JPH08264371A - Manufacture of electronic component with electroless plated film - Google Patents

Manufacture of electronic component with electroless plated film

Info

Publication number
JPH08264371A
JPH08264371A JP8462595A JP8462595A JPH08264371A JP H08264371 A JPH08264371 A JP H08264371A JP 8462595 A JP8462595 A JP 8462595A JP 8462595 A JP8462595 A JP 8462595A JP H08264371 A JPH08264371 A JP H08264371A
Authority
JP
Japan
Prior art keywords
electroless
plating
film
layer
solder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8462595A
Other languages
Japanese (ja)
Inventor
Satoshi Morita
悟史 森田
Toshimitsu Honda
敏光 本多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP8462595A priority Critical patent/JPH08264371A/en
Publication of JPH08264371A publication Critical patent/JPH08264371A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemically Coating (AREA)
  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PURPOSE: To reduce the variation in thickness of an electroless plated film by forming at least one of a plurality of conductive layers of an external electrode of an electroless plated film. CONSTITUTION: A baked conductive film 4 is formed by applying nickel conductive paste to both ends of a ceramic material 3 comprising internal electrodes 1 and ceramic inductors 2 alternately laminated and baking them. The material 3 is soaked in electroless copper plating liquid to form an electroless copper plated film 5 on the baked conductive film 4. After the electroless copper plated film 5 is degreased by alkaline liquid and rinsed in acid, soft-etching is done for removing oxide on a surface, and it is further soaked in electroless solder plating liquid to form an electroless solder plated film 6. Thus external electrodes 7, 7 are formed comprising the baked conductive film 4, the electroless copper plated film 5 and the electroless solder plated film 6 at both ends of the material 3. Thus an electronic component with an electroless plated film which is excellent in solder wettability and inexpensive can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、チップ状積層コンデン
サ等の電子部品において、外部電極に無電解メッキ膜を
有する電子部品の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing an electronic component such as a chip type multilayer capacitor having an electroless plating film on an external electrode.

【0002】[0002]

【従来の技術】コンデンサやインダクタ等の電子部品は
多くの電子機器に用いられているが、最近の電子機器の
小型化に伴って、プリント基板に電子部品を高密度に実
装した回路部品が用いられるようになり、この高密度に
実装するための電子部品として例えばチップ状の積層セ
ラミックコンデンサ、チップ状のセラミックサーミス
タ、チップ状のインダクタ等のチップ状電子部品が多く
用いられている。これらのチップ状電子部品は、それぞ
れの素子の角柱タイプや円柱タイプのセラミック素体の
両端面に外部電極を形成したものであり、これら外部電
極がプリント基板のはんだ付けランドにはんだ付けされ
て使用される。例えばチップ状の積層セラミックコンデ
ンサは、セラミック誘電体層と内部電極が交互に積層さ
れ、その積層体のセラミック素体の両側端面に当該内部
電極の端部が一つおきに互いに反対側になるように引き
出され、その端部に接続する外部電極が当該端面に形成
され、この外部電極がプリント基板のはんだ付けランド
にはんだ付けされて使用される。このチップ状積層セラ
ミックコンデンサやその他のチップ状電子部品の外部電
極を形成するには、Ag、Ag−Pd、Cu、Ni等を
含有する焼付け型導電ペーストをそれぞれのセラミック
素体の両側端面に塗布して焼付け、厚膜の下地層を形成
する。次に、この焼付け膜だけでは、プリント基板のは
んだ付けランドにはんだ付けされるときに、溶融はんだ
にAgが溶解して移行し、その焼付け膜を痩せさせる、
いわゆる「はんだ食われ」の現象を生じるので、この焼
付け膜の上にNi、Cuなどの金属のメッキを施すこと
が行われており、さらにそのメッキ層では溶融はんだを
良く濡らすことができず、実用性のあるはんだ付け強度
が得られないので、そのメッキ層の上に溶融はんだに対
する濡れ性を高めるためのSnあるいはSnとPbから
なるはんだをメッキすることが一般的に行われている。
2. Description of the Related Art Electronic components such as capacitors and inductors are used in many electronic devices. With the recent miniaturization of electronic devices, circuit components in which electronic components are densely mounted on a printed circuit board are used. As such electronic components for high-density mounting, chip-shaped electronic components such as chip-shaped multilayer ceramic capacitors, chip-shaped ceramic thermistors, and chip-shaped inductors are often used. These chip-shaped electronic components are made by forming external electrodes on both end faces of a prismatic type or columnar type ceramic element body of each element, and these external electrodes are soldered to the soldering lands of the printed circuit board before use. To be done. For example, in a chip-shaped monolithic ceramic capacitor, ceramic dielectric layers and internal electrodes are alternately laminated so that the end portions of the internal electrodes are alternately opposite to each other on both end faces of the ceramic body of the laminated body. External electrodes connected to the ends of the printed circuit board are formed on the end face, and the external electrodes are used by being soldered to the soldering lands of the printed board. In order to form the external electrodes of this chip-shaped monolithic ceramic capacitor and other chip-shaped electronic parts, a baking-type conductive paste containing Ag, Ag-Pd, Cu, Ni, etc. is applied to both end faces of each ceramic body. Then, baking is performed to form a thick underlayer. Next, with this baking film alone, when it is soldered to the soldering land of the printed circuit board, Ag is melted and transferred to the molten solder, and the baking film is thinned.
Since the phenomenon of so-called "solder erosion" occurs, plating of metals such as Ni and Cu is performed on this baked film, and further, the molten solder cannot be well wetted by the plating layer, Since practical soldering strength cannot be obtained, it is common practice to plate Sn or Sn and Pb solder on the plated layer to improve wettability with molten solder.

【0003】[0003]

【発明が解決しようとする課題】これらのチップ状電子
部品のメッキ層は、電解メッキにより形成されている
が、そのメッキ層を下地層を介して設けるのはセラミッ
ク等の不導体には直接電解メッキを行うことができない
からであり、その下地層は上記したように塗布膜からな
る厚膜であるので、例えばニッケルの焼付け型導電ペー
ストを用いた厚膜ではその表面に凹凸を生じることを避
けることができない。その凹凸のある表面に直接電解は
んだメッキを施すと、凸部分におけるメッキ電流密度が
大きくなってメッキ膜が厚く形成され、凹部分における
メッキ電流密度が小さくなってメッキ膜が薄く形成され
るので、メッキ電流密度がばらつき、それにしたがって
メッキ膜の膜厚もばらつき、いわゆるメッキの付きまわ
り性が悪く、均質なメッキ膜が得られ難く、その結果チ
ップ状電子部品をプリント基板にはんだ付けするときに
はんだの濡れ性を悪くすることがある。その場合の解決
策としてニッケルの厚膜導電膜の上に電解銅メッキ、電
解ニッケルメッキを順次施してから電解はんだメッキを
施すことが行われているが、工程数が多く、コスト的に
不利であった。
The plating layer of these chip-shaped electronic parts is formed by electrolytic plating. It is necessary to provide the plating layer via an underlayer so that the non-conductor such as ceramics is directly electrolyzed. This is because plating cannot be performed, and the underlying layer is a thick film made of a coating film as described above. Therefore, for example, a thick film using a nickel-baking conductive paste avoids unevenness on the surface. I can't. When direct electrolytic solder plating is applied to the uneven surface, the plating current density in the convex portion increases and the plating film is formed thick, and the plating current density in the concave portion decreases and the plating film is formed thin. The plating current density varies, and the thickness of the plating film also varies accordingly. So-called plating throwing power is poor, and it is difficult to obtain a uniform plating film. As a result, when soldering chip-shaped electronic components to a printed circuit board, soldering May deteriorate the wettability of. As a solution in that case, electrolytic copper plating and electrolytic nickel plating are sequentially performed on the nickel thick film conductive film, and then electrolytic solder plating is performed, but the number of steps is large and it is disadvantageous in terms of cost. there were.

【0004】また、例えば積層LCチップ部品では、図
2に示すL1 、L2 のインダクタとCのコンデンサをT
型に接続したT型LC回路の場合、図3に示すように、
インダクタ部11、コンデンサ部12を積層し、前者を
左右一対のコイル13、14を接続して構成し、後者を
誘電体を上下一対の内部電極15、16により挟持して
構成し、その積層体の外壁に上記LC回路のLC接続部
分のに対応する外部電極17、同様にL1 、L2 の端
子、に対応するコイル13、14のそれぞれの端子
に外部電極18、19、同様にCの端子に対応するコ
ンデンサの内部電極の端子に外部電極20をそれぞれ設
けた構造のものが製造されているが、その外部電極は焼
付け型導電ペースト膜の上にいわゆるバレル電解メッキ
を行ったものである。バレル電解メッキは、メッシュの
バレルの中に陰極を設け、これに対応してバレルの外部
に設けた陽極との間にメッキ浴を介在させ、バレルにメ
ッキ対象物と粒状の導体のダミーを入れ、これらを一緒
に撹拌しながらメッキを行うものであり、図2からも知
られるように、L1 、L2 の端子、及びその接続部
はこれらのいずれか一つが陰極と電気的に導通される
と他の端子も電気的に導通されるが、コンデンサCの端
子はこれらとは電気的に絶縁されており、の部分が
導通される確率は〜の場合の1/3になり、その結
果〜に対応する上記外部電極17〜19はメッキ膜
が厚くなり、に対応する外部電極20のメッキ膜は薄
くなり、メッキ膜の厚さにばらつきを生じ、上記と同様
な問題を生じる。
For example, in a laminated LC chip component, the inductors L 1 and L 2 and the capacitor C shown in FIG.
In the case of a T-type LC circuit connected to the mold, as shown in FIG.
The inductor section 11 and the capacitor section 12 are laminated, the former is constructed by connecting a pair of left and right coils 13, 14 and the latter is constructed by sandwiching a dielectric between a pair of upper and lower internal electrodes 15, 16, and a laminated body thereof. The external electrodes 17 on the outer wall of the LC circuit corresponding to the LC connection portion of the LC circuit, and the terminals of the coils 13 and 14 corresponding to the terminals of L 1 and L 2 respectively, are connected to the external electrodes 18 and 19 of the coils 13 and 14 similarly to A capacitor having a structure in which an external electrode 20 is provided on each terminal of the internal electrodes of the capacitor corresponding to the terminal is manufactured. The external electrode is obtained by performing so-called barrel electrolytic plating on a baking type conductive paste film. . In barrel electroplating, a cathode is provided inside a mesh barrel, and a plating bath is interposed between the cathode and an anode provided outside the barrel, and a plating target and a granular conductor dummy are placed in the barrel. , The plating is performed while stirring them together, and as is known from FIG. 2, one of the terminals of L 1 and L 2 and its connecting portion is electrically connected to the cathode. Then, the other terminals are also electrically conducted, but the terminal of the capacitor C is electrically insulated from these, and the probability that the portion of is conducted is 1/3 of the case of, and as a result, The external electrodes 17 to 19 corresponding to are thicker in the plating film, and the external electrodes 20 corresponding to are thinner in thickness, causing variations in the thickness of the plating film and causing the same problem as described above.

【0005】本発明の第1の目的は、膜厚のばらつきの
少ない無電解メッキ膜を有する無電解メッキ膜付電子部
品を提供することにある。本発明の第2の目的は、はん
だの濡れ性が優れた無電解メッキ膜を有する無電解メッ
キ膜付電子部品を提供することにある。本発明の第3の
目的は、工程数が少なく、コスト的に有利な無電解メッ
キ膜を有する無電解メッキ膜付電子部品を提供すること
にある。
A first object of the present invention is to provide an electronic component with an electroless plating film having an electroless plating film with a small variation in film thickness. A second object of the present invention is to provide an electronic component with an electroless plating film having an electroless plating film having excellent solder wettability. A third object of the present invention is to provide an electronic component with an electroless plating film, which has a small number of steps and has an electroless plating film which is advantageous in terms of cost.

【0006】[0006]

【課題を解決するための手段】本発明は、上記課題を解
決するために、(1)、少なくともセラミック素体に外
部電極を有する電子部品の製造方法において、該外部電
極は下地層と錫含有メッキ層を表面層に有する複数の導
電層を有し、該複数の導電層の少なくとも1層は無電解
メッキ膜形成工程により形成される無電解メッキ膜付電
子部品の製造方法を提供するものである。また、本発明
は、(2)、少なくともセラミック素体に外部電極を有
する電子部品の製造方法において、該外部電極は下地層
と錫含有メッキ層を表面層に有する複数の導電層を有
し、該複数の導電層の少なくとも1層は無電解メッキ膜
形成工程により形成され、かつ該錫含有メッキ層は無電
解メッキ膜形成工程により形成されかつ熱処理される無
電解メッキ膜付電子部品の製造方法、(3)、少なくと
もセラミック素体に外部電極を有する電子部品の製造方
法において、該外部電極は下地層と錫含有メッキ層の表
面層と両者の中間層の3層を有し、該中間層は無電解銅
メッキ膜形成工程により形成される無電解メッキ膜付電
子部品の製造方法、(4)、少なくともセラミック素体
に外部電極を有する電子部品の製造方法において、該外
部電極は下地層と錫含有メッキ層の表面層と両者の中間
層の3層を有し、該中間層は無電解銅メッキ膜形成工程
により形成され、かつ錫含有メッキ層は無電解メッキ膜
形成工程により形成されかつ熱処理される無電解メッキ
膜付電子部品の製造方法、(5)、下地層は塗布膜によ
る厚膜からなる上記(1)ないし(4)のいずれかの無
電解メッキ膜付電子部品の製造方法を提供するものであ
る。
In order to solve the above-mentioned problems, the present invention provides (1) a method for manufacturing an electronic component having at least an external electrode on a ceramic body, wherein the external electrode contains a base layer and tin-containing material. A method for manufacturing an electronic component with an electroless plating film, which has a plurality of conductive layers having a plating layer as a surface layer, and at least one layer of the plurality of conductive layers is formed by an electroless plating film forming step. is there. Further, the present invention provides (2), in at least a method of manufacturing an electronic component having an external electrode on a ceramic body, the external electrode having a plurality of conductive layers having a base layer and a tin-containing plating layer as a surface layer, At least one layer of the plurality of conductive layers is formed by an electroless plating film forming step, and the tin-containing plating layer is formed by an electroless plating film forming step and heat-treated. (3) In the method for manufacturing an electronic component having an external electrode on at least a ceramic body, the external electrode has three layers of a base layer, a surface layer of a tin-containing plating layer, and an intermediate layer of both layers. Is a method of manufacturing an electronic component with an electroless plating film formed by an electroless copper plating film forming step, (4), a method of manufacturing an electronic component having an external electrode on at least a ceramic body, wherein the external electrode It has three layers, an underlayer, a surface layer of a tin-containing plating layer, and an intermediate layer between them, the intermediate layer being formed by an electroless copper plating film forming step, and the tin-containing plating layer being formed by an electroless plating film forming step. A method for manufacturing an electronic component with an electroless plated film which is formed and heat treated, (5), wherein the underlayer is a thick film of a coating film, and the electronic component with an electroless plated film according to any one of the above (1) to (4) The present invention provides a method for manufacturing the same.

【0007】本発明において、「無電解メッキ膜形成工
程」とは、「無電解メッキ液」によるメッキ処理により
得られるメッキ膜形成工程であるが、「無電解メッキ
液」とはメッキ用金属イオン、還元剤、錯化剤及びアル
カリ剤を少なくとも含有する無電解メッキ液をいう。こ
こで、メッキ用金属イオンとは、被処理物にメッキしよ
うとする金属のイオンであり、例えば銅メッキをする場
合は銅イオンであり、ニッケルメッキをする場合はニッ
ケルイオンであるが、これらに限らず金(Au)の無電
解メッキ、白金(Pt)の無電解メッキ、銀(Ag)の
無電解メッキ、バラジウム(Pd)の無電解メッキ、こ
れらの合金その他の金属の無電解メッキ等の無電解金属
メッキを行うことができ、これらの場合にはAuイオ
ン、Ptイオン等の金属イオンをいう。これらの金属イ
オンの対イオンは、硫酸イオン、硝酸イオン、塩素イオ
ン等の鉱酸イオン、シアンイオン、ピロリン酸イオン等
が挙げられるが、その供給を行うには、例えばCuイオ
ンの場合は硫酸銅、硝酸銅、塩化銅、シアン化銅、ピロ
リン酸銅塩等の溶液があり、特に第2銅塩が好ましい
が、金属銅、銅の酸化物等他の銅化合物を硫酸等の鉱酸
溶液に溶解させて供給するようにしても良く、他の金属
イオンの場合もこれに準じて行うことができる。無電解
メッキ浴中の金属イオンの濃度としては、5g/リット
ル〜10g/リットルが好ましい。これより多いと、メ
ッキ浴中で金属の析出反応が生じ易く、これより少ない
と被処理物に対するメッキの金属の析出反応が低くなり
易い。
In the present invention, the "electroless plating film forming step" is a plating film forming step obtained by plating with an "electroless plating solution". The "electroless plating solution" is a metal ion for plating. , An electroless plating solution containing at least a reducing agent, a complexing agent and an alkaline agent. Here, the metal ions for plating are ions of the metal to be plated on the object to be treated, for example, copper ions are used for copper plating, and nickel ions are used for nickel plating. Not limited to gold (Au) electroless plating, platinum (Pt) electroless plating, silver (Ag) electroless plating, palladium (Pd) electroless plating, electroless plating of these alloys and other metals, etc. Electroless metal plating can be performed, and in these cases, it refers to metal ions such as Au ions and Pt ions. Examples of counter ions of these metal ions include sulfate ions, nitrate ions, mineral ions such as chlorine ions, cyanide ions, and pyrophosphate ions. To supply them, for example, in the case of Cu ions, copper sulfate is used. , Copper nitrate, copper chloride, copper cyanide, copper pyrophosphate, etc., and the second cupric salt is particularly preferable, but other copper compounds such as metallic copper, copper oxides and the like are added to a mineral acid solution such as sulfuric acid. You may make it melt | dissolve and may be supplied, and also in the case of another metal ion, it can carry out according to this. The concentration of metal ions in the electroless plating bath is preferably 5 g / liter to 10 g / liter. If it is more than this, the metal deposition reaction is likely to occur in the plating bath, and if it is less than this, the metal deposition reaction of the plating on the object to be treated tends to be low.

【0008】また、還元剤は、無電解メッキ液中のメッ
キしようとする金属イオンを還元してその金属を被処理
物表面に析出させ、金属膜を形成できる化合物をいう
が、具体的にはホルマリン、パラホルムアルデヒド、ジ
メチルアミンボラン、次亜リン酸塩、ヒドラジン、グリ
オキシル酸、KBH4 、NaBH4 、ロッショエル塩等
が挙げられる。これらは単独又は複数併用できる。無電
解メッキ液中の還元剤の濃度としては、0.1g/リッ
トル〜20g/リットルが好ましい。これより多いと、
メッキ液中で金属の析出反応が生じ易く、これより少な
いと被処理物に対するメッキの金属の析出反応が低くな
り易い。アルカリ剤としては、NaOH、KOH、Li
OH等のアルカリ金属の水酸化物が好ましく、メッキ液
のpHが11.0〜13.0になるように添加すること
が好ましい。錯化剤は、錯体を形成することができる物
質をいうが、具体的には、例えば酒石酸塩、EDTA
(エチレンジアミン四酢酸)、NTA(ニトリロ酸酢
酸)、HEDTA(オキシエチルエチレンジアミン三酢
酸)DHEDDA(ジヒドロキシエチルエチレンジアミ
ン二酢酸)、1,3PDTA(1,3−プロペンジアミ
ン四酢酸)、DTPA(ジエチレントリアミン五酢
酸)、TTHA(トリエチレンテトラミン六酢酸)、H
IMDA(ヒドロキシエチルイミノ二酢酸)、アンモニ
ア等の化合物であって、金属、特にCu等の遷移金属と
錯体を形成することができる化合物が挙げられる。無電
解メッキ液には安定剤を使用することも好ましく、この
安定剤としては、DDCN(ジエチルジチオカルバミン
酸ナトリウム)、KSCN(チオシアン化カリウム)、
2,2’−ビピリジル、2,2’−ジピリジン、ニコチ
ン酸、チオ尿素、テトラメチルチオ尿素、クプロン、ク
ペロン、チアゾール、2−メルカプトベンゾチアゾー
ル、フェロシアン化カリウム、フェリシアン化カリウ
ム、シアン化ナトリウム、ピロール、ピラゾール、イミ
ダゾール、1,2,4−トリアゾール、1,2,4−ベ
ンゾトリアゾール、チオフェン、チオメリッド、ロダニ
ン、ルベアン酸、ピリジン、トリアジン、メチルオレン
ジ、ベンゾキノリン、2,2’−ビキノリン、ジチゾ
ン、ジフェニルカルバジド、ネロクプロイン、2(2−
ピリジル)イミダゾリン、1、10−フェナンスロリン
等のシアン化合物、窒素系有機化合物、イオウ化合物等
を添加することが好ましく、これらは単独又は複数併用
される。無電解メッキ液中の安定化剤の濃度としては
0.01〜100ppmが好ましい。これより多いと被
処理物に対するメッキ反応が停止し易く、これより少な
いとそのメッキ反応が起こり難くなる。
The reducing agent refers to a compound capable of forming a metal film by reducing metal ions to be plated in the electroless plating solution and depositing the metal on the surface of the object to be treated. formalin, paraformaldehyde, dimethylamine borane, hypophosphite, hydrazine, glyoxylic acid, KBH 4, NaBH 4, Rosshoeru salts. These can be used alone or in combination. The concentration of the reducing agent in the electroless plating solution is preferably 0.1 g / liter to 20 g / liter. If more than this,
A metal precipitation reaction is likely to occur in the plating solution, and if it is less than this, the plating metal precipitation reaction on the object to be treated tends to be low. Alkaline agents include NaOH, KOH, Li
A hydroxide of an alkali metal such as OH is preferable, and it is preferable to add it so that the pH of the plating solution becomes 11.0 to 13.0. The complexing agent refers to a substance capable of forming a complex, and specifically, for example, tartrate, EDTA.
(Ethylenediaminetetraacetic acid), NTA (Nitriloacetic acid), HEDTA (Oxyethylethylenediaminetriacetic acid) DHEDDA (Dihydroxyethylethylenediaminediacetic acid), 1,3PDTA (1,3-Propenediaminetetraacetic acid), DTPA (Diethylenetriaminepentaacetic acid) , TTHA (triethylenetetramine hexaacetic acid), H
Examples thereof include compounds such as IMDA (hydroxyethyliminodiacetic acid) and ammonia, which are capable of forming a complex with a metal, particularly with a transition metal such as Cu. It is also preferable to use a stabilizer for the electroless plating solution. Examples of the stabilizer include DDCN (sodium diethyldithiocarbamate), KSCN (potassium thiocyanide),
2,2'-bipyridyl, 2,2'-dipyridine, nicotinic acid, thiourea, tetramethylthiourea, cupron, cuperone, thiazole, 2-mercaptobenzothiazole, potassium ferrocyanide, potassium ferricyanide, sodium cyanide, pyrrole, pyrazole, Imidazole, 1,2,4-triazole, 1,2,4-benzotriazole, thiophene, thiomelide, rhodanine, rubeanic acid, pyridine, triazine, methyl orange, benzoquinoline, 2,2'-biquinoline, dithizone, diphenylcarbazide , Nerocuproine, 2 (2-
Pyridyl) imidazoline, a cyan compound such as 1,10-phenanthroline, a nitrogen-based organic compound, a sulfur compound and the like are preferably added, and these may be used alone or in combination. The concentration of the stabilizer in the electroless plating solution is preferably 0.01 to 100 ppm. If it is more than this, the plating reaction on the object to be treated is likely to stop, and if it is less than this, the plating reaction becomes difficult to occur.

【0009】本発明において、「少なくともセラミック
素体に外部電極を有する電子部品」とは、チップ状セラ
ミック電子部品が挙げられ、これらには、チップ状円筒
形コンデンサ、チップ状抵抗体、チップ状フェライトビ
ーズインダクタ、NTC又はPTC型のチップ状サーミ
スタ、チップ状バリスター、チップ状積層電子部品等が
挙げられ、チップ状積層電子部品としては、チップ状積
層セラミックコンデンサ、チップ状積層セラミックイン
ダクタ、チップ状積層セラミックトランス、チップ状積
層セラミックLC部品(積層LCチップ部品)等が挙げ
られる。なお、「電子部品」を「コンデンサとインダク
タを内蔵し、それぞれの外部電極間が電気的に導通する
回路と直流では電気的に遮断する回路を有する電子部
品」とすることもできる。本発明において、「セラミッ
ク素体」とは、セラミック材料の焼成体を主体としたも
のをいうが、これを用いた電子部品がサーミスタの場合
は抵抗体、フェライトビーズの場合は導体の磁性体によ
る被覆体、積層セラミックコンデンサの場合はセラミッ
ク層を内部電極を挟んで積層した積層体、積層セラミッ
クインダクタ、積層セラミックトランスの場合はセラミ
ック層を内部導体を挟んで積層した積層体をいい、その
他の電子部品のセラミック素体もこれらに準ずる。
In the present invention, "electronic parts having at least external electrodes on the ceramic body" include chip-shaped ceramic electronic parts, including chip-shaped cylindrical capacitors, chip-shaped resistors, and chip-shaped ferrites. Examples thereof include a bead inductor, an NTC or PTC type chip thermistor, a chip varistor, and a chip multilayer electronic component. Examples of the chip multilayer electronic component include a chip multilayer ceramic capacitor, a chip multilayer ceramic inductor, and a chip multilayer. Examples thereof include a ceramic transformer and a chip-shaped multilayer ceramic LC component (multilayer LC chip component). It should be noted that the "electronic component" may be "an electronic component having a circuit that has a built-in capacitor and an inductor and that electrically connects between the external electrodes and a circuit that electrically cuts off DC current". In the present invention, the “ceramic element body” refers to a body mainly composed of a fired body of a ceramic material. When an electronic component using this is a thermistor, it is a resistor body, and when it is a ferrite bead, it is a conductor magnetic body. In the case of a cover, a laminated ceramic capacitor, a laminated body in which ceramic layers are laminated with an internal electrode sandwiched, in the case of a laminated ceramic inductor, a laminated ceramic transformer, a laminated body in which ceramic layers are laminated with an internal conductor sandwiched. The ceramic element body of the part also conforms to these.

【0010】本発明において、「少なくともセラミック
素体に外部電極を有する」とは、例えば上記セラミック
素体の両端部に外部電極を有する場合のみならず、外部
電極間のセラミック素体に絶縁膜を有するような場合も
いう。外部電極はセラミック素体に形成される導電層の
下地層と、錫含有メッキ層の表面層を少なくとも有する
ことが好ましく、さらにその中間層を有することも好ま
しい。中間層は錫含有メッキ層を下地層に直接設けると
「はんだ食われ」現象等を起こさせる場合に設けられ、
下地層は無電解メッキ膜そのものでも良いが、導電体粉
末を含有する導電ペーストの塗布膜でも良く、さらには
蒸着膜、イオンプレーティング膜、スパッタリング膜そ
の他の不良導体表面に金属層を形成できるものはいずれ
も使用できる。これらの膜には、Au、Ag、Pd、A
g−Pd、Cu、Zn、Niその他これらの合金等の金
属材料を用いることができる。なお、無電解メッキ膜を
セラミック素体の両端に選択的に形成するには該当部分
に活性処理を行なうとその部分にのみ無電解メッキ膜を
形成できる。その活性処理としては、無電解ニッケルメ
ッキを行う場合には、Sn、Pd等の溶液によりその処
理を行い(塩化錫溶液、塩化パラジウムの溶液に順次浸
漬する等)、無電解銅メッキに対しては、次亜燐酸ソー
ダあるいはホルマリン等の溶液を用いて、その溶液に浸
漬することによってその処理を行うことがてきる。
In the present invention, "having at least external electrodes on the ceramic body" means not only the case where external electrodes are provided on both ends of the ceramic body, but also an insulating film is formed on the ceramic body between the external electrodes. This is also the case when they have. The external electrode preferably has at least a base layer of a conductive layer formed on the ceramic body and a surface layer of a tin-containing plating layer, and further preferably has an intermediate layer therebetween. The intermediate layer is provided when the tin-containing plating layer is directly provided on the underlayer to cause "solder erosion" phenomenon,
The underlayer may be an electroless plating film itself, but may be a coating film of a conductive paste containing a conductor powder, and a metal layer can be formed on the surface of a defective conductor such as a vapor deposition film, an ion plating film, a sputtering film, etc. Can be used. These films include Au, Ag, Pd, A
Metallic materials such as g-Pd, Cu, Zn, Ni and their alloys can be used. In addition, in order to selectively form the electroless plated film on both ends of the ceramic body, the electroless plated film can be formed only on that part by performing activation treatment on the corresponding part. As the activation treatment, when electroless nickel plating is performed, the treatment is performed with a solution of Sn, Pd, etc. (sequential immersion in tin chloride solution, palladium chloride solution, etc.) Can be treated by using a solution of sodium hypophosphite, formalin or the like, and immersing the solution in the solution.

【0011】一般的にはAg、Ag−Pd又はPdの導
電材料ペースト膜の焼付け膜からなる導電層の下地層、
Cu又はNi又はPdを主成分とするメッキ膜の中間
層、さらにその上に錫含有メッキ層を有し、錫含有メッ
キ層が露出している構造、あるいはCu又はNi又はP
dを主成分とする導電体を含有する導電材料ペースト膜
の焼付け膜からなる下地層に錫含有メッキ層を有し、そ
の錫含有メッキ層が露出している構造の電極が挙げられ
るが、これらに限らない。錫含有メッキ層とはSnのみ
を主成分とするメッキ層、SnとPbを主成分とし、S
n/Pb=85〜98/2〜15のはんだメッキ層が挙
げられる。
Generally, a base layer of a conductive layer formed of a baked film of a conductive material paste film of Ag, Ag-Pd or Pd,
A structure in which an intermediate layer of a plating film containing Cu, Ni or Pd as a main component, and a tin-containing plating layer on the intermediate layer, and the tin-containing plating layer is exposed, or Cu, Ni or P
There is an electrode having a structure in which a tin-containing plating layer is formed on a base layer made of a baked film of a conductive material paste film containing a conductor containing d as a main component, and the tin-containing plating layer is exposed. Not limited to The tin-containing plating layer is a plating layer containing only Sn as a main component, and the main component containing Sn and Pb is S.
The solder plating layer of n / Pb = 85-98 / 2-15 is mentioned.

【0012】本発明において、「複数の導電層の少なく
とも1層」とは、例えば上記下地層、中間層、錫含有メ
ッキ層の表面層を設ける場合はその少なくとも一つの層
が挙げられ、したがって各単独層、任意の2つの層又は
全部の層の場合が挙げられる。その少なくとも1層が本
発明に係わる無電解メッキ膜であれば良く、他の層は上
記材料からなる厚膜導電膜を下地層に設けても良く、下
地層を除く他の層は電解メッキ膜であっても良いが無電
解メッキ膜であることが好ましい。いずれの場合も、下
地層に凹凸があった場合でも、その上に無電解メッキ膜
を設ければその膜厚を一定にすることができ、特に下地
層にニッケルの焼付け膜からなる厚膜を設け、その上に
無電解銅メッキを行ない、さらに無電解はんだメッキを
行うと、工程数が少なく、しかも無電解銅メッキの銅と
はんだを化学的置換させ、はんだを析出させる無電解は
んだメッキ液を使用することができるので好ましい。無
電解銅メッキはメッキ付き性が良いので、下地厚膜の材
料や表面状態に左右されにくく好ましい。銅メッキ膜上
における無電解はんだメッキの析出は、錫、鉛合金と銅
とで構成するガルバニ電池の原理に基づいている。錫、
鉛、銅の金属イオンがアコ錯体として存在する系では銅
は最も貴であるけれども、錯化剤の存在によって、これ
らの金属の平衡電位や自然電位が著しく変化し、銅を最
も卑にすることが出来る。このような状態で下記置換反
応により錫及び鉛が銅の表面に析出する。 2Cu→2Cu+ +2e Sn2+(Pb2+)+2e→Sn(Pb)
In the present invention, "at least one layer of a plurality of conductive layers" means, for example, at least one layer of the above-mentioned underlayer, intermediate layer, and tin-containing plating layer when the surface layer is provided, and therefore Examples include a single layer, any two layers, or all layers. At least one of the layers may be an electroless plated film according to the present invention, other layers may be provided with a thick film conductive film made of the above material as a base layer, and other layers except the base layer may be electroplated films. However, an electroless plating film is preferable. In any case, even if the underlayer has irregularities, it is possible to make the film thickness constant by providing an electroless plating film on it, and especially for the underlayer, a thick film made of a nickel baking film is used. An electroless solder plating solution that, when provided and plated with electroless copper and further electroless solder plated, has a small number of steps and that chemically replaces the copper of the electroless copper plating with the solder to deposit the solder. Can be used, which is preferable. Since electroless copper plating has good plating properties, it is preferable because it is unlikely to be affected by the material and surface condition of the underlying thick film. The deposition of electroless solder plating on the copper plating film is based on the principle of a galvanic cell composed of tin, a lead alloy and copper. tin,
Although copper is the most noble in a system in which metal ions of lead and copper exist as an acocomplex, the presence of a complexing agent significantly changes the equilibrium potential and spontaneous potential of these metals, making copper the least base. Can be done. In such a state, tin and lead are deposited on the surface of copper by the following substitution reaction. 2Cu → 2Cu + + 2e Sn 2+ (Pb 2+ ) + 2e → Sn (Pb)

【0013】また、本発明において、「熱処理される」
とは、例えば無電解はんだメッキ膜を下地の無電解銅メ
ッキ膜との置換反応により得た場合には、そのメッキ膜
は緻密性に若干欠けるので、その高度な緻密性を要する
場合に一旦そのはんだメッキ膜を溶融させ、緻密化させ
る等、加熱により無電解メッキ膜を改質することをい
う。その加熱雰囲気は、無電解はんだメッキ膜の酸化を
防止するため、非酸化性雰囲気が好ましい。非酸化性雰
囲気であれば、ガス中、真空中、液体中などは問わな
い。また、加熱温度は無電解はんだメッキ膜の錫と鉛の
割合により変える必要がある。錫が多い場合には、より
高温での加熱処理が必要であり、共晶はんだ組成に近い
場合には、より低温での加熱処理が好ましい。加熱温度
が300℃を超えると錫の蒸発が起こり、100℃より
低いと膜の緻密化が図れないので、100〜300℃が
好ましい。その加熱時間は10分〜60分が好ましい。
Further, in the present invention, "heat treated"
Means, for example, when an electroless solder plating film is obtained by a substitution reaction with an electroless copper plating film as a base, the plating film is slightly lacking in denseness. This refers to modifying the electroless plating film by heating, such as melting and densifying the solder plating film. The heating atmosphere is preferably a non-oxidizing atmosphere in order to prevent the electroless solder plating film from being oxidized. It does not matter whether it is in a gas, a vacuum, a liquid or the like as long as it is a non-oxidizing atmosphere. Further, the heating temperature needs to be changed according to the ratio of tin and lead in the electroless solder plating film. When the amount of tin is large, a heat treatment at a higher temperature is necessary, and when it is close to the eutectic solder composition, a heat treatment at a lower temperature is preferable. When the heating temperature exceeds 300 ° C., evaporation of tin occurs, and when the heating temperature is lower than 100 ° C., the film cannot be densified, so 100 to 300 ° C. is preferable. The heating time is preferably 10 minutes to 60 minutes.

【0014】[0014]

【作用】例えば無電解銅メッキでは、次の反応により銅
イオンが還元されて金属銅が被処理物表面に沈着する。 CuSO4 +2HCHO+4NaOH→Cu+2H2
+2HCOONa+Na2 SO4 この式から、Cuの沈着は、被処理物表面に例えばニッ
ケルの焼付導電膜の下地層が形成され、その表面に凹凸
が形成されていても、電解メッキの場合に電流密度のば
らつきに応じてメッキ膜の膜厚にばらつきが生じたのに
比べ、場所的選択性がなく行われ、比較的膜厚の均一な
無電解銅メッキ膜を得ることができる。また、膜厚の均
一な無電解メッキ膜の上に錫含有メッキ膜を設けると、
その膜厚のばらつきを少なくでき、溶融はんだに対する
濡れ、すなわちはんだ濡れ性を向上でき、特に錫含有メ
ッキ膜を無電解メッキ膜にすることにより一層その膜厚
のばらつきを少なくでき、はんだ濡れ性を一層向上でき
る。その錫含有メッキ膜の無電解メッキ膜は熱処理によ
り緻密化され、さらに一層はんだ濡れ性が向上される。
For example, in electroless copper plating, copper ions are reduced by the following reaction and metallic copper is deposited on the surface of the object to be treated. CuSO 4 + 2HCHO + 4NaOH → Cu + 2H 2 O
+ 2HCOONa + Na 2 SO 4 From this equation, Cu deposition shows that even if an underlying layer of a nickel-baked conductive film is formed on the surface of the object to be processed and irregularities are formed on the surface, the current density in the case of electrolytic plating is As compared with the case where the thickness of the plating film varies depending on the variation, there is no local selectivity, and an electroless copper plating film having a relatively uniform thickness can be obtained. Further, when the tin-containing plating film is provided on the electroless plating film having a uniform thickness,
The variation in the film thickness can be reduced, and the wettability with respect to the molten solder, that is, the solder wettability can be improved. In particular, by changing the tin-containing plating film to the electroless plating film, the variation in the film thickness can be further reduced, and the solder wettability can be improved. It can be further improved. The electroless plated film of the tin-containing plated film is densified by heat treatment, and the solder wettability is further improved.

【0015】[0015]

【実施例】次に本発明の実施例を説明する。 実施例1 (a) 図1に示すように、内部電極1とセラミック誘
電体2を交互に積層したセラミック素体3の両端に、ニ
ッケル粉末をエチルセルローズ、ターピネオールと混練
りしたニッケル導電ペーストをディッピング法により塗
布して乾燥し、そのニッケル導電ペースト膜を800℃
で焼付け、膜厚15μmの焼付け導電膜4を形成した。
このようにしてセラミック素体に焼付け導電膜を形成し
た試験片を作製した。 (b) 次に、下記組成の無電解銅メッキ液を調製し
た。 CuSO4 ・5H2 O 8.75g/l(リットル) ロッシェル塩 37.50g/l NaOH 11.30g/l ホルムアルデヒド 8.5ml/l これに上記試験片を43℃、25分浸漬し、上記焼付け
導電膜4の上に膜厚約1μmの無電解銅メッキ膜5を形
成した。 (c) その試験片の無電解銅メッキ膜をアルカリ液で
脱脂した後酸で洗ってから、その表面の酸化物を除くソ
フトエッチング処理(硫酸16g/L(リットル)と過
硫酸ソ−ダ20g/Lとの水溶液で溶解処理する)を行
った。それから、その試験片を無電解はんだメッキ液
(上村工業社製ビームソルダーPc−RBL−41)中
に70℃、30分浸漬し、約2μmの無電解はんだメッ
キ膜を形成した。
EXAMPLES Examples of the present invention will be described below. Example 1 (a) As shown in FIG. 1, a nickel conductive paste prepared by kneading nickel powder with ethyl cellulose and terpineol was dipped on both ends of a ceramic body 3 in which internal electrodes 1 and ceramic dielectrics 2 were alternately laminated. Method and then dry the nickel conductive paste film at 800 ℃
To form a baked conductive film 4 having a film thickness of 15 μm.
In this way, a test piece having a baked conductive film formed on the ceramic body was prepared. (B) Next, an electroless copper plating solution having the following composition was prepared. CuSO 4 .5H 2 O 8.75 g / l (liter) Rochelle salt 37.50 g / l NaOH 11.30 g / l formaldehyde 8.5 ml / l The test piece was dipped in this for 43 minutes at 43 ° C. An electroless copper plated film 5 having a film thickness of about 1 μm was formed on the film 4. (C) The electroless copper-plated film of the test piece was degreased with an alkaline solution and then washed with acid, and then a soft etching treatment for removing oxides on the surface (sulfuric acid 16 g / L (liter) and sodium persulfate 20 g The solution is dissolved in an aqueous solution of / L). Then, the test piece was dipped in an electroless solder plating solution (beam solder Pc-RBL-41 manufactured by Uemura Kogyo Co., Ltd.) at 70 ° C. for 30 minutes to form an electroless solder plating film of about 2 μm.

【0016】このようにしてセラミック素体3の両端に
焼付け導電膜4(膜厚15μm)、無電解銅メッキ膜5
(膜厚約2μm)及び無電解はんだメッキ膜6(膜厚約
2μm)からなる外部電極7、7を有する2.0×1.
25×1.25(mm)形状のチップ状積層セラミック
コンデンサの試験片を作製した。この試験片の外部電極
について、はんだの濡れ性を後述のメニスコグラフ法に
より測定した。その結果、はんだ濡れ性の指標となるゼ
ロクロスタイムは0.77秒であった。同様な従来品
(ニッケルの厚膜に電解銅メッキ、電解ニッケルメッキ
を順次行ってから電解はんだメッキを行ったもの)の
0.75秒と比較して遜色ない値であった。なお、この
試験片の外部電極の無電解はんだメッキ膜を表面から電
子顕微鏡で観察したところ、はんだメッキ層を介して薄
く銅メッキ層が観察されたが、はんだの濡れ性には影響
がなかった。
In this way, the conductive film 4 (film thickness 15 μm) and the electroless copper plating film 5 are baked on both ends of the ceramic body 3.
2.0 × 1. Having external electrodes 7 made of electroless solder plating film 6 (film thickness of about 2 μm) and electroless solder plating film 6 (film thickness of about 2 μm).
A test piece of a 25 × 1.25 (mm) shape chip-shaped multilayer ceramic capacitor was prepared. With respect to the external electrodes of this test piece, the wettability of solder was measured by the meniscograph method described later. As a result, the zero cross time, which is an index of solder wettability, was 0.77 seconds. The value was comparable to 0.75 seconds of a similar conventional product (thick film of nickel, electrolytic copper plating and electrolytic nickel plating were sequentially performed and then electrolytic solder plating was performed). When the electroless solder plating film of the external electrode of this test piece was observed from the surface with an electron microscope, a thin copper plating layer was observed through the solder plating layer, but the wettability of the solder was not affected. .

【0017】メニスコグラフ法とは、試験片の外部電極
を230℃の溶融はんだに徐々に押し込んでゆき、その
試験片が溶融はんだの浮力に打ち勝って侵入するまでの
時間(濡れ時間、ゼロクロスタイムともいう)を測定す
るものである。試験片10個についてその濡れ時間の平
均値を求める。濡れ時間が短いほどはんだ濡れ性が良
い。
The meniscograph method is a time until the external electrode of the test piece is gradually pushed into the molten solder at 230 ° C. until the test piece overcomes the buoyancy of the molten solder and penetrates (also called wetting time, zero cross time). ) Is measured. The average value of the wetting time is obtained for 10 test pieces. The shorter the wetting time, the better the solder wettability.

【0018】実施例2 図3に示すような回路的に孤立した外部電極20を持つ
積層LCチップ部品について、外部電極17〜19、2
0に対応するセラミック素体の部分に、銀粉末をエチル
セルローズ、ターピネオールと混練りした銀導電ペース
トを印刷法により塗布して乾燥し、その銀導電ペースト
膜を800℃で焼付け、膜厚15μmの焼付け導電膜を
それぞれ形成した。このようにした得られた試験片を市
販の無電解ニッケルメッキ液(上村工業社製)に50
℃、30分浸漬し、1.5μmの無電解ニッケル膜を形
成した。さらにこの無電解ニッケルメッキ膜を形成した
試験片に実施例1と同様にして無電解銅メッキを行い、
約2μmの無電解銅メッキ膜を形成した。以下、実施例
1と同様にして無電解はんだメッキ膜を無電解銅メッキ
膜上に形成し、図3に示す外部電極17〜20を有する
積層LCチップ部品の試験片を作製した。この試験片に
ついても、実施例1と同様にメニスコグラフ法によりは
んだ濡れ性を測定したところ、ゼロクロスタイムは0.
79秒であった。同様な従来品(無電解ニッケル、無電
解銅メッキ、無電解はんだメッキをそれぞれ電解ニッケ
ルメッキ、電解銅メッキ、電解はんだメッキで行ったも
の)の0.75秒と比較して遜色ないものであった。ま
た、この試験片について、それぞれの外部電極17〜2
0の断面を電子顕微鏡で観察し、無電解ニッケルメッキ
膜、無電解銅メッキ膜及び無電解はんだメッキ膜の合計
膜厚を各外部電極について同じ数、場所を変えて求めた
ところ、ばらつきを示す標準偏差値が上記従来品より4
2%低減し、メッキ膜厚のばらつきが大幅に減少したこ
とがわかった。このことから、「無電解メッキ膜を有す
るメッキ膜の膜厚の標準偏差値を電解メッキ膜を有する
メッキ膜の膜厚の標準偏差値の最大40%低減できるメ
ッキ膜を有する外部電極」の構成が考えられる。
Example 2 Regarding the laminated LC chip component having the circuit-isolated external electrode 20 as shown in FIG.
A silver conductive paste prepared by kneading silver powder with ethyl cellulose and terpineol was applied to a portion of the ceramic body corresponding to 0 by a printing method and dried, and the silver conductive paste film was baked at 800 ° C. to have a thickness of 15 μm. A baking conductive film was formed respectively. The thus obtained test piece was added to a commercially available electroless nickel plating solution (manufactured by Uemura Industry Co., Ltd.).
It was immersed at 30 ° C. for 30 minutes to form a 1.5 μm electroless nickel film. Further, the test piece on which the electroless nickel plating film was formed was subjected to electroless copper plating in the same manner as in Example 1,
An electroless copper plating film of about 2 μm was formed. Hereinafter, an electroless solder plating film was formed on the electroless copper plating film in the same manner as in Example 1 to prepare a test piece of a laminated LC chip component having the external electrodes 17 to 20 shown in FIG. When the solder wettability of this test piece was measured by the meniscograph method as in Example 1, the zero cross time was 0.
It was 79 seconds. It is comparable to 0.75 seconds of similar conventional products (electroless nickel plating, electroless copper plating, electroless solder plating performed by electrolytic nickel plating, electrolytic copper plating, and electrolytic solder plating, respectively). It was In addition, regarding this test piece, each external electrode 17-2
The cross section of No. 0 was observed with an electron microscope, and the total thickness of the electroless nickel plating film, the electroless copper plating film and the electroless solder plating film was found by changing the same number for each external electrode and changing the place, and showed variations. Standard deviation is 4 compared to the conventional product
It was found that the reduction was 2%, and the variation in the plating film thickness was significantly reduced. From this, the structure of "external electrode having a plating film capable of reducing the standard deviation of the thickness of the plating film having the electroless plating film by up to 40% of the standard deviation of the thickness of the plating film having the electrolytic plating film" Can be considered.

【0019】実施例3 実施例1と同様にして、2.0×1.25×1.25
(mm)形状のチップ状積層セラミックコンデンサの試
験片を作製し、さらにその試験片を油中210℃で15
秒間加熱処理した。得られた試験片の無電解はんだメッ
キ膜の膜厚は約1.8μmであった。この試験片につい
ても、実施例1と同様にメニスコグラフ法によりはんだ
濡れ性を測定したところ、ゼロクロスタイムは0.60
秒であった。同様な従来品(無電解ニッケル、無電解銅
メッキ、無電解はんだメッキをそれぞれ電解ニッケルメ
ッキ、電解銅メッキ、電解はんだメッキで行ったもの)
の0.75秒と比較して良好な値であった。
Example 3 In the same manner as in Example 1, 2.0 × 1.25 × 1.25
(Mm) shaped chip-shaped monolithic ceramic capacitor test pieces were prepared, and the test pieces were further heated in oil at 210 ° C. for 15 minutes.
Heat treatment was performed for a second. The thickness of the electroless solder-plated film of the obtained test piece was about 1.8 μm. With respect to this test piece as well, when the solder wettability was measured by the meniscograph method as in Example 1, the zero cross time was 0.60.
It was seconds. Similar conventional products (electroless nickel plating, electroless copper plating, electroless solder plating performed by electrolytic nickel plating, electrolytic copper plating, and electrolytic solder plating, respectively)
Was 0.75 seconds, which was a good value.

【0020】[0020]

【発明の効果】本発明によれば、外部電極の複数の導電
層の少なくとも1層を無電解メッキ膜により形成したの
で、その無電解メッキ膜の膜厚のばらつきを少なく、い
わゆる付きまわり性を良くでき、比較的均一な膜厚にで
き、その上に設けるメッキ膜も一様かつ均一厚さに形成
することができる。そのため、被処理物表面に例えばニ
ッケルの焼付導電膜の下地層が形成され、その表面に凹
凸が形成されていても、その上に形成される無電解メッ
キ膜の膜厚を均一にできるので、表面に設ける錫含有メ
ッキ層の膜厚も均一にでき、無電解メッキ膜を有する外
部電極を備えたチップ状電子部品をプリント基板にはん
だ付けする場合にも溶融はんだに対する濡れ、すなわち
はんだ濡れ性を良くすることができ、無電解はんだメッ
キ層を熱処理することにより更にそのはんだ濡れ性を向
上することができる。また、電解メッキを行う場合のよ
うにニッケルの焼付導電膜の下地層上に銅メッキ膜、ニ
ッケルメッキ膜を順次設けてからその上に電解はんだメ
ッキ膜を設けるというように工程数を多くしないで済
み、極端な場合には、例えば積層コンデンサの外部電極
を例えばニッケルの焼付導電膜上の銅メッキ膜あるいは
銅の焼付導電膜からなる厚膜に直接無電解はんだメッキ
膜を設けることにより形成することができ、より一層工
程を簡略化することができ、コスト的に有利である。ま
た、例えば積層LCチップ部品のように、多端子の外部
電極を有する電子部品であって、その内にコンデンサ用
の外部電極のように回路的に孤立したものでも、外部電
極をバレル電解メッキにより形成する場合のように内部
の素子がインダクタであるかコンデンサであるかにより
その外部電極のメッキ膜の厚さが異なるとういうような
こともなく、他のインダクタ用の外部電極と同様な膜厚
の無電解メッキ膜を形成することができ、外部電極全体
の膜厚のばらつきを少なくし、安定した品質の製品を供
給することができる。
According to the present invention, since at least one of the plurality of conductive layers of the external electrodes is formed by the electroless plating film, the variation in the thickness of the electroless plating film is reduced and so-called throwing power is improved. It is possible to improve the film quality, to make the film thickness relatively uniform, and to form the plating film provided thereon with a uniform and uniform thickness. Therefore, even if an underlayer of a baked conductive film of nickel is formed on the surface of the object to be processed and unevenness is formed on the surface, the film thickness of the electroless plating film formed thereon can be made uniform, The thickness of the tin-containing plating layer provided on the surface can be made uniform, and even when soldering a chip-shaped electronic component equipped with an external electrode having an electroless plating film to a printed circuit board, wetting by molten solder, that is, solder wettability The solder wettability can be further improved by heat-treating the electroless solder plating layer. In addition, as in the case of performing electrolytic plating, the number of steps is not increased such that a copper plating film and a nickel plating film are sequentially provided on a base layer of a nickel-baked conductive film and then an electrolytic solder plating film is provided thereon. In the extreme case, for example, the external electrode of the multilayer capacitor is formed by directly providing the electroless solder plating film on the copper plating film on the nickel baking film or the thick film made of the copper baking film. And the process can be further simplified, which is advantageous in terms of cost. Further, even if the electronic component is an electronic component having multi-terminal external electrodes, such as a laminated LC chip component, and is electrically isolated within the circuit, such as an external electrode for a capacitor, the external electrode is subjected to barrel electrolytic plating. There is no need to say that the thickness of the plating film of the external electrode differs depending on whether the internal element is an inductor or a capacitor as in the case of forming it, and the same film thickness as the external electrode for other inductors. It is possible to form a non-electrolytic plating film of (3), reduce variations in film thickness of the entire external electrode, and supply a product of stable quality.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係わる無電解メッキ膜を有する外部電
極を備えたチップ状積層セラミックコンデンサの概略断
面図である。
FIG. 1 is a schematic sectional view of a chip-shaped monolithic ceramic capacitor provided with an external electrode having an electroless plating film according to the present invention.

【図2】T型LC回路図である。FIG. 2 is a T-type LC circuit diagram.

【図3】その回路を組み込んだ積層LCチップ部品であ
る。
FIG. 3 is a laminated LC chip component incorporating the circuit.

【符号の説明】[Explanation of symbols]

1 セラミック誘電体層 2 内部電極 3 セラミック素体 4 焼付導電膜 5 無電解銅メッキ膜 6 無電解はんだメッキ膜 7 外部電極 1 Ceramic Dielectric Layer 2 Internal Electrode 3 Ceramic Element 4 Baking Conductive Film 5 Electroless Copper Plating Film 6 Electroless Solder Plating Film 7 External Electrode

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 少なくともセラミック素体に外部電極を
有する電子部品の製造方法において、該外部電極は下地
層と錫含有メッキ層を表面層に有する複数の導電層を有
し、該複数の導電層の少なくとも1層は無電解メッキ膜
形成工程により形成される無電解メッキ膜付電子部品の
製造方法。
1. A method of manufacturing an electronic component having an external electrode on at least a ceramic body, wherein the external electrode has a plurality of conductive layers having a base layer and a tin-containing plating layer as a surface layer, and the plurality of conductive layers. At least one layer is formed by an electroless plating film forming step.
【請求項2】 少なくともセラミック素体に外部電極を
有する電子部品の製造方法において、該外部電極は下地
層と錫含有メッキ層を表面層に有する複数の導電層を有
し、該複数の導電層の少なくとも1層は無電解メッキ膜
形成工程により形成され、かつ該錫含有メッキ層は無電
解メッキ膜形成工程により形成されかつ熱処理される無
電解メッキ膜付電子部品の製造方法。
2. A method of manufacturing an electronic component having an external electrode on at least a ceramic body, wherein the external electrode has a plurality of conductive layers having a base layer and a tin-containing plating layer as a surface layer, and the plurality of conductive layers. At least one layer is formed by an electroless plating film forming step, and the tin-containing plating layer is formed by an electroless plating film forming step and heat-treated.
【請求項3】 少なくともセラミック素体に外部電極を
有する電子部品の製造方法において、該外部電極は下地
層と錫含有メッキ層の表面層と両者の中間層の3層を有
し、該中間層は無電解銅メッキ膜形成工程により形成さ
れる無電解メッキ膜付電子部品の製造方法。
3. A method for manufacturing an electronic component having an external electrode on at least a ceramic body, wherein the external electrode has three layers of an underlayer, a surface layer of a tin-containing plating layer, and an intermediate layer of both layers. Is a method of manufacturing an electronic component with an electroless plating film formed by an electroless copper plating film forming step.
【請求項4】 少なくともセラミック素体に外部電極を
有する電子部品の製造方法において、該外部電極は下地
層と錫含有メッキ層の表面層と両者の中間層の3層を有
し、該中間層は無電解銅メッキ膜形成工程により形成さ
れ、かつ錫含有メッキ層は無電解メッキ膜形成工程によ
り形成されかつ熱処理される無電解メッキ膜付電子部品
の製造方法。
4. A method of manufacturing an electronic component having an external electrode on at least a ceramic body, wherein the external electrode has three layers of a base layer, a surface layer of a tin-containing plating layer, and an intermediate layer of both layers. Is a method for manufacturing an electronic component with an electroless plated film, which is formed by an electroless copper plated film forming step, and a tin-containing plated layer is formed by a non-electrolytic plated film forming step and heat-treated.
【請求項5】 下地層は塗布膜による厚膜からなる請求
項1ないし4のいずれかに記載の無電解メッキ膜付電子
部品の製造方法。
5. The method for manufacturing an electronic component with an electroless plating film according to claim 1, wherein the underlayer is a thick film formed by a coating film.
JP8462595A 1995-03-17 1995-03-17 Manufacture of electronic component with electroless plated film Pending JPH08264371A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8462595A JPH08264371A (en) 1995-03-17 1995-03-17 Manufacture of electronic component with electroless plated film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8462595A JPH08264371A (en) 1995-03-17 1995-03-17 Manufacture of electronic component with electroless plated film

Publications (1)

Publication Number Publication Date
JPH08264371A true JPH08264371A (en) 1996-10-11

Family

ID=13835865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8462595A Pending JPH08264371A (en) 1995-03-17 1995-03-17 Manufacture of electronic component with electroless plated film

Country Status (1)

Country Link
JP (1) JPH08264371A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000100647A (en) * 1998-09-24 2000-04-07 Kyocera Corp Laminate ceramic capacitor and manufacture thereof
JP2000286142A (en) * 1999-03-31 2000-10-13 Kyocera Corp Multilayer ceramic capacitor and external electrode paste
JP2003183844A (en) * 2001-12-18 2003-07-03 Murata Mfg Co Ltd Electronic component and manufacturing process therefor
WO2006129542A1 (en) * 2005-06-03 2006-12-07 Murata Manufacturing Co., Ltd. Electronic component, and process for producing electronic component
JP2010205884A (en) * 2009-03-03 2010-09-16 Murata Mfg Co Ltd Method of manufacturing electronic component
JP2011165961A (en) * 2010-02-10 2011-08-25 Nichicon Corp Solid electrolytic capacitor and method of manufacturing the same
JP2012009813A (en) * 2010-05-27 2012-01-12 Murata Mfg Co Ltd Ceramic electronic component and manufacturing method for the same
JP2013214714A (en) * 2012-03-30 2013-10-17 Samsung Electro-Mechanics Co Ltd Multilayer ceramic electronic component and fabrication method thereof
US20140272110A1 (en) * 2013-03-14 2014-09-18 Recor Medical, Inc. Methods of plating or coating ultrasound transducers
US10368944B2 (en) 2002-07-01 2019-08-06 Recor Medical, Inc. Intraluminal method and apparatus for ablating nerve tissue

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000100647A (en) * 1998-09-24 2000-04-07 Kyocera Corp Laminate ceramic capacitor and manufacture thereof
JP2000286142A (en) * 1999-03-31 2000-10-13 Kyocera Corp Multilayer ceramic capacitor and external electrode paste
JP2003183844A (en) * 2001-12-18 2003-07-03 Murata Mfg Co Ltd Electronic component and manufacturing process therefor
US10368944B2 (en) 2002-07-01 2019-08-06 Recor Medical, Inc. Intraluminal method and apparatus for ablating nerve tissue
US8179660B2 (en) 2005-03-06 2012-05-15 Murata Manufacturing Co., Ltd. Electronic device and method for manufacturing the same
WO2006129542A1 (en) * 2005-06-03 2006-12-07 Murata Manufacturing Co., Ltd. Electronic component, and process for producing electronic component
JP2010205884A (en) * 2009-03-03 2010-09-16 Murata Mfg Co Ltd Method of manufacturing electronic component
JP2011165961A (en) * 2010-02-10 2011-08-25 Nichicon Corp Solid electrolytic capacitor and method of manufacturing the same
JP2012009813A (en) * 2010-05-27 2012-01-12 Murata Mfg Co Ltd Ceramic electronic component and manufacturing method for the same
US8564931B2 (en) 2010-05-27 2013-10-22 Murata Manufacturing Co., Ltd. Ceramic electronic component and method for manufacturing the same
JP2013214714A (en) * 2012-03-30 2013-10-17 Samsung Electro-Mechanics Co Ltd Multilayer ceramic electronic component and fabrication method thereof
US20140272110A1 (en) * 2013-03-14 2014-09-18 Recor Medical, Inc. Methods of plating or coating ultrasound transducers

Similar Documents

Publication Publication Date Title
US6310757B1 (en) Electronic component having external electrodes and method for the manufacture thereof
JPH08264372A (en) Manufacture of electronic component with electroless plated film
US4668925A (en) Dielectric resonator and method for making
US8315036B2 (en) Ceramic electronic component and method for manufacturing the same
US8982533B2 (en) Monolithic electronic component and method for manufacturing monolithic electronic component
KR19990063421A (en) Electronic parts with SN alloy coating
JPH08264371A (en) Manufacture of electronic component with electroless plated film
US3984290A (en) Method of forming intralayer junctions in a multilayer structure
KR100497076B1 (en) Method of producing electronic part and electronic part
US8077445B2 (en) Monolithic ceramic electronic component and method for manufacturing the same
JP5278685B2 (en) Manufacturing method of electronic parts
JP2003253454A (en) Method for plating electronic parts, and electronic parts
JP3348705B2 (en) Electrode formation method
JP4710204B2 (en) Method for forming end face electrode of electronic component
JPS59176907A (en) Dielectric resonator ceramics for microwave
EP0638656A1 (en) Alloy to be plated, its plating method and plating solution
JPH09260106A (en) Electronic part manufacturing method
JPH01289231A (en) Leadless chip component
JPH08273967A (en) Method for forming electrode of electronic component
US3934985A (en) Multilayer structure
JP2003268561A (en) Electroless plating solution, method of producing ceramic electronic parts, and ceramic electronic parts
JPH01187912A (en) Forming method for end face electrode of electronic component
JPH06325974A (en) Formation of electrode of electronic component
JP4582044B2 (en) Electroless plating solution and method for manufacturing ceramic electronic component
JP2787743B2 (en) Feed-through porcelain capacitor

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20011106