JPH08265915A - Traveling motor controller for battery forklift - Google Patents

Traveling motor controller for battery forklift

Info

Publication number
JPH08265915A
JPH08265915A JP7067898A JP6789895A JPH08265915A JP H08265915 A JPH08265915 A JP H08265915A JP 7067898 A JP7067898 A JP 7067898A JP 6789895 A JP6789895 A JP 6789895A JP H08265915 A JPH08265915 A JP H08265915A
Authority
JP
Japan
Prior art keywords
command value
current command
motor
current
accelerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7067898A
Other languages
Japanese (ja)
Inventor
Osamu Nakakita
治 中北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP7067898A priority Critical patent/JPH08265915A/en
Publication of JPH08265915A publication Critical patent/JPH08265915A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Forklifts And Lifting Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PURPOSE: To reduce battery consumption without causing the problem of insufficient climbing power or maximum speed by determining a current being fed to a traveling motor based on a current command value determined from the r.p.m. of motor and an extracted function, and an input power to battery and then feeding the traveling motor with the current thus determined. CONSTITUTION: A function extracting means 13 extracts a function of r.p.m. of motor/current command value and a current value operating means 14 determines a current command value from the r.p.m. of motor detected by a rotation sensor 6 and an extracted function and delivers the current command value to a power conversion circuit 8. A current being fed to a traveling motor 4 is then determined based on the current command value and a power being inputted from a battery 1 and the current thus determined is fed to the traveling motor 4. Since the function of r.p.m. of motor/current command value includes a current command data satisfying the climbing power in low speed region and a current command value data satisfying the maximum speed in high speed region, battery consumption can be reduced while eliminating the problem of insufficient climbing power or maximum speed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、伝達装置及びタイヤを
介してバッテリフォークリフトを走行させる走行モータ
の制御装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control device for a traveling motor for traveling a battery forklift truck via a transmission device and tires.

【0002】[0002]

【従来の技術】図9、図10は、バッテリフォークリフ
トの走行モータ制御装置の従来例を示している。従来、
バッテリフォークリフトの走行性能(走行フイーリン
グ)を調整する手段には、低速域でのモータ電流制限値
を増減させるもの(図9参照)、低速域でのモータ電流
値の立ち上がりの傾きを変化させるもの(図9参照)、
及び中速域・高速域でのモータに与える電圧をバッテリ
電圧を100%とするPWM電圧のデューティー比を制
御することにより一定にするもの(図10参照)、があ
る。
9 and 10 show a conventional example of a traveling motor control device for a battery forklift. Conventionally,
As means for adjusting the traveling performance (traveling feeling) of the battery forklift, one that increases or decreases the motor current limit value in the low speed range (see FIG. 9) and one that changes the rising slope of the motor current value in the low speed range ( (See FIG. 9),
Another method is to make the voltage applied to the motor in the medium speed range and the high speed range constant by controlling the duty ratio of the PWM voltage with the battery voltage being 100% (see FIG. 10).

【0003】[0003]

【発明が解決しようとする課題】前記図9、図10に示
す従来のバッテリフォークリフトの走行モータ制御装置
では、バッテリフォークリフトの重要な要素であるバッ
テリ消費を少なくしようとする際、低速域の電流を減少
させると、登坂力が不足するという問題が発生し(図9
参照)、中速域・高速域でのモータに与える固定デュー
ティーを減少させると、最高速が出ないという問題が発
生していた(図10参照)。
In the conventional traveling motor control device for a battery forklift shown in FIGS. 9 and 10, when attempting to reduce the battery consumption, which is an important factor of the battery forklift, the current in the low speed range is reduced. If it is decreased, there will be a problem that the climbing power will be insufficient (Fig. 9).
However, if the fixed duty applied to the motor in the medium speed range and the high speed range is reduced, there occurs a problem that the maximum speed cannot be obtained (see FIG. 10).

【0004】本発明は前記の問題点に鑑み提案するもの
であり、その目的とする処は、登坂力が不足するという
問題及び最高速が出ないという問題を発生させることな
くて、バッテリ消費量を少なくすることができるバッテ
リフォークリフトの走行モータ制御装置を提供しようと
する点にある。
The present invention is proposed in view of the above-mentioned problems, and its object is to reduce the battery consumption without causing the problem of insufficient climbing power and the problem of not reaching the maximum speed. It is an object of the present invention to provide a traveling motor control device for a battery forklift truck, which can reduce the number of battery packs.

【0005】[0005]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明は、伝達装置及びタイヤを介してバッテリ
フォークリフトを走行させる走行モータの制御装置にお
いて、アクセルと、同アクセルから出力されるアクセル
開度信号を予め設定しているアクセル区分の何れに含ま
れているかを判定するアクセル区分判定手段と、予め用
意されているアクセル区分別のモータ回転数/電流指令
値関数群の中から該判定結果に対応するモータ回転数/
電流指令値関数を抽出する関数抽出手段と、該抽出され
たモータ回転数/電流指令値関数及び回転センサからの
モータ回転数に基づいて電力変換回路へ出力する電流指
令値を求める電流値演算手段と、バッテリから電力を入
力して該演算された電流指令値と走行モータへ出力する
モータ電流とが同じになるように出力するモータ電圧を
調整する電力変換回路とを具えている。
In order to achieve the above object, the present invention provides an accelerator and an output from the accelerator in a control device for a travel motor that drives a battery forklift through a transmission device and a tire. The accelerator opening determination signal for determining which of the preset accelerator classifications the accelerator opening signal is included in, and the motor rotation speed / current command value function group for each accelerator classification prepared in advance Motor speed / corresponding to the judgment result
Function extracting means for extracting a current command value function, and current value calculating means for obtaining a current command value to be output to the power conversion circuit based on the extracted motor rotation speed / current command value function and the motor rotation speed from the rotation sensor And a power conversion circuit that adjusts the motor voltage to be output so that the calculated current command value and the motor current to be output to the travel motor become the same when power is input from the battery.

【0006】[0006]

【作用】本発明のバッテリフォークリフトの走行モータ
制御装置は前記のように構成されており、アクセル区分
判定手段はアクセルからアクセル開度を入力して、この
アクセル開度がアクセル区分のどこに含まれているかを
判定し、関数抽出手段はこの判定結果に対応するモータ
回転数/電流指令値関数を抽出し、電流値演算手段は回
転センサのモータ回転数と抽出した関数から電流指令値
を求めて、この電流指令値が電力変換回路へ出力され
る。この電力変換回路は出力された電流指令値とバッテ
リから入力する電力とにより走行モータに流す電流を求
めて、この電流が走行モータに出力される。そしてモー
タ回転数/電流指令値関数に、低速域では登坂力を満足
する電流指令値データ、高速域では最高速を満足する電
流指令値データ、中速域ではバッテリ消費を少なくする
電流指令値データを合わせ持つことになるので、登坂力
が不足するという問題及び最高速が出ないという問題を
発生させることがなくて、バッテリ消費量が少なくな
る。
The traveling motor control device for a battery forklift according to the present invention is configured as described above, and the accelerator classification determining means inputs the accelerator opening from the accelerator, and the accelerator opening is included in any of the accelerator classifications. Then, the function extraction means extracts the motor rotation speed / current command value function corresponding to this judgment result, and the current value calculation means obtains the current command value from the motor rotation speed of the rotation sensor and the extracted function. This current command value is output to the power conversion circuit. This electric power conversion circuit obtains a current to be supplied to the traveling motor based on the output current command value and the electric power input from the battery, and outputs this current to the traveling motor. Then, in the motor speed / current command value function, the current command value data that satisfies the climbing force in the low speed range, the current command value data that satisfies the maximum speed in the high speed range, and the current command value data that reduces the battery consumption in the medium speed range Therefore, the battery consumption can be reduced without causing the problem of insufficient climbing power and the problem of not reaching the maximum speed.

【0007】[0007]

【実施例】次に本発明のバッテリフォークリフトの走行
モータ制御装置を図1〜図8により説明する。図1は走
行モータ制御装置のブロック図、図2は走行モータ制御
装置の系統図、図3は図2のCPUの処理プログラムの
内容を示すフローチャート、図4はバッテリフォークリ
フトの系統図、図5はアクセル区分データを示す説明
図、図6はモータ回転数/電流指令値関数群(アクセル
区分別)データを示す説明図、図7はモータ回転数/電
流指令値関数群(アクセル区分別)データを示す説明
図、図8はモータ回転数/電流指令値関数の特徴を示す
説明図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, a travel motor control device for a battery forklift according to the present invention will be described with reference to FIGS. 1 is a block diagram of the traveling motor control device, FIG. 2 is a system diagram of the traveling motor control device, FIG. 3 is a flowchart showing the contents of the processing program of the CPU of FIG. 2, FIG. 4 is a system diagram of the battery forklift, and FIG. FIG. 6 is an explanatory diagram showing accelerator classification data, FIG. 6 is an explanatory diagram showing motor rotation speed / current command value function group (accelerator classification) data, and FIG. 7 is motor rotation speed / current command value function group (accelerator classification) data. FIG. 8 is an explanatory diagram showing the characteristics of the motor rotation speed / current command value function.

【0008】図4の1がバッテリ、2がアクセル、3が
本発明で最も特徴とする走行モータ制御装置、4が走行
モータ、5が伝達装置、6がモータ回転数を検出する回
転センサ、7がフォークリフトのタイヤである。次に図
2により走行モータ制御装置3を具体的に説明する。1
0が処理プログラムを格納するROM、11がアクセル
区分データ及びモータ回転数/電流指令値関数群(アク
セル区分別)データを格納するRAM、9が処理プログ
ラムに従って図1のアクセル区分判定手段12〜電流値
演算手段14を実行するCPU、8がCPU9からの電
流指令値とバッテリ1からの電力とに基づいて走行モー
タ4にモータ電流を出力する電力変換回路である。
In FIG. 4, 1 is a battery, 2 is an accelerator, 3 is a traveling motor control device, which is the most characteristic feature of the present invention, 4 is a traveling motor, 5 is a transmission device, 6 is a rotation sensor for detecting the number of revolutions of the motor, 7 Are forklift tires. Next, the traveling motor control device 3 will be specifically described with reference to FIG. 1
Reference numeral 0 is a ROM for storing a processing program, 11 is a RAM for storing accelerator classification data and motor rotation speed / current command value function group (accelerator classification) data, and 9 is an accelerator classification determining means 12-current of FIG. 1 according to the processing program. A CPU that executes the value calculation means 14 is a power conversion circuit that outputs a motor current to the traveling motor 4 based on the current command value from the CPU 9 and the power from the battery 1.

【0009】次に上記CPU9の動作を図1、図3によ
り詳細に説明する。先ずCPU9は、アクセル2からア
クセル開度を入力し(S1)、次いでRAM11からア
クセル区分データを入力する(S2)。ここでアクセル
区分データとは、アクセル開度に応じてアクセル2から
の信号を区分したもので、図7に同アクセル区分データ
の一例を示す(アクセル区分データは、アクセル開度に
応じて3つ以上に区分されたデータとする)。
Next, the operation of the CPU 9 will be described in detail with reference to FIGS. First, the CPU 9 inputs the accelerator opening degree from the accelerator 2 (S1), and then inputs the accelerator classification data from the RAM 11 (S2). Here, the accelerator classification data is obtained by classifying the signal from the accelerator 2 according to the accelerator opening degree, and an example of the same accelerator classification data is shown in FIG. 7 (accelerator classification data is three according to the accelerator opening degree). Data shall be classified as above).

【0010】次いでCPU9は、S1で入力したアクセ
ル開度が図5のどの区分に含まれているかを判定した後
(S3)、RAM11からモータ回転数/電流指令値関
数群(アクセル区分別)データを入力する(S4)。こ
こでモータ回転数/電流指令値関数群(アクセル区分
別)データとは、上記アクセル区分とは別に走行モータ
特性を対応付けたもので(図6参照)、これらの関数
は、アクセル区分が0のときは、電流指令値0で固定出
力特性、アクセル区分が0の次の最小区分のときは、車
両が駆動される最低限の出力特性、アクセル区分が最大
区分のときは、登坂力及び車両最高速度、さらにバッテ
リ消費を少なくする出力特性になるように設定されてい
る。
Next, the CPU 9 judges which of the sections in FIG. 5 the accelerator opening input in S1 is included in (S3), and then the motor speed / current command value function group (accelerator section) data from the RAM 11. Is input (S4). Here, the motor rotation speed / current command value function group (accelerator classification) data refers to the traveling motor characteristics associated with the accelerator classification (see FIG. 6), and these functions have an accelerator classification of 0. When the current command value is 0, the output characteristic is fixed. When the accelerator classification is 0, the minimum output characteristic that drives the vehicle is the minimum classification. When the accelerator classification is the maximum classification, the climbing force and the vehicle It is set to have maximum speed and output characteristics that reduce battery consumption.

【0011】アクセル区分が最小区分〜最大区分の間に
ついては、図7に示す8区分での一例のように最小区分
と最大区分との間をバッテリ消費・車両の駆動フイーリ
ングがよくなるように設定されている。また図8によ
り、上記関数の詳細をアクセル区分が最大のときの関数
F(7)について説明する。
Regarding the accelerator section between the minimum section and the maximum section, as in the example of the eight sections shown in FIG. 7, it is set between the minimum section and the maximum section so that battery consumption and vehicle driving feeling are improved. ing. Further, referring to FIG. 8, details of the above function will be described for the function F (7) when the accelerator section is maximum.

【0012】最大電流制限直線15は、登坂力を満足す
るように設定されている。モータ特性曲線16は、走行
モータ4に最大電圧(バッテリ電圧)を出力したときの
曲線を示す。バッテリ消費改善曲線17は、最高速度時
の電流指令値をモータ特性曲線16と同じにすることに
より最高速度を満足し、最大電流制限直線15と交差す
ることにより登坂力も満足する。
The maximum current limiting straight line 15 is set so as to satisfy the climbing force. The motor characteristic curve 16 is a curve when the maximum voltage (battery voltage) is output to the traveling motor 4. The battery consumption improvement curve 17 satisfies the maximum speed by making the current command value at the maximum speed the same as the motor characteristic curve 16, and also satisfies the climbing force by intersecting the maximum current limiting straight line 15.

【0013】関数F(7)は、この最大電流制限直線1
5とバッテリ消費改善曲線17とにより構成される。次
いでCPU9は、S3の判定結果に基づいて上記関数群
の中から対応するモータ回転数/電流指令値関数を抽出
する。即ち、S3の判定結果が7であれば、図6の関数
F(7)を抽出する(S5)。
The function F (7) is the maximum current limiting straight line 1
5 and a battery consumption improvement curve 17. Next, the CPU 9 extracts the corresponding motor rotation speed / current command value function from the function group based on the determination result of S3. That is, if the determination result of S3 is 7, the function F (7) of FIG. 6 is extracted (S5).

【0014】一方、CPU9は、回転センサ6からモー
タ回転数を入力し(S6)、この回転数とS5で抽出し
た関数とから電力変換回路8に与える電流指令値を演算
し(S7)、これを電力変換回路8へ出力する(S
8)。この電力変換回路8は、出力された電流指令値と
バッテリ1から入力する電力とから走行モータ4に流す
電流を求め、この電流が走行モータ4に出力される。
On the other hand, the CPU 9 inputs the motor rotation speed from the rotation sensor 6 (S6), and calculates a current command value to be given to the power conversion circuit 8 from this rotation speed and the function extracted in S5 (S7). Is output to the power conversion circuit 8 (S
8). The power conversion circuit 8 obtains a current to be passed through the traveling motor 4 from the output current command value and the electric power input from the battery 1, and this current is output to the traveling motor 4.

【0015】[0015]

【発明の効果】本発明のバッテリフォークリフトの走行
モータ制御装置は前記のようにアクセル区分判定手段1
2はアクセル2からアクセル開度を入力して、このアク
セル開度がアクセル区分のどこに含まれているかを判定
し、関数抽出手段13はこの判定結果に対応するモータ
回転数/電流指令値関数を抽出し、電流値演算手段14
は回転センサ6のモータ回転数と抽出した関数から電流
指令値を求めて、この電流指令値が電力変換回路8へ出
力される。この電力変換回路8は出力された電流指令値
とバッテリ1から入力する電力とにより走行モータ4に
流す電流を求めて、この電流が走行モータ4に出力され
る。そしてモータ回転数/電流指令値関数に、低速域で
は登坂力を満足する電流指令値データ、高速域では最高
速を満足する電流指令値データ、中速域ではバッテリ消
費を少なくする電流指令値データを合わせ持つことにな
るので、登坂力が不足するという問題及び最高速が出な
いという問題を発生させることがなくて、バッテリ消費
量を少なくすることができる効果がある。
As described above, the traveling motor control device for the battery forklift according to the present invention has the accelerator classification determining means 1 as described above.
2 inputs the accelerator opening from the accelerator 2 to determine where the accelerator opening is included in the accelerator classification, and the function extracting means 13 determines a motor rotation speed / current command value function corresponding to this determination result. Extraction and current value calculation means 14
Calculates a current command value from the motor rotation speed of the rotation sensor 6 and the extracted function, and outputs this current command value to the power conversion circuit 8. The power conversion circuit 8 obtains a current to be passed through the traveling motor 4 based on the output current command value and the electric power input from the battery 1, and this current is output to the traveling motor 4. Then, in the motor speed / current command value function, the current command value data that satisfies the climbing force in the low speed range, the current command value data that satisfies the maximum speed in the high speed range, and the current command value data that reduces the battery consumption in the medium speed range Therefore, there is an effect that the battery consumption amount can be reduced without causing the problem that the climbing power is insufficient and the problem that the maximum speed cannot be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係わるバッテリフォークリフトの走行
モータ制御装置のブロック図である。
FIG. 1 is a block diagram of a travel motor control device for a battery forklift according to the present invention.

【図2】同走行モータ制御装置の系統図である。FIG. 2 is a system diagram of the traveling motor control device.

【図3】図2のCPUの処理プログラムの内容を示すフ
ローチャートである。
3 is a flowchart showing the contents of a processing program of the CPU of FIG.

【図4】バッテリフォークリフトの系統図である。FIG. 4 is a system diagram of a battery forklift.

【図5】アクセル区分データを示す説明図である。FIG. 5 is an explanatory diagram showing accelerator classification data.

【図6】モータ回転数/電流指令値関数群(アクセル区
分別)データを示す説明図である。
FIG. 6 is an explanatory diagram showing motor rotation speed / current command value function group (accelerator classification) data.

【図7】モータ回転数/電流指令値関数群(アクセル区
分別)データを示す説明図である。
FIG. 7 is an explanatory diagram showing motor rotation speed / current command value function group (accelerator classification) data.

【図8】モータ回転数/電流指令値関数の特徴を示す説
明図である。
FIG. 8 is an explanatory diagram showing characteristics of a motor rotation speed / current command value function.

【図9】従来のバッテリフォークリフトの走行モータ制
御装置の作用説明図である。
FIG. 9 is an operation explanatory view of a conventional travel motor control device for a battery forklift.

【図10】同走行モータ制御装置の作用説明図である。FIG. 10 is an operation explanatory view of the traveling motor control device.

【符号の説明】[Explanation of symbols]

1 バッテリ 2 アクセル 4 走行モータ 6 回転センサ 8 電力変換回路 11 RAM 12 アクセル区分判定手段 13 関数抽出手段 14 電流値演算手段 1 Battery 2 Accelerator 4 Traveling Motor 6 Rotation Sensor 8 Power Converter Circuit 11 RAM 12 Accelerator Classification Determining Means 13 Function Extracting Means 14 Current Value Computing Means

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 伝達装置及びタイヤを介してバッテリフ
ォークリフトを走行させる走行モータの制御装置におい
て、アクセルと、同アクセルから出力されるアクセル開
度信号を予め設定しているアクセル区分の何れに含まれ
ているかを判定するアクセル区分判定手段と、予め用意
されているアクセル区分別のモータ回転数/電流指令値
関数群の中から該判定結果に対応するモータ回転数/電
流指令値関数を抽出する関数抽出手段と、該抽出された
モータ回転数/電流指令値関数及び回転センサからのモ
ータ回転数に基づいて電力変換回路へ出力する電流指令
値を求める電流値演算手段と、バッテリから電力を入力
して該演算された電流指令値と走行モータへ出力するモ
ータ電流とが同じになるように出力するモータ電圧を調
整する電力変換回路とを具えていることを特徴としたバ
ッテリフォークリフトの走行モータ制御装置。
1. A controller for a travel motor that drives a battery forklift via a transmission device and tires, which is included in any one of an accelerator and an accelerator section in which an accelerator opening signal output from the accelerator is preset. And a function for extracting a motor rotation speed / current command value function corresponding to the judgment result from a group of prepared motor rotation speed / current command value functions for each accelerator classification. Extraction means, current value calculation means for obtaining the current command value to be output to the power conversion circuit based on the extracted motor rotation speed / current command value function and the motor rotation speed from the rotation sensor, and the power input from the battery. Power conversion circuit for adjusting the output motor voltage so that the calculated current command value and the motor current output to the traveling motor become the same. A traveling motor control device for a battery forklift, characterized by comprising:
JP7067898A 1995-03-27 1995-03-27 Traveling motor controller for battery forklift Pending JPH08265915A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7067898A JPH08265915A (en) 1995-03-27 1995-03-27 Traveling motor controller for battery forklift

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7067898A JPH08265915A (en) 1995-03-27 1995-03-27 Traveling motor controller for battery forklift

Publications (1)

Publication Number Publication Date
JPH08265915A true JPH08265915A (en) 1996-10-11

Family

ID=13358184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7067898A Pending JPH08265915A (en) 1995-03-27 1995-03-27 Traveling motor controller for battery forklift

Country Status (1)

Country Link
JP (1) JPH08265915A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008228546A (en) * 2007-03-16 2008-09-25 Sanyo Electric Co Ltd Electric vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008228546A (en) * 2007-03-16 2008-09-25 Sanyo Electric Co Ltd Electric vehicle

Similar Documents

Publication Publication Date Title
US11590974B2 (en) Method for assisting a driver in the driving of a motor vehicle
EP3486111B1 (en) Torque control method and torque control device
CN112829756B (en) Vehicle and energy recovery method and device thereof and storage medium
US20200156636A1 (en) Cruise control system and method for vehicle
CN110979018A (en) Vehicle, control method and device thereof, electronic device and storage medium
JP2004362225A (en) Risk potential calculation device for vehicle, driving operation assist device for vehicle, vehicle equipped with driving operation assist device, and risk potential calculation method
EP0982220B1 (en) Propulsion motor control apparatus for battery vehicle
JPH07298514A (en) Controller for alternator in vehicle
JPH09242579A (en) Prime mover control device
JP3052031B2 (en) Drive wheel torque control device for vehicle
JP4313185B2 (en) Electronically controlled throttle valve controller
JPH10257605A (en) Control apparatus for electric vehicle
JPH08265915A (en) Traveling motor controller for battery forklift
JP2014072974A (en) Vehicular control device
CN111942167A (en) Pure electric vehicle driving motor control method based on driver acceleration intention recognition
JP6738154B2 (en) Vehicle control device and vehicle control method
JPH099411A (en) Motor controller for electric motor car
JPH10164704A (en) Motor driving controller for electric vehicle
JP3477324B2 (en) Battery-powered motor controller
CN112319478B (en) Vehicle driving mode switching method and device, storage medium and electric commercial vehicle
CN114074673A (en) Control method and device for self-adaptive driving mode
JP2001224108A (en) Motor control device for electric vehicle
CN115923534B (en) Vehicle and energy recovery method and energy recovery device thereof
WO2023210440A1 (en) Electric vehicle control device
JP3557751B2 (en) Regenerative braking control device for electric vehicles

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030917