deviation of a vehicle according to claim 1, wherein the positional deviation amount is determined when the sign of the total sum of the detection outputs of the magnetic sensor is reversed.
JP7073892A 1995-03-30 1995-03-30 How to detect displacement of a self-propelled vehicle Expired - Fee Related JP2857703B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7073892A JP2857703B2 (en) 1995-03-30 1995-03-30 How to detect displacement of a self-propelled vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7073892A JP2857703B2 (en) 1995-03-30 1995-03-30 How to detect displacement of a self-propelled vehicle

Publications (2)

Publication Number Publication Date
JPH08271269A true JPH08271269A (en) 1996-10-18
JP2857703B2 JP2857703B2 (en) 1999-02-17

Family

ID=13531320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7073892A Expired - Fee Related JP2857703B2 (en) 1995-03-30 1995-03-30 How to detect displacement of a self-propelled vehicle

Country Status (1)

Country Link
JP (1) JP2857703B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1019191C2 (en) * 2001-10-18 2003-04-23 Frog Navigation Systems B V Vehicle and method of driving thereof.
KR20150053632A (en) 2013-11-08 2015-05-18 삼성테크윈 주식회사 Apparatus and method for controlling traveling of automatic guided vehicle
WO2022210203A1 (en) * 2021-04-01 2022-10-06 愛知製鋼株式会社 Magnetic marker system, and design method for magnetic marker system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1019191C2 (en) * 2001-10-18 2003-04-23 Frog Navigation Systems B V Vehicle and method of driving thereof.
WO2003033330A1 (en) * 2001-10-18 2003-04-24 Frog Navigation Systems B.V. Vehicle and method for steering thereof
US7451027B2 (en) 2001-10-18 2008-11-11 Frog Navigation Systems B.V. Vehicle and method for steering thereof
KR20150053632A (en) 2013-11-08 2015-05-18 삼성테크윈 주식회사 Apparatus and method for controlling traveling of automatic guided vehicle
WO2022210203A1 (en) * 2021-04-01 2022-10-06 愛知製鋼株式会社 Magnetic marker system, and design method for magnetic marker system

Also Published As

Publication number Publication date
JP2857703B2 (en) 1999-02-17

Similar Documents

Publication Publication Date Title
US4847774A (en) Method and apparatus for detecting traveling position and/or direction of an unmanned vehicle
WO1999017079A1 (en) Magnetic apparatus for detecting position of vehicle
JPH0611358A (en) Position measuring device
JP2857703B2 (en) How to detect displacement of a self-propelled vehicle
JP2004086453A (en) Device for guiding unmanned carrier
JP2002286456A (en) Device for recognizing location of vehicle
US11408756B2 (en) Magnetic position measuring device
JPH09292236A (en) Position detector for vehicle
JPH01282615A (en) Position correcting system for self-travelling unmanned vehicle
JP3262051B2 (en) Vehicle position detecting device and position detecting method
JP2676831B2 (en) Automatic guided vehicle position detection device
JPH06194112A (en) Magnetic encoder
JP3293448B2 (en) Vehicle travel position detection device
JP3718751B2 (en) Method and apparatus for guiding unmanned driving vehicles
JPH11108673A (en) Running position sensor
JPH03127105A (en) Steering device of magnetic induction type unmanned carrying car
JPH11125502A (en) Device and method for vehicle position detection
JPH0585847B2 (en)
JPS59117611A (en) Detection for position and direction of unattended wagon
JP2552336Y2 (en) Sensor mechanism of autonomous guided automatic guided vehicle
KR20240007164A (en) Sensor units and systems
JP2676777B2 (en) Position detection device for unmanned vehicles
JPH06332531A (en) Unmanned trackless vehicle
JPH0318995Y2 (en)
JPH04288605A (en) Vehicle running position detector

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees