JPH08261752A - Triangulation type distance measuring device and obstacle detection device - Google Patents

Triangulation type distance measuring device and obstacle detection device

Info

Publication number
JPH08261752A
JPH08261752A JP5929495A JP5929495A JPH08261752A JP H08261752 A JPH08261752 A JP H08261752A JP 5929495 A JP5929495 A JP 5929495A JP 5929495 A JP5929495 A JP 5929495A JP H08261752 A JPH08261752 A JP H08261752A
Authority
JP
Japan
Prior art keywords
distance
light
light source
measurement target
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5929495A
Other languages
Japanese (ja)
Other versions
JP3401979B2 (en
Inventor
Toshiaki Takahashi
利彰 高橋
Takeshi Ono
健 大野
Masayuki Hori
雅之 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP05929495A priority Critical patent/JP3401979B2/en
Publication of JPH08261752A publication Critical patent/JPH08261752A/en
Application granted granted Critical
Publication of JP3401979B2 publication Critical patent/JP3401979B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Optical Distance (AREA)

Abstract

PURPOSE: To make possible measuring a distance to a measuring object with mirror surface of which direction is unknown. CONSTITUTION: Light is cast from a roughly point light source 35 to a plane mirror 40 and its reflection light is received with a light reception part 33 on standard side and a light reception part 34 on reference side by way of a first and a second optical systems 31 and 32. Brightness signals from both reception parts 33 and 34 are input in a computer, parallax is calculated by the comparison of two brightness signals, and the distance Dk to a virtual image 35' of the point source 35 with the triangulation principle is calculated. Furthermore, from the distance Dk and the distance Doff from the point light source 35 to the optical system and equation h=(Dk-Doff)/2, the distance to the plane mirror 40 is calculated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、鏡面反射する測定対象
でも測距が可能な三角測量式測距装置及びこの三角測量
式測距装置を用いた障害物検知装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a triangulation type distance measuring device capable of measuring a distance even on a mirror-reflected measuring object and an obstacle detecting device using the triangulation type distance measuring device.

【0002】[0002]

【従来の技術】従来の測距装置としては、2組の光学系
と受光部をもち、測定対象からの光を各光学系を介して
対応する各受光部で受光し、受光した光線の強度分布に
応じた明度信号が各受光部からそれぞれ出力され、出力
された互いの明度信号を、例えば一方の明度信号を基準
として他方の明度信号をずらしながら比較して相関を計
算し、相関が最も高い時、即ち、一方の基準の明度信号
に対して最も近似した明度信号が得られた時の位置のず
れ量を求め、このずれ量から距離を算出するようにした
パッシブ三角測量式測距装置がある(例えば特開昭50
−138825号公報参照)。
2. Description of the Related Art As a conventional distance measuring device, it has two sets of optical systems and a light receiving part, and light from a measurement object is received by each corresponding light receiving part through each optical system, and the intensity of the received light beam. A lightness signal corresponding to the distribution is output from each light receiving unit, and the output mutual lightness signals are compared, for example, while shifting the other lightness signal with one lightness signal as a reference, and the correlation is calculated. Passive triangulation type distance measuring device for obtaining a position shift amount when the brightness signal most approximated to one reference brightness signal is obtained and calculating a distance from this shift amount when the brightness signal is highest. (For example, JP-A-50
-138825 gazette).

【0003】従来のパッシブ三角測量式測距装置の原理
について、図23及び図24を用いて説明する。ただし、測
定対象は測距装置正面にあるものとする。測定対象1か
らの光は、第1の光学系2を通って基準側受光部3で受
光され、基準側受光部3では受光した光線の強度分布に
応じた第1の明度信号4が得られる。また、測定対象1
からの光は、第2の光学系5を通って参照側受光部6で
受光され、参照側受光部6では、受光した光線の第2の
明度信号7が得られる。
The principle of a conventional passive triangulation type distance measuring device will be described with reference to FIGS. 23 and 24. However, the object to be measured shall be in front of the distance measuring device. The light from the measuring object 1 passes through the first optical system 2 and is received by the reference side light receiving section 3, and the reference side light receiving section 3 obtains a first brightness signal 4 according to the intensity distribution of the received light beam. . Also, measurement target 1
The light from is received by the reference side light receiving section 6 through the second optical system 5, and the reference side light receiving section 6 obtains the second brightness signal 7 of the received light beam.

【0004】この場合、測定対象1の位置1′、第2の
光学系2のレンズ中心位置2′、第2の光学系5のレン
ズ中心位置5′、第2の光学系5の光軸と参照側受光部
6の交点8、参照側受光部6上で測定対象1からの光が
焦点を結ぶ位置9及び第1の光学系2の光軸10の位置関
係は、図24のようになる。このとき、三角形1′−2′
−5′と三角形5′−8−9は相似である。
In this case, the position 1'of the object to be measured 1, the lens center position 2'of the second optical system 2, the lens center position 5'of the second optical system 5, and the optical axis of the second optical system 5 are used. The positional relationship between the intersection 8 of the reference-side light-receiving unit 6, the position 9 on the reference-side light-receiving unit 6 where the light from the measurement target 1 focuses and the optical axis 10 of the first optical system 2 is as shown in FIG. . At this time, triangle 1'-2 '
-5 'and triangle 5'-8-9 are similar.

【0005】ここで、測定対象1の位置1′と第1の光
学系2のレンズ中心位置2′との間の距離(測定距離)
をDj、第1の光学系2のレンズ中心位置2′と第2の
光学系5のレンズ中心位置5′の間の距離(基線長)を
B、各光学系2,5の焦点距離をf、参照側受光部6上
における光軸との交点8と測定対象1からの光が焦点を
結ぶ位置9の間の距離(視差)をRとすると、 Dj/B=f/R ・・・ (1) が成り立つ。(1)式から、 Dj=B・f/R ・・・ (2) となり、光学系から測定対象1までの距離Djは、
(2)式から算出できる。
Here, the distance (measurement distance) between the position 1'of the object 1 to be measured and the lens center position 2'of the first optical system 2 is measured.
Is Dj, the distance (baseline length) between the lens center position 2'of the first optical system 2 and the lens center position 5'of the second optical system 5 is B, and the focal lengths of the optical systems 2 and 5 are f. Assuming that the distance (parallax) between the intersection 8 with the optical axis on the reference side light receiving unit 6 and the position 9 where the light from the measurement target 1 focuses is Dj / B = f / R ( 1) holds. From the equation (1), Dj = B · f / R (2), and the distance Dj from the optical system to the measurement target 1 is
It can be calculated from the equation (2).

【0006】従って、基線長B、焦点距離fは予め測定
しておくことができるので、視差Rがわかれば距離Dj
を算出することができる。視差Rは、前述したように、
基準側受光部3と参照側受光部6から得られる明度信号
4,7を比較し、互いの相関の最も高い時のずれ量とし
て算出されるので、各受光部3,6からの明度信号4,
7を検出することで、測定対象までの距離Djは算出で
きる。
Therefore, since the base line length B and the focal length f can be measured in advance, if the parallax R is known, the distance Dj
Can be calculated. As described above, the parallax R is
Since the lightness signals 4 and 7 obtained from the reference side light receiving unit 3 and the reference side light receiving unit 6 are compared and calculated as the shift amount when the mutual correlation is highest, the lightness signal 4 from each light receiving unit 3 and 6 is calculated. ,
By detecting 7, the distance Dj to the measurement target can be calculated.

【0007】[0007]

【発明が解決しようとする課題】しかし、従来のこの種
の三角測量式測距装置では、測定対象が鏡面である場合
には、測定対象までの距離ではなく、測定対象表面に映
り込んだ虚像までの距離を測定してしまう可能性がある
という問題点があった。測定対象が鏡面である場合の従
来の測距装置としては、1つの略点光源からの光を複数
個の受光体で検出し、略点光源と受光した受光体の位置
関係と、平面鏡の角度から測定対象までの距離を算出す
るか、または、複数個の略点光源からの光線を1つの受
光体で検出し、受光体が受光したときに点灯していた略
点光源と受光体の位置関係と、平面鏡の角度から測定対
象までの距離を算出するもの(特開昭51−40169
号公報参照)と、1つの略点光源からの光を受光レンズ
を用いて位置検出素子上に結像させ、位置検出素子上の
光の位置、略点光源と受光レンズの位置関係、平面鏡の
角度から測定対象までの距離を算出するもの(特開平3
−255909号公報参照)等がある 前者の測距原理について、図25及び図26を用いて説明す
る。
However, in the conventional triangulation type distance measuring device of this type, when the measurement target is a mirror surface, the virtual image reflected on the measurement target surface is not the distance to the measurement target. There was a problem that the distance to could be measured. As a conventional distance measuring device when the measurement target is a mirror surface, the light from one substantially point light source is detected by a plurality of light receivers, and the positional relationship between the substantially point light source and the received light receivers and the angle of the plane mirror are detected. To the object to be measured, or the light rays from a plurality of approximate point light sources are detected by one light receiver, and the positions of the approximate point light source and the light receiver turned on when the light receiver receives the light A method for calculating the relationship and the distance from the angle of the plane mirror to the object to be measured (Japanese Patent Laid-Open No. 51-40169).
(See Japanese Laid-Open Patent Publication No. 2004-242242), light from one approximate point light source is imaged on the position detecting element using the light receiving lens, the position of the light on the position detecting element, the positional relationship between the approximate point light source and the light receiving lens, A device for calculating the distance from the angle to the measurement target
The former principle of distance measurement (see Japanese Patent Publication No. 255905) is described with reference to FIGS. 25 and 26.

【0008】狭指向角光源11から投射された光は、平面
鏡12で反射され、受光体13に入射される。狭指向角光源
11と各受光体13が基準線上に並んでおり、基準線と平面
鏡12は平行であるとする。平面鏡12の基準線に対する角
度が変化しなければ、平面鏡12までの距離Dmは、 Dm=J/2tanθ ・・・ (3) により算出できる。Jは狭指向角光源11と受光体13の間
の距離、θは狭指向角光源11の平面鏡12と直交する軸線
に対してなす角度である。
The light projected from the narrow directional light source 11 is reflected by the plane mirror 12 and is incident on the light receiver 13. Narrow directional light source
It is assumed that 11 and each light receiving body 13 are lined up on the reference line, and the reference line and the plane mirror 12 are parallel to each other. If the angle of the plane mirror 12 with respect to the reference line does not change, the distance Dm to the plane mirror 12 can be calculated by Dm = J / 2 tan θ (3) J is a distance between the narrow directional light source 11 and the light receiving body 13, and θ is an angle formed by the narrow directional light source 11 with respect to an axis orthogonal to the plane mirror 12.

【0009】そして、図25のように1つの光源からの光
を複数の受光体で検出する場合は、平面鏡12がaの位置
からbの位置へ移動すると受光する受光体13が異なり、
図26のように複数の光源からの光を1つの受光体で検出
する場合は、平面鏡12の位置に応じて受光体13が受光す
る光を発する光源11が異なる。従って、いずれの場合も
平面鏡12の位置に応じて光源11と受光体13の間の距離J
が変化するので、この距離Jを検出することで平面鏡12
までの距離Dmが算出できる。
When the light from one light source is detected by a plurality of light receivers as shown in FIG. 25, when the plane mirror 12 moves from the position a to the position b, the light receiver 13 which receives the light is different.
When light from a plurality of light sources is detected by one light receiver as shown in FIG. 26, the light source 11 that emits the light received by the light receiver 13 differs depending on the position of the plane mirror 12. Therefore, in any case, depending on the position of the plane mirror 12, the distance J between the light source 11 and the light receiver 13
Changes, the flat mirror 12 can be detected by detecting this distance J.
The distance Dm to can be calculated.

【0010】次に、後者の測距原理について、図27を用
いて説明する。略点光源の位置をL、受光レンズの中心
位置をO、平面鏡の位置をT、略点光源から平面鏡に垂
線を下ろしその交点をQ、略点光源からの光が平面鏡上
の点Pで反射して受光レンズによって焦点を結ぶ受光体
上の位置をXとして、直線L−Qと直線O−Pの延長線
上の交点をIとすると、図24で説明した三角測量の原理
によって、L、O、Xの位置関係と平面鏡の角度から略
点光源の位置LからIまでの距離が算出できる。三角形
L−Q−PとI−Q−Pは等しいので、略点光源から平
面鏡までの距離は、LからIまでの距離の半分である。
Next, the latter principle of distance measurement will be described with reference to FIG. The position of the substantially point light source is L, the center position of the light receiving lens is O, the position of the plane mirror is T, a perpendicular is drawn from the substantially point light source to the plane mirror, the intersection is Q, and the light from the substantially point light source is reflected at a point P on the plane mirror. Then, when the position on the light receiving body which is focused by the light receiving lens is X and the intersection point on the extension line of the straight line LQ and the straight line OP is I, L, O are calculated according to the principle of triangulation explained in FIG. , X, and the angle of the plane mirror, the distance from the position L to the point light source I can be calculated. Since the triangles L-Q-P and I-Q-P are equal, the distance from the point light source to the plane mirror is half the distance from L to I.

【0011】しかしながら、表面が鏡面である測定対象
の測距を行う、上述の従来装置では、測定対象である平
面鏡と測距装置との角度関係が既知でないと平面鏡まで
の距離が測定できないため、測定対象が不特定の場合は
使用できないという問題があった。本発明はこのような
従来の問題点に着目してなされたもので、鏡面に光源の
虚像が映り込むことに着目し、三角測量の原理を利用し
て、不特定の測定対象の測距が可能で、しかも、鏡面反
射をする測定対象でも測距が可能な三角測量式測距装置
を提供することを目的とする。また、この三角測量式測
距装置を利用した障害物検知装置を提供する。
However, in the above-mentioned conventional apparatus for measuring the distance of a measurement object whose surface is a mirror surface, the distance to the plane mirror cannot be measured unless the angular relationship between the measurement object flat mirror and the distance measuring apparatus is known. There is a problem that it cannot be used when the measurement target is unspecified. The present invention has been made in view of such conventional problems. Focusing on the reflection of a virtual image of a light source on a mirror surface, the principle of triangulation is used to measure the distance of an unspecified measuring object. An object of the present invention is to provide a triangulation type distance measuring device that is capable of measuring distance even with a measurement object that is specularly reflective. Further, an obstacle detection device using this triangulation type distance measuring device is provided.

【0012】[0012]

【課題を解決するための手段】このため、第1の発明の
三角測量式測距装置では、図1に示すように、測定対象
Aに光を照射する光源Bと、測定対象Aからの光がそれ
ぞれ入光する第1及び第2の光学系C,Dと、第1の光
学系Cを介して受光した光の強度分布状態を示す第1の
明度信号を出力する基準側受光手段Eと、第2の光学系
Dを介して受光した光の強度分布状態を示す第2の明度
信号を出力する参照側受光手段Fと、第1の明度信号と
第2の明度信号とを比較して基準側受光手段表面の受光
位置に対する参照側受光手段の受光位置のずれ量を測定
する測定手段Gと、前記測定手段Gで測定されたずれ量
に基づき三角測量の原理を用いて前記光源の虚像までの
距離を演算する第1の距離演算手段Hと、第1の距離演
算手段Hで演算された虚像までの距離をDk、光源から
光学系までの距離をDoffとした時、測定対象までの
距離Dhを、 Dh=(Dk−Doff)/2 の演算式により算出する第2の距離演算手段Iとを備え
て構成した。
Therefore, in the triangulation type distance measuring device of the first invention, as shown in FIG. 1, the light source B for irradiating the measuring object A with light and the light from the measuring object A are used. And first and second optical systems C and D for respectively receiving light, and a reference side light receiving means E for outputting a first lightness signal indicating an intensity distribution state of light received via the first optical system C. , Comparing the first lightness signal and the second lightness signal with the reference side light receiving means F that outputs the second lightness signal indicating the intensity distribution state of the light received via the second optical system D. Measuring means G for measuring the amount of deviation of the light receiving position of the reference side light receiving means from the light receiving position of the surface of the reference side light receiving means, and the virtual image of the light source using the principle of triangulation based on the amount of deviation measured by the measuring means G. To the first distance calculation means H for calculating the distance to When the distance to the virtual image is Dk and the distance from the light source to the optical system is Doff, the distance Dh to the measurement object is calculated by the following equation: Dh = (Dk-Doff) / 2 I and.

【0013】また、第2の発明の三角測量式測距装置で
は、図2に示すように、測定対象Aに光を照射する第1
及び第2の光源B,B′と、測定対象Aからの光がそれ
ぞれ入光する第1及び第2の光学系C,Dと、第1の光
学系Cを介して受光した光の強度分布状態を示す第1の
明度信号を出力する基準側受光手段Eと、第2の光学系
Dを介して受光した光の強度分布状態を示す第2の明度
信号を出力する参照側受光手段Fと、各光源B,B′の
照射光毎に第1の明度信号と第2の明度信号とを比較し
て基準側受光手段表面の受光位置に対する参照側受光手
段の受光位置のずれ量を各光源の照射光毎に測定する測
定手段Gと、前記測定手段Gで測定された各光源の照射
光に対する各ずれ量に基づき三角測量の原理を用いて各
光源の虚像までの距離をそれぞれ演算する第1の距離演
算手段Hと、第1の距離演算手段Hで演算された各虚像
までの距離をDk1 ,Dk2 、第1及び第2の光源から
光学系までのそれぞれの距離をDoff1 ,Doff2
とした時、測定対象までの距離Dhを、 Dh=(Dk2 ・Doff1 −Dk1 ・Doff2 )/
(Dk1 −Doff2−Dk2 +Doff1 ) の演算式により算出する第2の距離演算手段Iとを備え
て構成した。
Further, in the triangulation type distance measuring device according to the second invention, as shown in FIG.
And second light sources B and B ', first and second optical systems C and D into which light from the measurement object A enters, and intensity distributions of light received through the first optical system C. A reference side light receiving means E for outputting a first lightness signal indicating the state, and a reference side light receiving means F for outputting a second lightness signal indicating the intensity distribution state of the light received via the second optical system D. , The first lightness signal and the second lightness signal are compared for each irradiation light of each of the light sources B and B ', and the deviation amount of the light receiving position of the reference side light receiving means with respect to the light receiving position of the surface of the reference side light receiving means is calculated for each light source Measuring unit G for measuring each irradiation light, and calculating the distance to each virtual image of each light source using the principle of triangulation based on each deviation amount of each light source with respect to the irradiation light measured by the measuring unit G. The distance between the first distance calculation means H and each virtual image calculated by the first distance calculation means H is Dk. 1 , Dk 2 , and the respective distances from the first and second light sources to the optical system are Doff 1 , Doff 2
Then, the distance Dh to the measurement target is Dh = (Dk 2 · Doff 1 −Dk 1 · Doff 2 ) /
The second distance calculating means I which is calculated by the arithmetic expression (Dk 1 −Doff 2 −Dk 2 + Doff 1 ) is provided.

【0014】また、上記の第1及び第2の発明の三角測
量式測距装置に、前記両受光手段の少なくとも一方の明
度信号に基づいて測定対象が鏡面か否かを判定する判定
手段を設け、測定対象が鏡面でないと判定された時は、
光源の消灯状態で得られた前記ずれ量に基づいて前記第
1の距離演算手段で算出される値を測定対象までの距離
とし、測定対象が鏡面であると判定された時は、前記第
2の距離演算手段で算出される値を測定対象までの距離
とするように構成するとよい。
Further, the triangulation type distance measuring device of the first and second inventions is provided with a judging means for judging whether or not the object to be measured is a mirror surface based on the brightness signal of at least one of the light receiving means. , When it is determined that the measurement target is not a mirror surface,
The value calculated by the first distance calculating means based on the displacement amount obtained when the light source is turned off is set as the distance to the measurement target, and when it is determined that the measurement target is a mirror surface, the second The value calculated by the distance calculation means may be used as the distance to the measurement target.

【0015】前記判定手段は、明度信号に予め設定した
閾値より高いピーク値が存在するか否を判定し、閾値よ
り高いピーク値が存在する時に測定対象は鏡面と判定
し、閾値より高いピーク値が存在しない時に測定対象は
鏡面でないと判定する構成である。また、前記判定手段
は、明度信号の光源点灯時と消灯時の値の差を算出し、
算出された差信号に予め設定した閾値より高いピーク値
が存在するか否を判定し、差信号に閾値より高いピーク
値が存在する時に測定対象は鏡面と判定し、閾値より高
いピーク値が存在しない時に測定対象は鏡面でないと判
定する構成としてもよい。
The determination means determines whether or not there is a peak value higher than a preset threshold value in the brightness signal, and when there is a peak value higher than the threshold value, it is determined that the measurement target is a mirror surface and the peak value higher than the threshold value. When the object does not exist, it is determined that the measurement target is not a mirror surface. Further, the determination means calculates the difference between the value of the lightness signal when the light source is turned on and when the light source is turned off,
It is determined whether the calculated difference signal has a peak value higher than a preset threshold value, and when the difference signal has a peak value higher than the threshold value, the measurement target is determined to be a mirror surface, and a peak value higher than the threshold value exists. It may be configured to determine that the measurement target is not a mirror surface when not performing.

【0016】前記判定手段は、明度信号又は差信号の空
間微分値を演算し、算出された空間微分値の絶対値に予
め設定した閾値より高いピーク値が存在するか否を判定
し、閾値より高いピーク値が存在する時に測定対象は鏡
面と判定し、閾値より高いピーク値が存在しない時に測
定対象は鏡面でないと判定する構成としてもよい。ま
た、前記測定手段は、第1の明度信号の光源点灯時と消
灯時の値の差信号と、第2の明度信号の光源点灯時と消
灯時の値の差信号とを比較して受光位置のずれ量を測定
する構成とするとよい。
The determination means calculates the spatial differential value of the brightness signal or the difference signal, determines whether or not there is a peak value higher than a preset threshold value in the absolute value of the calculated spatial differential value, and determines from the threshold value. The measurement target may be determined to be a mirror surface when a high peak value exists, and the measurement target may not be a mirror surface when a peak value higher than the threshold value does not exist. Further, the measuring means compares the difference signal between the values of the first lightness signal when the light source is turned on and off and the difference signal of the second lightness signal when the light source is turned on and off to compare the light receiving position. It is advisable to adopt a configuration for measuring the amount of deviation.

【0017】また、基準側受光手段表面における第1の
光学系の光軸との交点と受光位置との間の距離をRdと
し、第1の光学系の焦点距離をfとし、測定対象の方向
角度θhを、 θh=atan(f/Rd) の演算式により算出する方向角度算出手段を備える構成
とするとよい。
The distance between the intersection of the optical axis of the first optical system and the light receiving position on the surface of the reference side light receiving means is Rd, the focal length of the first optical system is f, and the direction of the object to be measured. It is preferable that the angle θh be provided with a direction angle calculating unit that calculates the angle θh by the arithmetic expression of θh = atan (f / Rd).

【0018】また、両光学系にシリンドリカルレンズを
用いるとよい。また、測定対象と受光手段との間に、光
源の照射光の波長以外の光をカットする光学フィルタを
設置するとよい。本発明の障害物検知装置では、図1及
び図2に点線で示すように、表示手段を設け、上述の三
角測量式測距装置で得られた測定対象の位置情報を表示
手段に入力して測定対象の位置を表示する構成である。
It is preferable to use a cylindrical lens for both optical systems. Further, an optical filter that cuts light other than the wavelength of the irradiation light of the light source may be installed between the measurement target and the light receiving means. In the obstacle detection device of the present invention, as shown by the dotted lines in FIGS. 1 and 2, display means is provided, and the position information of the measuring object obtained by the above-mentioned triangulation type distance measuring device is input to the display means. This is a configuration for displaying the position of the measurement target.

【0019】また、前記表示手段は、扇状の表示部を有
し、扇の要の位置を測距装置の位置として測定対象の位
置を表示する構成とするとよい。
Further, it is preferable that the display means has a fan-shaped display portion and displays the position of the measuring object with the position of the fan as the position of the distance measuring device.

【0020】[0020]

【作用】請求項1記載の第1の発明の構成によれば、測
定対象が鏡面である場合に、第1の距離演算手段で、測
定対象に映り込む光源の虚像までの距離を三角測量の原
理から算出し、算出した虚像までの距離と光源と光学系
の間の距離とから所定の演算式を用いて第2の距離演算
手段より距離を算出することにより、測定対象が鏡面で
不特定の場合でも測定対象までの距離を算出することが
可能である。
According to the structure of the first aspect of the present invention, when the object to be measured is a mirror surface, the distance to the virtual image of the light source reflected on the object to be measured is triangulated by the first distance calculating means. The object to be measured is a mirror surface and is unspecified by calculating from the principle and calculating the distance from the calculated distance to the virtual image and the distance between the light source and the optical system from the second distance calculating means using a predetermined calculation formula. Even in the case, it is possible to calculate the distance to the measurement target.

【0021】また、請求項2記載の第2の発明のよう
に、光源を2つ設けることにより、測定対象が曲面鏡で
あっても測距が可能となる。また、請求項3記載のよう
に、測定対象が鏡面か非鏡面であるかを判定する機能を
設けることで、測定対象の表面状態に応じた測距ができ
る。また、請求項8記載のように、受光位置のずれ量
を、光源の点灯時と消灯時の明度信号の値の差の信号か
ら測定するようにすれば、光源以外の外光の影響を低減
することができ、S/Nが向上し、測距精度を高められ
る。
Further, as in the second aspect of the present invention, by providing two light sources, the distance can be measured even if the object to be measured is a curved mirror. Further, as described in claim 3, by providing a function of determining whether the measurement target is a mirror surface or a non-mirror surface, it is possible to perform distance measurement according to the surface state of the measurement target. Further, as described in claim 8, if the deviation amount of the light receiving position is measured from the signal of the difference in the value of the brightness signal when the light source is turned on and off, the influence of external light other than the light source is reduced. Therefore, the S / N is improved, and the distance measurement accuracy is enhanced.

【0022】また、光学系にシリンドリカルレンズを用
いれば、上下方向に検知範囲が広がり、測定対象が上下
方向に傾いていても測距が可能となる。また、光源の照
射光の波長以外の光をカットする光学フィルタを設ける
ことにより、外光の影響が低減でき、S/Nを向上でき
る。請求項12記載の障害物検知装置では、障害物位置を
表示手段によって容易に把握することができ、自動車等
に搭載する障害物検知システムに好適である。
Further, if a cylindrical lens is used in the optical system, the detection range is expanded in the vertical direction, and distance measurement is possible even if the measurement target is tilted in the vertical direction. Further, by providing an optical filter that cuts light other than the wavelength of the light emitted from the light source, the influence of external light can be reduced and the S / N can be improved. The obstacle detecting device according to claim 12 can easily grasp the position of the obstacle by the display means, and is suitable for an obstacle detecting system mounted on an automobile or the like.

【0023】[0023]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。図3に、第1の発明である平面鏡を測定対象とし
た測距装置の実施例の構成を示す。図において、ケース
30の前面に、第1の光学系31と第2の光学系32が、間隔
を有して配置される。第1の光学系31の後方には、第1
の光学系31を介して入光する光を受光する基準側受光手
段である基準側受光部33が配置され、第2の光学系32の
後方には、第2の光学系32を介して入光する光を受光す
る参照側受光手段である参照側受光部34が配置される。
これら基準側受光部33及び参照側受光部34は、受光した
光の強度分布状態に対応する第1の明度信号と第2の明
度信号をそれぞれ出力する構成である。第1の光学系31
と第2の光学系32との間のケース30内の空間部には、測
定対象に光を照射する例えばLED等を使用した略点光
源35が配置される。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 3 shows the configuration of an embodiment of a distance measuring device in which the plane mirror of the first invention is the object of measurement. In the figure, the case
A first optical system 31 and a second optical system 32 are arranged on the front surface of 30 with a space. Behind the first optical system 31, the first
A reference side light receiving section 33 which is a reference side light receiving means for receiving the light entering through the optical system 31 is disposed, and the reference side light receiving section 33 is disposed behind the second optical system 32 via the second optical system 32. A reference side light receiving section 34 which is a reference side light receiving means for receiving the shining light is arranged.
The reference side light receiving unit 33 and the reference side light receiving unit 34 are configured to output a first lightness signal and a second lightness signal corresponding to the intensity distribution state of the received light, respectively. First optical system 31
In the space inside the case 30 between the second optical system 32 and the second optical system 32, a substantially point light source 35 using an LED or the like for irradiating the measurement object with light is arranged.

【0024】コンピュータ36は、略点光源35を駆動する
LEDドライバ37に点灯・消灯の制御信号を出力すると
共に、略点光源35の照射光に基づく基準側受光部33及び
参照側受光部34からの各明度信号をA/D変換器38を介
してディジタル値に変換して取り込み、データバスを介
して記憶装置39に書き込む。書き込まれた第1及び第2
の明度信号情報に基づいて、例えば参照側受光部34側の
第2の明度信号を順次シフトさせて、基準側受光部33の
第1の明度信号と比較し、相関の最も高い時(第1の明
度信号に対して第2の明度信号が最も類似している時)
のシフト量をずれ量(視差)として算出する。更に、こ
の算出したずれ量に基づいて三角測量の原理を用いて測
定対象が平面鏡である場合には、平面鏡に映り込んだ略
点光源35の虚像までの距離を算出し、この算出値及び略
点光源35と光学系の間の距離とから測定対象までの距離
を演算する。
The computer 36 outputs a control signal for turning on / off to the LED driver 37 for driving the substantially point light source 35, and the reference side light receiving section 33 and the reference side light receiving section 34 based on the irradiation light of the substantially point light source 35. Each lightness signal is converted into a digital value via the A / D converter 38 and taken in, and written in the storage device 39 via the data bus. First and second written
Based on the lightness signal information of the reference light receiving unit 34, the second lightness signal on the reference light receiving unit 34 side is sequentially shifted and compared with the first lightness signal of the reference light receiving unit 33, and when the correlation is highest (first When the second brightness signal is most similar to the brightness signal of
The shift amount is calculated as the shift amount (parallax). Furthermore, when the measurement target is a plane mirror using the principle of triangulation based on the calculated displacement amount, the distance to the virtual image of the approximate point light source 35 reflected on the plane mirror is calculated, and the calculated value and the approximate value are calculated. The distance between the point light source 35 and the optical system and the distance to the measurement target are calculated.

【0025】従って、コンピュータ36が、ずれ量を測定
する測定手段と、第1の距離演算手段及び第2の距離演
算手段の機能を備えている。次に、図4及び図5を参照
して、本実施例装置の測距原理について説明する。ま
ず、測定対象が平面鏡であり、平面鏡が光学系と平行で
ある場合について、図4を参照して説明する。
Therefore, the computer 36 has the functions of measuring means for measuring the amount of deviation, first distance calculating means and second distance calculating means. Next, with reference to FIGS. 4 and 5, the principle of distance measurement of the apparatus of this embodiment will be described. First, a case where the measurement target is a plane mirror and the plane mirror is parallel to the optical system will be described with reference to FIG.

【0026】略点光源35からの光は、測定対象である平
面鏡40で反射して第1の光学系31を通って基準側受光部
33に、第2の光学系32を通って参照側受光部34にそれぞ
れ入射する。従って、前述した従来のバッシブ三角測量
式測距装置の測距原理による距離算出式である(2)式
から、 Dk=B・f/R ・・・ (4) として、略点光源35の虚像35′までの距離Dkを算出す
ることができる。ただし、Bは互いの光学系31,32のレ
ンズ中心位置31′,32′間の距離(基線長)、fは光学
系の焦点距離、Rは基準側受光部33と参照側受光部34の
明度信号の比較結果から得られるずれ量(視差)であ
る。
The light from the substantially point light source 35 is reflected by the plane mirror 40 to be measured and passes through the first optical system 31 to receive the light on the reference side.
The light enters the reference side light receiving unit 34 through the second optical system 32. Therefore, from the formula (2), which is the distance calculation formula based on the distance measuring principle of the conventional passive triangulation type distance measuring device, from the formula (2), Dk = B · f / R (4) The distance Dk to 35 'can be calculated. However, B is the distance (baseline length) between the lens center positions 31 'and 32' of the optical systems 31 and 32, f is the focal length of the optical system, and R is the reference side light receiving section 33 and the reference side light receiving section 34. It is a shift amount (parallax) obtained from the comparison result of the brightness signals.

【0027】そして、第1及び第2の光学系31、32と略
点光源35の間の距離(オフセット)をDoffとする
と、光学系から平面鏡40までの距離Dhは、 Dh=(Dk−Doff)/2 ・・・ (5) となり、(5)式から光学系と平面鏡が平行である場合
に平面鏡40までの距離が算出できる。
If the distance (offset) between the first and second optical systems 31 and 32 and the substantially point light source 35 is Doff, the distance Dh from the optical system to the plane mirror 40 is Dh = (Dk-Doff ) / 2 (5), and the distance to the plane mirror 40 can be calculated from the equation (5) when the optical system and the plane mirror are parallel to each other.

【0028】次に、測定対象が平面鏡であり、平面鏡が
光学系と平行でない場合について、図5を参照して説明
する。略点光源35の虚像の位置35′、第1の光学系31の
レンズ中心位置31′、第2の光学系32のレンズ中心位置
32′、第2の光学系32のレンズ中心位置32′から直線3
5′−31′に並行に伸ばした線と参照側受光部34の交点
8及び参照側受光部34上で略点光源35からの光の反射光
が焦点を結ぶ位置9の位置関係は、図5のようになる。
このとき、三角形35′−31′−32′と三角形32′−8−
9は相似であり、(4)式が成り立つ。ただし、距離D
kは各光学系の31′−32′を結ぶ基準線から虚像35′ま
での最短距離、Bは上述した基線長、fは光学系の焦点
距離、Rは視差である。従って、平面鏡が光学系と平行
な場合の距離算出式である(5)式によって、光学系の
レンズ中心位置31′−32′を結ぶ基準線から平面鏡40ま
での最短距離Dhが算出できる。
Next, a case where the object to be measured is a plane mirror and the plane mirror is not parallel to the optical system will be described with reference to FIG. Virtual image position 35 'of the point light source 35, lens center position 31' of the first optical system 31, lens center position of the second optical system 32
32 ', a straight line 3 from the lens center position 32' of the second optical system 32
The positional relationship between the intersection 8 of the line extending parallel to 5'-31 'and the reference side light receiving portion 34 and the position 9 on the reference side light receiving portion 34 where the reflected light of the light from the substantially point light source 35 focuses is shown in FIG. It becomes like 5.
At this time, the triangle 35'-31'-32 'and the triangle 32'-8-
9 is similar, and equation (4) holds. However, the distance D
k is the shortest distance from the reference line connecting 31'-32 'of each optical system to the virtual image 35', B is the above-mentioned baseline length, f is the focal length of the optical system, and R is the parallax. Therefore, the shortest distance Dh from the reference line connecting the lens center positions 31'-32 'of the optical system to the plane mirror 40 can be calculated by the equation (5), which is a distance calculation formula when the plane mirror is parallel to the optical system.

【0029】また、平面鏡40の基準線に対する方向角度
θhは、 θh=atan(f/Rd) ・・・ (6) によって算出できる。ただし、Rdは、基準側受光部33
上における第1の光学系31の光軸との交点から結像位置
までの距離である。尚、(5)式で得られる測定距離D
hは最短距離であり、正確な第1の光学系31のレンズ中
心位置31′から平面鏡40までの距離Drは、 Dr=Dh/sinθh ・・・ (7) によって補正することができる。
The direction angle θh of the plane mirror 40 with respect to the reference line can be calculated by θh = atan (f / Rd) (6) However, Rd is the light receiving section 33 on the reference side.
It is the distance from the point of intersection with the optical axis of the first optical system 31 above to the imaging position. The measurement distance D obtained by the equation (5)
h is the shortest distance, and the accurate distance Dr from the lens center position 31 'of the first optical system 31 to the plane mirror 40 can be corrected by: Dr = Dh / sin θh (7)

【0030】図6に、本実施例装置の測距動作のフロー
チャートを示す。ステップ1(図中、S1で示し以下同
様とする)では、LEDドライバ37に光源点灯指令を発
生して略点光源35を点灯する。ステップ2では、基準側
受光部33と参照側受光部34からの各明度信号をA/D変
換器38を介してディジタル信号として読み込み、記憶装
置39に記憶させる。
FIG. 6 shows a flow chart of the distance measuring operation of the apparatus of this embodiment. In step 1 (indicated by S1 in the drawing, the same applies hereinafter), a light source lighting command is generated to the LED driver 37 to light the substantially point light source 35. In step 2, each lightness signal from the reference side light receiving section 33 and the reference side light receiving section 34 is read as a digital signal through the A / D converter 38 and stored in the storage device 39.

【0031】ステップ3では、参照側受光部34のシフト
量iを0にセットする。ステップ4では、参照側受光部
34の明度信号を順次シフトし、各シフト量において基準
側受光部33の明度信号と比較して相関を計算する。ステ
ップ5では、シフト量iが所定量nになったか否かを判
定し、所定量nになるまでステップ4の相関計算を実行
する。所定量nになった時はステップ6に進む。
In step 3, the shift amount i of the reference side light receiving section 34 is set to zero. In step 4, the reference side light receiving part
The brightness signal of 34 is sequentially shifted, and the correlation is calculated by comparing with the brightness signal of the reference side light receiving unit 33 at each shift amount. In step 5, it is determined whether the shift amount i has reached the predetermined amount n, and the correlation calculation of step 4 is executed until the shift amount i reaches the predetermined amount n. When the predetermined amount n is reached, the process proceeds to step 6.

【0032】ステップ6では、ステップ4の計算結果に
基づいて相関の最も高い時のシフト量を視差Rとして算
出する。ステップ7では、ステップ6で算出した視差
R、既知の光学系のレンズ中心位置間距離(基線長)B
及び焦点距離fから、三角測量の原理を用いて(4)式
により、虚像までの距離Dkを算出する。
In step 6, the shift amount when the correlation is highest is calculated as the parallax R based on the calculation result of step 4. In step 7, the parallax R calculated in step 6 and the distance (baseline length) B between the lens center positions of the known optical system.
And the focal length f, the distance Dk to the virtual image is calculated by the equation (4) using the principle of triangulation.

【0033】ステップ8では、ステップ7で算出した距
離Dkと、既知の光学系と略点光源との間の距離Dof
fから、(5)式により、測定対象までの距離Dhを算
出する。以上のように、本実施例によれば平面鏡40の方
向角度に拘らず平面鏡までの距離と方向が算出できるの
で、従来の鏡面用の測距装置では不可能であった、測定
対象の方向角度が不明な不特定物体でも測距が可能とな
る。
In step 8, the distance Dk calculated in step 7 and the distance Dof between the known optical system and the point light source are known.
The distance Dh to the measurement target is calculated from f by the equation (5). As described above, according to the present embodiment, since the distance and the direction to the plane mirror can be calculated regardless of the direction angle of the plane mirror 40, the direction angle of the measurement target, which was not possible with the conventional distance measuring device for the mirror surface. Distance can be measured even for unspecified objects with unknown.

【0034】次に、測定対象が曲面鏡である第2の発明
の実施例について説明する。図7に実施例装置の構成を
示す。尚、図3に示す第1の発明の実施例と同一要素に
は同一符号を付してある。図7において、ケース30の前
面に、第1の光学系31と第2の光学系32が、間隔を有し
て配置され、第1の光学系31の後方に基準側受光手段で
ある基準側受光部33が配置され、第2の光学系32の後方
に参照側受光手段である参照側受光部34が配置される。
基準側受光部33及び参照側受光部34は、受光した光の強
度分布状態に対応する第1の明度信号と第2の明度信号
をそれぞれ出力する。そして、本実施例装置では、第1
の光学系31と第2の光学系32との間のケース30内の空間
部には、測定対象に光を照射する例えばLED等を使用
した第1の光源である略点光源35に加えて、更に、第2
の光源である略点光源41が配置されることが第1の発明
と異なっている。
Next, an embodiment of the second invention in which the measuring object is a curved mirror will be described. FIG. 7 shows the configuration of the embodiment apparatus. The same elements as those of the first embodiment shown in FIG. 3 are designated by the same reference numerals. In FIG. 7, a first optical system 31 and a second optical system 32 are arranged on the front surface of a case 30 with a space therebetween, and a reference side, which is a reference side light receiving means, is provided behind the first optical system 31. The light receiving section 33 is arranged, and the reference side light receiving section 34 which is the reference side light receiving means is arranged behind the second optical system 32.
The reference side light receiving section 33 and the reference side light receiving section 34 respectively output a first lightness signal and a second lightness signal corresponding to the intensity distribution state of the received light. In the apparatus of this embodiment, the first
In the space inside the case 30 between the optical system 31 and the second optical system 32, in addition to the point light source 35 which is a first light source using an LED or the like for irradiating the measurement object with light, , And second
This is different from the first invention in that a point light source 41, which is a light source, is arranged.

【0035】コンピュータ36は、2つの略点光源35,41
を駆動するLEDドライバ37に点灯・消灯の制御信号を
出力し、基準側受光部33及び参照側受光部34からの略点
光源35,41からの光に基づく各明度信号をA/D変換器
38を介してディジタル値に変換して取り込み、データバ
スを介して記憶装置39に書き込む。記憶した各略点光源
35,41毎の第1及び第2の明度信号情報に基づいて、例
えば参照側受光部34側の第2の明度信号を順次シフトさ
せて、基準側受光部33の第1の明度信号と比較し、相関
の最も高い時のシフト量をずれ量(視差)として各略点
光源35,41毎に算出する。これら算出したずれ量に基づ
いて三角測量の原理を用いて曲面鏡に映り込んだ略点光
源35,41の各虚像までの距離を算出し、各算出値及び略
点光源35,41と光学系の間の各距離とから測定対象であ
る曲面鏡までの距離を演算する。
The computer 36 has two substantially point light sources 35 and 41.
A control signal for turning on / off the light is output to the LED driver 37 for driving the light source, and each brightness signal based on the light from the point light sources 35 and 41 from the reference side light receiving section 33 and the reference side light receiving section 34 is converted into an A / D converter.
It is converted into a digital value via 38 and taken in, and is written in the storage device 39 via the data bus. Each memorized point light source
Based on the first and second brightness signal information for each of 35 and 41, for example, the second brightness signal on the reference side light receiving section 34 side is sequentially shifted and compared with the first brightness signal on the reference side light receiving section 33. Then, the shift amount when the correlation is highest is calculated for each of the substantially point light sources 35 and 41 as the shift amount (parallax). Based on these calculated deviations, the distance to each virtual image of the point light sources 35 and 41 reflected on the curved mirror is calculated using the principle of triangulation, and the calculated values and the point light sources 35 and 41 and the optical system are calculated. The distance to each curved mirror, which is the object of measurement, is calculated from each distance between the two.

【0036】従って、コンピュータ36が、ずれ量を測定
する測定手段と、第1の距離演算手段及び第2の距離演
算手段の機能を備えている。次に、図8及び図9を参照
して、本実施例装置の測距原理について説明する。図8
は、一方の略点光源35の光を曲面鏡42に照射した場合を
示し、図9は他方の略点光源41の光を曲面鏡に照射した
場合を示している。
Therefore, the computer 36 has the functions of measuring means for measuring the amount of deviation, first distance calculating means and second distance calculating means. Next, with reference to FIGS. 8 and 9, the principle of distance measurement of the apparatus of this embodiment will be described. FIG.
Shows the case where the light from one approximate point light source 35 is applied to the curved mirror 42, and FIG. 9 shows the case where the light from the other approximate point light source 41 is applied to the curved mirror.

【0037】この場合、略点光源35と光学系31,32を結
ぶ基準線までの距離(オフセット)をDoff1 、略点
光源41と前記基準線までの距離をDoff2 とし、略点
光源35の虚像35′と光学系31,32の各レンズ中心位置3
1′−32′を結ぶ基準線の間の最短距離をDk1 、略点
光源41の虚像41′とレンズ中心位置31′−32′を結ぶ基
準線の最短距離をDk2 とする。前記基準線から測定対
象である曲面鏡42までの測定すべき距離をDhとする。
Dk1 −DhをDr1 、Dk2 −DhをDr2 とする。
曲面鏡42に映る各虚像35′,41′までの距離Dr1 ,D
2 を、曲面鏡42の曲率によって変化する係数αを用い
て曲面鏡42から実像(実際の略点光源)までの距離で近
似すると、次式が成り立つ。
In this case, the distance (offset) from the approximate point light source 35 to the reference line connecting the optical systems 31 and 32 is Doff 1 , the distance between the approximate point light source 41 and the reference line is Doff 2 , and the approximate point light source 35 Virtual image 35 'and the center position of each lens of the optical systems 31 and 32 3
'The shortest distance between the reference line connecting the Dk 1, virtual image 41 of a substantially point source 41'1'-32 the minimum distance reference line connecting the center of the lens position 31 '-32' and Dk 2. The distance to be measured from the reference line to the curved mirror 42 that is the measurement target is Dh.
Let Dk 1 -Dh be Dr 1 and Dk 2 -Dh be Dr 2 .
Distances Dr 1 , D to the virtual images 35 ', 41' reflected on the curved mirror 42
When r 2 is approximated by the distance from the curved mirror 42 to the real image (actual approximate point light source) using the coefficient α that changes depending on the curvature of the curved mirror 42, the following equation holds.

【0038】 Dr1 =α・(Dh+Doff1 ) ・・・ (8) Dk1 =Dh+Dr1 ・・・ (9) Dr2 =α・(Dh+Doff2 ) ・・・ (10) Dk2 =Dh+Dr2 ・・・ (11) (8)、(9)式より、 Dk1 =α・(Dh+Doff1 )+Dh ・・・ (12) (10)、(11)式より、 Dk2 =α・(Dh+Doff2 )+Dh ・・・ (13) α・(Dh+Doff2 )=Dk2 −Dh ・・・ (14) α=(Dk2 −Dh)/(Dh+Doff2 ) ・・・ (15) (15)式のαを(12)式に代入すると、 Dk1 =〔(Dk2 −Dh)/(Dh+Doff2 )〕・(Dh+Doff1 )+Dh ・・・ (16) (Dk1 −Dh)・(Dh+Doff2 )=(Dk2 −Dh)・(Dh+Do ff1 ) ・・・ (17) −Dh・Dh+(Dk1 −Doff2 )・Dh+Dk1 ・Doff2 =−Dh・Dh+(Dk2 −Doff1 )・Dh+Dk2 ・Doff1 ・・・ (18) (Dk1 −Doff2 −Dk2 +Doff1 )・Dh =Dk2 ・Doff1 −Dk1 ・Doff2 ・・・ (19) Dh=(Dk2 ・Doff1 −Dk1 ・Doff2 )/(Dk1 −Doff2 −Dk2 +Doff1 ) ・・・ (20) ここで、Doff1 、Doff2 は既知であり、D
1 、Dk2 は、それぞれの略点光源35,41毎に基準側
受光部33と参照側受光部34からの明度信号から視差を算
出すれば三角測量の原理により(4)式から演算するこ
とができるので、(20)式より、曲面鏡42から光学系の
レンズ中心位置31′−32′を結ぶ基準線までの最短距離
Dhが得られる。
Dr 1 = α · (Dh + Doff 1 ) (8) Dk 1 = Dh + Dr 1 (9) Dr 2 = α · (Dh + Doff 2 ) (10) Dk 2 = Dh + Dr 2 ... (11) (8), (9) from the equation, Dk 1 = α · (Dh + Doff 1) + Dh ··· (12) (10), (11) from equation, Dk 2 = α · (Dh + Doff 2) + Dh ・ ・ ・ (13) α ・ (Dh + Doff 2 ) = Dk 2 −Dh ・ ・ ・ (14) α = (Dk 2 −Dh) / (Dh + Doff 2 ) ・ ・ ・ (15) (12) are substituted into equation, Dk 1 = [(Dk 2 -Dh) / (Dh + Doff 2) ] · (Dh + Doff 1) + Dh ··· (16) (Dk 1 -Dh) · (Dh + Doff 2) = (Dk 2 -Dh) · (Dh + Do ff 1) ··· (17) -Dh · Dh + (Dk 1 -Dof 2) · Dh + Dk 1 · Doff 2 = -Dh · Dh + (Dk 2 -Doff 1) · Dh + Dk 2 · Doff 1 ··· (18) (Dk 1 -Doff 2 -Dk 2 + Doff 1) · Dh = Dk 2 · Doff 1 −Dk 1 · Doff 2 (19) Dh = (Dk 2 · Doff 1 −Dk 1 · Doff 2 ) / (Dk 1 −Doff 2 −Dk 2 + Doff 1 ) ··· (20) Where , Doff 1 and Doff 2 are known and D
k 1 and Dk 2 are calculated from the equation (4) according to the principle of triangulation if the parallax is calculated from the lightness signals from the reference side light receiving section 33 and the reference side light receiving section 34 for each of the substantially point light sources 35 and 41. Therefore, the shortest distance Dh from the curved mirror 42 to the reference line connecting the lens center positions 31'-32 'of the optical system can be obtained from the equation (20).

【0039】図10に、本実施例装置の測距動作のフロー
チャートを示す。ステップ11では、LEDドライバ37に
第1の略点光源35の点灯指令を発生して略点光源35を点
灯する。ステップ12では、基準側受光部33と参照側受光
部34からの各明度信号をA/D変換器38を介してディジ
タル信号として読み込み、記憶装置39に記憶させる。
FIG. 10 shows a flowchart of the distance measuring operation of the apparatus of this embodiment. In step 11, the LED driver 37 is instructed to turn on the first point light source 35 to turn on the point light source 35. In step 12, each lightness signal from the reference side light receiving section 33 and the reference side light receiving section 34 is read as a digital signal via the A / D converter 38 and stored in the storage device 39.

【0040】ステップ13では、参照側受光部34のシフト
量iを0にセットする。ステップ14では、参照側受光部
34の明度信号を順次シフトし、各シフト量において基準
側受光部の明度信号と比較して相関を計算する。ステッ
プ15では、シフト量iが所定量nになったか否かを判定
し、所定量nになるまでステップ14の相関計算を実行す
る。所定量nになった時はステップ16に進む。
In step 13, the shift amount i of the reference side light receiving section 34 is set to zero. In step 14, the reference side light receiving unit
The brightness signals of 34 are sequentially shifted, and the correlation is calculated by comparing with the brightness signal of the reference side light receiving unit at each shift amount. In step 15, it is determined whether or not the shift amount i has reached the predetermined amount n, and the correlation calculation in step 14 is executed until the shift amount i reaches the predetermined amount n. When the predetermined amount n is reached, the process proceeds to step 16.

【0041】ステップ16では、第1の略点光源35の消灯
指令を発生した後、第2の略点光源41の点灯指令を発生
して略点光源41を点灯させる。ステップ17〜20まで、第
1略点光源35の場合のステップ12〜15と同様にして、相
関計算を実行する。ステップ21では、ステップ14,19の
の計算結果に基づいて、相関の最も高い時のシフト量を
第1及び第2の略点光源35,41毎の各視差R1 ,R2
して算出する。
In step 16, after a command to turn off the first approximate point light source 35 is generated, a command to turn on the second approximate point light source 41 is generated to turn on the approximate point light source 41. Correlation calculation is executed in steps 17 to 20 in the same manner as steps 12 to 15 in the case of the first approximate point light source 35. In step 21, based on the calculation results of steps 14 and 19, the shift amount when the correlation is highest is calculated as the parallax R 1 and R 2 of each of the first and second substantially point light sources 35 and 41.

【0042】ステップ22では、ステップ21で算出した視
差R1 ,R2 と、既知の光学系のレンズ中心位置間距離
(基線長)B及び焦点距離fから、三角測量の原理を用
いて(4)式により、各虚像35′,41′までの距離Dk
1 ,Dk2 を算出する。ステップ23では、ステップ22で
算出した距離Dk1 ,Dk2 と、既知の光学系と略点光
源との間の距離Doff1 ,Doff2 から、(20)式
により、測定対象までの距離Dhを算出する。
In step 22, from the parallaxes R 1 and R 2 calculated in step 21, the distance (baseline length) B between the lens center positions of the known optical system, and the focal length f, the principle of triangulation is used (4 ), The distance Dk to each virtual image 35 ', 41'
1 and Dk 2 are calculated. In step 23, from the distances Dk 1 and Dk 2 calculated in step 22 and the distances Doff 1 and Doff 2 between the known optical system and the point light source, the distance Dh to the measurement target is calculated from the equation (20). calculate.

【0043】以上のように、本実施例によれば曲面の角
度に関係なく、曲面鏡までの距離を算出できる。次に、
別の実施例について説明する。本実施例は、略点光源以
外の外光の影響を除去するようにしたものである。ハー
ドウエアの構成は前述の実施例と同様であり、ソフトウ
エア構成が異なるだけであり、以下にその動作について
図11のフローチャートに従って説明する。
As described above, according to this embodiment, the distance to the curved mirror can be calculated regardless of the angle of the curved surface. next,
Another embodiment will be described. In this embodiment, the influence of external light other than the point light source is removed. The hardware configuration is the same as that of the above-described embodiment, only the software configuration is different, and its operation will be described below with reference to the flowchart of FIG.

【0044】ステップ31では、略点光源の点灯指令を発
生して略点光源を点灯させる。ステップ32では、略点光
源点灯時の基準側受光部と参照側受光部の各明度信号を
読み込む。この場合、図12(A)に示すような強度分布
を持つ基準側明度信号61aと参照側明度信号62aが得ら
れる。ステップ33では、略点光源の消灯指令を発生して
略点光源を消灯させる。
In step 31, a command for lighting the substantially point light source is generated to light the substantially point light source. In step 32, the brightness signals of the reference side light receiving portion and the reference side light receiving portion when the point light source is turned on are read. In this case, the standard-side brightness signal 61a and the reference-side brightness signal 62a having the intensity distribution as shown in FIG. 12A are obtained. In step 33, a command to turn off the approximate point light source is generated to turn off the approximate point light source.

【0045】ステップ34では、略点光源消灯時の基準側
受光部と参照側受光部の各明度信号を読み込む。この場
合、図12(B)に示すような強度分布を持つ基準側明度
信号61bと参照側明度信号62bが得られる。ステップ35
では、ステップ32,34で記憶させた明度信号情報に基づ
いて、基準側受光部及び参照側受光部の略点光源の点灯
時と消灯時の明度信号の差をそれぞれ算出する。図13
(C)に、基準側の差信号61cと参照側の差信号62cを
示す。
In step 34, the lightness signals of the reference side light receiving portion and the reference side light receiving portion when the point light source is turned off are read. In this case, the standard side brightness signal 61b and the reference side brightness signal 62b having the intensity distribution as shown in FIG. 12B are obtained. Step 35
Then, based on the lightness signal information stored in steps 32 and 34, the difference between the lightness signals when the point light sources of the standard side light receiving unit and the reference side light receiving unit are turned on and off is calculated. FIG.
The difference signal 61c on the standard side and the difference signal 62c on the reference side are shown in (C).

【0046】ステップ36では、参照側受光部34のシフト
量iを0にセットする。ステップ37では、ステップ35で
算出した参照側受光部34の差信号62cを順次シフトし、
各シフト量において基準側受光部の差信号61cと比較し
て相関を計算する。ステップ38では、シフト量iが所定
量nになったか否かを判定し、所定量nになって全ての
差信号の相関計算が終了したらステップ39に進む。
In step 36, the shift amount i of the reference side light receiving section 34 is set to zero. In step 37, the difference signal 62c of the reference side light receiving portion 34 calculated in step 35 is sequentially shifted,
At each shift amount, the correlation is calculated by comparing with the difference signal 61c of the reference side light receiving unit. In step 38, it is judged whether or not the shift amount i has become the predetermined amount n, and when the shift amount i has become the predetermined amount n and the correlation calculation of all the difference signals is completed, the routine proceeds to step 39.

【0047】ステップ39では、ステップ37の計算結果に
基づいて、相関の最も高い時のシフト量を視差Rとして
算出した後、前述したの同様にして測定対象までの距離
Dhを演算する。以上のように、明度信号発生のタイミ
ングに合わせて略点光源を点滅させ、略点光源が点灯し
た時と消灯した時の明度信号の差を、基準側と参照側で
それぞれ算出し、互いの差信号61c,62cを用いて距離
Dhを算出すれば、略点光源以外の外光の影響が小さく
なり、S/Nが向上し測距精度を高めることができる。
In step 39, the shift amount when the correlation is highest is calculated as the parallax R based on the calculation result of step 37, and then the distance Dh to the measurement object is calculated in the same manner as described above. As described above, the approximate point light source is blinked in accordance with the timing of the brightness signal generation, and the difference between the brightness signal when the approximate point light source is turned on and when it is turned off is calculated on the reference side and the reference side, respectively. If the distance Dh is calculated using the difference signals 61c and 62c, the influence of external light other than the point light source is reduced, the S / N is improved, and the distance measurement accuracy can be improved.

【0048】次に、別の実施例について説明する。本実
施例は、測定対象が鏡面か非鏡面かを判別することがで
きるようにしたものである。この場合も、ハードウエア
の構成は前述の実施例と同様であり、ソフトウエア構成
が異なるだけであり、以下にその動作について図13及び
図14のフローチャートに従って説明する。
Next, another embodiment will be described. In this embodiment, it is possible to determine whether the measurement target is a mirror surface or a non-mirror surface. Also in this case, the hardware configuration is the same as that of the above-described embodiment, only the software configuration is different, and its operation will be described below with reference to the flowcharts of FIGS. 13 and 14.

【0049】測定対象が鏡面であるときには、鏡面に映
った略点光源の虚像が検出されるため、図15(A)に示
すように、各受光部33,34からの明度信号又は差信号71
には明確なピークが存在するが、測定対象が鏡面でない
ときには図15(B)に示すように、明度信号又は差信号
71には明確なピークが存在しない。そこで、明度信号又
は差信号71のピークの有無から、測定対象が鏡面である
かどうかを判断する判定手段の機能をコンピュータ36に
設ける。本発明の方式で演算される距離Dhと従来の三
角測量による距離Djの測距結果が一致している場合に
は、どちらの測距結果を使ってもよい。測距結果が一致
していない場合は、鏡面か否かの判断結果に応じてどち
らの測距結果を選択するかを決定する。
When the object to be measured is a mirror surface, a virtual image of a substantially point light source reflected on the mirror surface is detected. Therefore, as shown in FIG. 15 (A), the brightness signal or difference signal 71 from each light receiving section 33, 34 is detected.
Has a clear peak, but when the measurement target is not a mirror surface, as shown in FIG.
There is no clear peak at 71. Therefore, the computer 36 is provided with a function of a determination unit that determines whether or not the measurement target is a mirror surface based on the presence or absence of the peak of the brightness signal or the difference signal 71. When the distance Dh calculated by the method of the present invention and the distance measurement result of the distance Dj by the conventional triangulation match, either distance measurement result may be used. When the distance measurement results do not match, which distance measurement result is selected is determined according to the determination result of whether it is a mirror surface.

【0050】図13及び図14のフローチャートにおいて、
ステップ41〜ステップ46までは、図11のフローチャート
と同様であり、略点光源を点灯した時と消灯した時の、
基準側及び参照側の受光部における明度信号及び差信号
の読み込みを行い、シフト量iを0にセットする。ステ
ップ47では、略点光源を消灯した時の基準側明度信号と
参照側明度信号の相関を計算し、ステップ48で全ての相
関計算が終了したと判定された時は、ステップ49に進
み、従来の三角測量の原理による距離Djを算出する。
In the flowcharts of FIGS. 13 and 14,
Steps 41 to 46 are the same as the flowchart in FIG. 11, and when the point light source is turned on and off,
The lightness signal and the difference signal in the light receiving sections on the reference side and the reference side are read, and the shift amount i is set to zero. In step 47, the correlation between the reference side brightness signal and the reference side brightness signal when the point light source is turned off is calculated, and when it is determined in step 48 that all the correlation calculations have been completed, the process proceeds to step 49, and The distance Dj is calculated according to the principle of triangulation.

【0051】ステップ50では、シフト量i=0にセット
する。ステップ51では、ステップ45で算出した基準側と
参照側の各明度信号の差信号に基づいて相関計算し、ス
テップ52で全ての相関計算が終了したと判定された時
は、ステップ53に進む。ステップ53では、略点光源を用
いた時の距離Dhを算出する。
In step 50, the shift amount i is set to 0. In step 51, the correlation calculation is performed based on the difference signal between the lightness signals on the reference side and the reference side calculated in step 45, and when it is determined in step 52 that all the correlation calculations have been completed, the process proceeds to step 53. In step 53, the distance Dh when a substantially point light source is used is calculated.

【0052】ステップ54では、ステップ49で算出した従
来の三角測量の原理による距離Djとステップ53で算出
した距離Dhが一致しているか否かを判定する。一致し
ている場合は、どちらか一方を測定対象までの距離とし
て決定して測距動作を終了する。不一致の場合はステッ
プ55に進む。ステップ55では、例えば基準側明度信号の
ピーク値が閾値Vthを越えているか否かを判定する。
越えている場合は、測定対象が鏡面である、若しくは鏡
面と非鏡面が混ざっていても鏡面のコントラストの方が
強いと判断し、ステップ56に進み、測定対象までの距離
として距離Dhを選択して測距動作を終了する。一方、
越えていない場合は、測定対象が鏡面でない、若しくは
鏡面と非鏡面が混ざっていても非鏡面のコントラストの
方が強いと判断し、ステップ57に進み、測定対象までの
距離として従来の三角測量の原理により算出した距離D
jを選択して測距動作を終了する。
In step 54, it is determined whether or not the distance Dj calculated in step 49 according to the conventional triangulation principle and the distance Dh calculated in step 53 match. If they match, one of them is determined as the distance to the measurement target, and the distance measuring operation is ended. If they do not match, the process proceeds to step 55. In step 55, for example, it is determined whether or not the peak value of the reference-side brightness signal exceeds the threshold value Vth.
If it exceeds, it is determined that the contrast of the mirror surface is stronger even if the measurement object is a mirror surface or the mirror surface and the non-mirror surface are mixed, and the process proceeds to step 56, and the distance Dh is selected as the distance to the measurement object. To complete the distance measurement operation. on the other hand,
If it does not exceed, it is determined that the contrast of the non-mirror surface is stronger even if the measurement target is not a mirror surface, or the mirror surface and the non-mirror surface are mixed, and the process proceeds to step 57, where the distance to the measurement target is determined by conventional triangulation. Distance D calculated by the principle
Select j to end the distance measuring operation.

【0053】尚、上記実施例では、鏡面か否かの判断を
受光部から出力される明度信号そのものを用いて判断す
る構成であるが、明度信号の差信号を用いて判断する構
成でもよいことを言うまでもない。また、明度信号又は
差信号の他に、これら信号の空間微分値の絶対値を用い
て、鏡面か否かの判断を行うこともできる。
In the above embodiment, the judgment as to whether or not it is a mirror surface is made by using the brightness signal itself output from the light receiving section, but it may be made by using the difference signal of the brightness signals. Needless to say. Further, in addition to the brightness signal or the difference signal, the absolute value of the spatial differential value of these signals can be used to determine whether or not it is a mirror surface.

【0054】即ち、明度信号又はその差信号の空間微分
値72も、測定対象が鏡面の場合は図16(A)に示すよう
に明確なピークが存在し、測定対象が非鏡面の場合は図
16(B)に示すように明確なピークが存在しない。従っ
て、明度信号又はその差信号の空間微分値を用いても、
適切な閾値範囲Vth′を設定することで測定対象が鏡
面か否かを判定することが可能である。
That is, the spatial differential value 72 of the lightness signal or the difference signal thereof also has a clear peak as shown in FIG. 16A when the measurement target is a mirror surface, and a clear peak when the measurement target is a non-mirror surface.
There is no clear peak as shown in 16 (B). Therefore, even if the spatial differential value of the brightness signal or its difference signal is used,
By setting an appropriate threshold range Vth ′, it is possible to determine whether the measurement target is a mirror surface.

【0055】かかる実施例によれば、測定対象が鏡面か
否か、それとも鏡面と非鏡面が混ざっているのかに関わ
らず、測定対象までの距離が正確に算出できる。尚、従
来の三角測量の原理による距離Djの測距機構は、図3
の構成において略点光源を消灯した状態で行うことがで
きるが、図17に示すよう、別に従来の三角測量による測
距専用の測距装置80を設け、A/D変換器81を介してコ
ンピュータ36にデータを入力する構成としてもよい。第
2の発明の実施例である図7に示す2つの略点光源を備
えた測距装置の場合も、1つの測距装置を兼用してもよ
く、別に図17と同様に三角測量専用の測距装置80を別に
設けるようにしてもよいことは言うまでもない。
According to this embodiment, the distance to the measuring object can be accurately calculated regardless of whether the measuring object is a mirror surface or whether the mirror surface and the non-mirror surface are mixed. The distance measuring mechanism for the distance Dj based on the conventional triangulation principle is shown in FIG.
17 can be performed with the point light source turned off. However, as shown in FIG. 17, a conventional distance measuring device 80 dedicated to distance measurement by triangulation is provided, and a computer is provided via the A / D converter 81. The configuration may be such that data is input to 36. In the case of the distance measuring device having the two substantially point light sources shown in FIG. 7 which is an embodiment of the second invention, one distance measuring device may also be used, and as in FIG. 17, it is dedicated to triangulation. It goes without saying that the distance measuring device 80 may be separately provided.

【0056】尚、例えば、図18に示すように、基準側受
光部33を複数の領域LZ1〜LZ3に分割し、参照側受
光部34も、基準側受光部33の領域LZ1、LZ2、LZ
3にそれぞれ対応する領域RZ1、RZ2、RZ3に分
割する。そして、分割した対応する領域LZ1とRZ
1、LZ2とRZ2、LZ3とRZ3毎に距離演算を行
うようにすれば、測定対象が複数存在し、それぞれの測
定対象までの距離が違っていてもそれぞれの測定対象ま
での距離を算出することができる。
Note that, for example, as shown in FIG. 18, the reference side light receiving section 33 is divided into a plurality of areas LZ1 to LZ3, and the reference side light receiving section 34 also has the areas LZ1, LZ2, LZ of the reference side light receiving section 33.
It is divided into regions RZ1, RZ2, RZ3 corresponding to 3 respectively. Then, the corresponding divided regions LZ1 and RZ
1. If the distance calculation is performed for each of LZ2 and RZ2, LZ3 and RZ3, even if there are multiple measurement targets and the distances to each measurement target are different, the distance to each measurement target can be calculated. You can

【0057】次に、本発明の測距装置を例えば自動車の
障害物検知システムに応用した場合の構成について、図
19を参照して説明する。図19において、略点光源35は、
コンピュータ36からの指令により、LEDドライバ37に
よって駆動される。基準側受光部33と参照側受光部34か
ら発生する基準側明度信号と参照側明度信号は、それぞ
れのA/D変換器38、38′を通して、コンピュータ36に
入力され、データバスを介して記憶装置39に書き込まれ
る。コンピュータ36では、データバスを介して記憶装置
39とデータのやりとりを行い、図20及び図21のフローチ
ャートに示すような距離演算を実行して障害物の距離と
方向を算出する。図20及び図21のフローチャートのステ
ップ61〜77までの距離演算動作は、図13及び図14のフロ
ーチャートと同様である。そして、ステップ74又はステ
ップ75の判定に基づいて演算した距離Dj又はDhが選
択されると、ステップ78の実行により、最終的にコンピ
ュータ36は算出したデータをデータバスを通して表示手
段である表示装置90に送る。表示装置90では、図に示す
ように扇の要を自車両位置として障害物の位置(中央上
部の濃い部位)が表示される表示部91を有している。。
Next, a configuration of the distance measuring device of the present invention applied to, for example, an obstacle detection system of an automobile will be described.
This will be described with reference to 19. In FIG. 19, the approximate point light source 35 is
It is driven by the LED driver 37 according to a command from the computer 36. The reference side lightness signal and the reference side lightness signal generated from the reference side light receiving section 33 and the reference side light receiving section 34 are input to the computer 36 through the respective A / D converters 38 and 38 'and stored via the data bus. Written to device 39. In the computer 36, a storage device via a data bus
Data is exchanged with 39, and distance calculation as shown in the flowcharts of FIGS. 20 and 21 is executed to calculate the distance and direction of the obstacle. The distance calculation operation up to steps 61 to 77 of the flowcharts of FIGS. 20 and 21 is the same as that of the flowcharts of FIGS. 13 and 14. Then, when the distance Dj or Dh calculated based on the judgment of step 74 or step 75 is selected, the computer 36 finally executes the calculated data through the data bus by the execution of step 78, and the display device 90 as a display means. Send to. As shown in the figure, the display device 90 has a display unit 91 that displays the position of the obstacle (the dark portion in the upper center) with the center of the fan as the host vehicle position. .

【0058】かかるシステムによれば、自動車周辺に存
在する障害物の位置(距離及び方向)を画面で運転者に
知らせることができるので、運転者は障害物の位置情報
を容易に把握することができる。本システムの距離演算
動作において、測定対象が鏡面か否かの判定(ステップ
75)は、明度信号の差信号或いは明度信号の空間微分値
を用いて行うようにしてもよいことは言うまでもない。
According to such a system, since the position (distance and direction) of the obstacle existing around the automobile can be notified to the driver on the screen, the driver can easily grasp the position information of the obstacle. it can. In the distance calculation operation of this system, it is determined whether the measurement target is a mirror surface (step
It goes without saying that the step 75) may be performed by using the difference signal of the brightness signal or the spatial differential value of the brightness signal.

【0059】尚、上述した各実施例の光学系に、シリン
ドリカルレンズを用いたり、光学フィルタを追加すると
よい。図22に示すように、光学系としてシリンドリカル
レンズ51を用いると、上下方向(図中の矢印方向)に検
知範囲が広くなり、受光部を上下に長くするのと同じ効
果が得られる。測定対象が上下方向に傾いているとき
は、略点光源からの測定対象による反射光の返ってくる
上下方向が変化するので、光学系にシリンドリカルレン
ズ51を用いる事によって測定対象が上下方向に傾いてい
ても測距可能になる。
A cylindrical lens may be used or an optical filter may be added to the optical system of each of the above-described embodiments. As shown in FIG. 22, when the cylindrical lens 51 is used as the optical system, the detection range becomes wider in the vertical direction (the direction of the arrow in the figure), and the same effect as that of lengthening the light receiving portion can be obtained. When the measurement target is tilted in the vertical direction, the vertical direction in which the reflected light from the measurement target from the point light source is returned changes, so by using the cylindrical lens 51 in the optical system, the measurement target is tilted in the vertical direction. Even if it is on, distance measurement is possible.

【0060】また、図22に示すように、受光部33,34の
前方に、略点光源からの光の波長以外の光をカットする
光学フィルタ52を追加する事によって、略点光源以外の
光による影響を低減できるので、明度信号のS/N比を
更に向上させることができる。尚、図22では、シリンド
リカルレンズ51と光学フィルタ52を一緒に図示したが、
どちらか一方を設ける構成でもよいことは言うまでもな
い。
Further, as shown in FIG. 22, by adding an optical filter 52 in front of the light receiving portions 33 and 34, which cuts light other than the wavelength of the light from the point light source, light other than the point light source is added. Since the influence due to can be reduced, the S / N ratio of the brightness signal can be further improved. Although the cylindrical lens 51 and the optical filter 52 are shown together in FIG. 22,
It goes without saying that either one may be provided.

【0061】[0061]

【発明の効果】以上説明したように本発明によれば、測
定対象の表面が鏡面の場合でも、三角測量の原理を利用
して測距ができ、測定対象が鏡面で且つ不特定の場合で
も測距ができる。また、光源を2つ使用することで、測
定対象のが曲面鏡であっても測距ができる。
As described above, according to the present invention, even if the surface of the object to be measured is a mirror surface, distance measurement can be performed by utilizing the principle of triangulation, and even if the object to be measured is a mirror surface and is unspecified. Can measure distance. Further, by using two light sources, distance measurement can be performed even if the measurement target is a curved mirror.

【0062】また、明度信号に基づいて測定対象が鏡面
か否かを判定する機能を設けることで、測定対象が鏡面
か否かに拘らず測距が可能となる。明度信号の差信号を
利用して視差を算出するか、又は光源の照射光の波長以
外の光をカットする光学フィルタを介して受光部に光を
入光することで、外光の影響を低減でき、S/Nが向上
して測距精度を高めることができる。
Further, by providing the function of determining whether or not the measuring object is a mirror surface based on the brightness signal, the distance can be measured regardless of whether the measuring object is a mirror surface or not. Reduces the effect of outside light by calculating the parallax using the difference signal of the brightness signal or by entering the light into the light receiving part through an optical filter that cuts light other than the wavelength of the irradiation light of the light source. As a result, the S / N is improved and the distance measurement accuracy can be improved.

【0063】また、受光部を複数の領域に分割し領域毎
に測距を行うことで、距離の異なる複数の測定対象が存
在しても測距することができる。光学系にシリンドリカ
ルレンズを用いれば、測定対象が上下方向に傾いていて
も測距が可能となる。本発明の三角測量式測距装置に表
示手段を設けて障害物検知装置を構成すれば、例えば自
動車等の周辺に存在する障害物をドライバに知らせるこ
とができるようになる。
Further, by dividing the light receiving portion into a plurality of areas and performing distance measurement for each area, distance measurement can be performed even if there are a plurality of measurement objects having different distances. If a cylindrical lens is used in the optical system, distance measurement is possible even if the measurement target is tilted in the vertical direction. If the obstacle detection device is configured by providing display means in the triangulation type distance measuring device of the present invention, it becomes possible to inform the driver of obstacles existing in the vicinity of, for example, an automobile.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1の発明に係る三角測量式測距装置の構成図FIG. 1 is a configuration diagram of a triangulation type distance measuring device according to a first invention.

【図2】第2の発明に係る三角測量式測距装置の構成図FIG. 2 is a configuration diagram of a triangulation type distance measuring device according to a second invention.

【図3】第1の発明の実施例の構成図FIG. 3 is a configuration diagram of an embodiment of the first invention.

【図4】測定対象が平行な場合の同上実施例の測距原理
の説明図
FIG. 4 is an explanatory view of a distance measuring principle of the above-mentioned embodiment when measurement targets are parallel.

【図5】測定対象が平行でない場合の同上実施例の測距
原理の説明図
FIG. 5 is an explanatory view of the distance measuring principle of the above-mentioned embodiment when the measurement object is not parallel.

【図6】同上実施例の測距動作を示すフローチャートFIG. 6 is a flowchart showing a distance measuring operation of the above embodiment.

【図7】第2の本発明の実施例の構成図FIG. 7 is a configuration diagram of an embodiment of the second invention.

【図8】同上実施例の測距原理の説明図FIG. 8 is an explanatory view of a distance measuring principle of the above embodiment.

【図9】同上実施例の測距原理の説明図FIG. 9 is an explanatory view of a distance measuring principle of the above embodiment.

【図10】同上実施例の測距動作を示すフローチャートFIG. 10 is a flowchart showing a distance measuring operation of the above embodiment.

【図11】明度信号の差信号を用いてずれ量を算出する実
施例の測距動作を示すフローチャート
FIG. 11 is a flowchart showing a distance measuring operation of an embodiment in which a shift amount is calculated using a difference signal of brightness signals.

【図12】明度信号を示し、(A)は光源点灯時、(B)
は光源消灯時、(C)は点灯時と消灯時の差信号
FIG. 12 shows a brightness signal, (A) when the light source is turned on, (B)
Is when the light source is off, (C) is the difference signal between when the light is on and when it is off

【図13】鏡面か否かの判定機能を備えた実施例の測距動
作を示すフローチャート
FIG. 13 is a flowchart showing a distance measuring operation of an embodiment having a function of determining whether or not it is a mirror surface

【図14】図13に続くフローチャートFIG. 14 is a flowchart following FIG. 13.

【図15】明度信号で、(A)は測定対象が鏡面である場
合、(B)は測定対象が非鏡面の場合
FIG. 15 is a brightness signal, (A) when the measurement target is a mirror surface, (B) when the measurement target is a non-mirror surface

【図16】明度信号の空間微分値で、(A)は測定対象が
鏡面である場合、(B)は測定対象が非鏡面の場合
FIG. 16 is a spatial differential value of the lightness signal, where (A) is the case where the measurement target is a mirror surface, and (B) is the case where the measurement target is a non-mirror surface.

【図17】専用の三角測量式測距装置を別に設けた実施例
の構成図
FIG. 17 is a configuration diagram of an embodiment in which a dedicated triangulation distance measuring device is separately provided.

【図18】受光部を複数の領域に分割して領域毎に測距す
る実施例の説明図
FIG. 18 is an explanatory diagram of an embodiment in which the light receiving unit is divided into a plurality of areas and distance measurement is performed for each area.

【図19】障害物検知装置の実施例を示す構成図FIG. 19 is a configuration diagram showing an embodiment of an obstacle detection device.

【図20】同上実施例の障害物検知動作を示すフローチャ
ート
FIG. 20 is a flowchart showing the obstacle detection operation of the above embodiment.

【図21】図20に続くフローチャートFIG. 21 is a flowchart that follows FIG. 20.

【図22】シリンドリカルレンズ又は光学フィルタを使用
した実施例の説明図
FIG. 22 is an explanatory diagram of an embodiment that uses a cylindrical lens or an optical filter.

【図23】パッシブ三角測量式測距装置の従来例の説明図FIG. 23 is an explanatory diagram of a conventional example of a passive triangulation type distance measuring device.

【図24】同上従来例の測距原理の説明図FIG. 24 is an explanatory diagram of a distance measuring principle of the conventional example as above.

【図25】平面鏡までの距離を測定する従来装置の説明図FIG. 25 is an explanatory diagram of a conventional device that measures a distance to a plane mirror.

【図26】平面鏡までの距離を測定する従来装置の説明図FIG. 26 is an explanatory diagram of a conventional device that measures a distance to a plane mirror.

【図27】平面鏡までの距離を測定する別の従来装置の説
明図
FIG. 27 is an explanatory diagram of another conventional device that measures a distance to a plane mirror.

【符号の説明】[Explanation of symbols]

31 第1の光学系 32 第2の光学系 33 基準側受光部 34 参照側受光部 35,41 略点光源 36 コンピュータ 37 LEDドライバ 38 A/D変換器 39 記憶装置 40 平面鏡 42 曲面鏡 51 シリンドリカルレンズ 52 光学フィルタ 90 表示装置 91 表示部 31 First optical system 32 Second optical system 33 Reference side light receiving section 34 Reference side light receiving section 35, 41 Point light source 36 Computer 37 LED driver 38 A / D converter 39 Storage device 40 Plane mirror 42 Curved mirror 51 Cylindrical lens 52 Optical filter 90 Display 91 Display

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】測定対象に光を照射する光源と、 測定対象からの光がそれぞれ入光する第1及び第2の光
学系と、 第1の光学系を介して受光した光の強度分布状態を示す
第1の明度信号を出力する基準側受光手段と、 第2の光学系を介して受光した光の強度分布状態を示す
第2の明度信号を出力する参照側受光手段と、 第1の明度信号と第2の明度信号とを比較して基準側受
光手段表面の受光位置に対する参照側受光手段の受光位
置のずれ量を測定する測定手段と、 前記測定手段で測定されたずれ量に基づき三角測量の原
理を用いて前記光源の虚像までの距離を演算する第1の
距離演算手段と、 第1の距離演算手段で演算された虚像までの距離をD
k、光源から光学系までの距離をDoffとした時、測
定対象までの距離Dhを、 Dh=(Dk−Doff)/2 の演算式により算出する第2の距離演算手段と、 を備えて構成したことを特徴とする三角測量式測距装
置。
1. A light source for irradiating a measurement target with light, first and second optical systems into which light from the measurement target respectively enters, and an intensity distribution state of light received via the first optical system. And a reference-side light receiving unit that outputs a second lightness signal indicating the intensity distribution state of the light received via the second optical system, and a first light-receiving unit that outputs a first lightness signal that indicates Measuring means for comparing the lightness signal and the second lightness signal with each other to measure the deviation amount of the light receiving position of the reference side light receiving means with respect to the light receiving position of the surface of the reference side light receiving means, and the deviation amount measured by the measuring means. The first distance calculating means for calculating the distance to the virtual image of the light source using the principle of triangulation and the distance to the virtual image calculated by the first distance calculating means are D
k, and a distance from the light source to the optical system is Doff, the distance Dh to the measurement object is calculated by the following formula: Dh = (Dk-Doff) / 2 A triangulation type distance measuring device characterized in that
【請求項2】測定対象に光を照射する第1及び第2の光
源と、 測定対象からの光がそれぞれ入光する第1及び第2の光
学系と、 第1の光学系を介して受光した光の強度分布状態を示す
第1の明度信号を出力する基準側受光手段と、 第2の光学系を介して受光した光の強度分布状態を示す
第2の明度信号を出力する参照側受光手段と、 各光源の照射光毎に第1の明度信号と第2の明度信号と
を比較して基準側受光手段表面の受光位置に対する参照
側受光手段の受光位置のずれ量を各光源の照射光毎に測
定する測定手段と、 前記測定手段で測定された各光源の照射光に対する各ず
れ量に基づき三角測量の原理を用いて各光源の虚像まで
の距離をそれぞれ演算する第1の距離演算手段と、 第1の距離演算手段で演算された各虚像までの距離をD
1 ,Dk2 、第1及び第2の光源から光学系までのそ
れぞれの距離をDoff1 ,Doff2 とした時、測定
対象までの距離Dhを、 Dh=(Dk2 ・Doff1 −Dk1 ・Doff2 )/
(Dk1 −Doff2−Dk2 +Doff1 ) の演算式により算出する第2の距離演算手段と、 を備えて構成したことを特徴とする三角測量式測距装
置。
2. A first and a second light source for irradiating a measurement target with light, a first and a second optical system for receiving light from the measurement target respectively, and light reception through the first optical system. Reference side light receiving means for outputting a first brightness signal indicating the intensity distribution state of the received light, and reference side light receiving for outputting a second brightness signal indicating the intensity distribution state of the light received via the second optical system. Means for comparing the first lightness signal and the second lightness signal for each irradiation light of each light source, and irradiating each light source with the deviation amount of the light reception position of the reference side light reception means with respect to the light reception position of the surface of the reference side light reception means. First distance calculation for calculating the distance to the virtual image of each light source by using the principle of triangulation based on the deviation amount of each light source with respect to the irradiation light measured by the measurement means Means and the distance to each virtual image calculated by the first distance calculation means is D
where k 1 and Dk 2 and Doff 1 and Doff 2 are the distances from the first and second light sources to the optical system, the distance Dh to the measurement target is Dh = (Dk 2 · Doff 1 −Dk 1・ Doff 2 ) /
(Dk 1 -Doff 2 -Dk 2 + Doff 1) triangulation distance measuring apparatus characterized by being configured with a second distance calculating means for calculating, for the arithmetic expression.
【請求項3】前記両受光手段の少なくとも一方の明度信
号に基づいて測定対象が鏡面か否かを判定する判定手段
を備え、測定対象が鏡面でないと判定された時は、光源
の消灯状態で得られた前記ずれ量に基づいて前記第1の
距離演算手段で算出される値を測定対象までの距離と
し、測定対象が鏡面であると判定された時は、前記第2
の距離演算手段で算出される値を測定対象までの距離と
する請求項1又は2に記載の三角測量式測距装置。
3. A determination means for determining whether or not the measurement object is a mirror surface based on the brightness signal of at least one of the both light receiving means, and when the measurement object is not a mirror surface, the light source is turned off. The value calculated by the first distance calculation means based on the obtained displacement amount is set as the distance to the measurement target, and when it is determined that the measurement target is a mirror surface, the second
The triangulation type distance measuring device according to claim 1 or 2, wherein the value calculated by the distance calculating means is the distance to the object to be measured.
【請求項4】前記判定手段は、明度信号に予め設定した
閾値より高いピーク値が存在するか否を判定し、閾値よ
り高いピーク値が存在する時に測定対象は鏡面と判定
し、閾値より高いピーク値が存在しない時に測定対象は
鏡面でないと判定する構成である請求項3記載の三角測
量式測距装置。
4. The determining means determines whether or not there is a peak value higher than a preset threshold value in the brightness signal, and when there is a peak value higher than the threshold value, the measurement target is determined to be a mirror surface and is higher than the threshold value. The triangulation type distance measuring device according to claim 3, wherein the measurement target is not a mirror surface when there is no peak value.
【請求項5】前記判定手段は、明度信号の光源点灯時と
消灯時の値の差を算出し、算出された差信号に予め設定
した閾値より高いピーク値が存在するか否を判定し、差
信号に閾値より高いピーク値が存在する時に測定対象は
鏡面と判定し、閾値より高いピーク値が存在しない時に
測定対象は鏡面でないと判定する構成である請求項3記
載の三角測量式測距装置。
5. The determining means calculates the difference between the values of the lightness signal when the light source is turned on and when the light source is turned off, and determines whether the calculated difference signal has a peak value higher than a preset threshold value. The triangulation distance measurement according to claim 3, wherein when the difference signal has a peak value higher than the threshold value, the measurement target is determined to be a mirror surface, and when there is no peak value higher than the threshold value, the measurement target is not a mirror surface. apparatus.
【請求項6】前記判定手段は、明度信号の空間微分値を
演算し、算出された空間微分値の絶対値に予め設定した
閾値より高いピーク値が存在するか否を判定し、閾値よ
り高いピーク値が存在する時に測定対象は鏡面と判定
し、閾値より高いピーク値が存在しない時に測定対象は
鏡面でないと判定する構成である請求項3記載の三角測
量式測距装置。
6. The determination means calculates a spatial differential value of a lightness signal, determines whether or not a peak value higher than a preset threshold value exists in the absolute value of the calculated spatial differential value, and the peak value is higher than the threshold value. 4. The triangulation type distance measuring apparatus according to claim 3, wherein the measuring object is determined to be a mirror surface when a peak value exists, and the measuring object is not a mirror surface when a peak value higher than a threshold value does not exist.
【請求項7】前記判定手段は、明度信号の光源点灯時と
消灯時の値の差信号の空間微分値を演算し、算出された
空間微分値の絶対値に予め設定した閾値より高いピーク
値が存在するか否を判定し、閾値より高いピーク値が存
在する時に測定対象は鏡面と判定し、閾値より高いピー
ク値が存在しない時に測定対象は鏡面でないと判定する
構成である請求項3記載の三角測量式測距装置。
7. The peak value higher than a threshold value preset to the absolute value of the calculated spatial differential value by calculating the spatial differential value of the difference signal between the values of the lightness signal when the light source is turned on and when the light source is turned off. 4. It is configured to determine whether or not exists, determine that the measurement target is a mirror surface when a peak value higher than the threshold value exists, and determine that the measurement target is not a mirror surface when there is no peak value higher than the threshold value. Triangulation range finder.
【請求項8】前記測定手段は、第1の明度信号の光源点
灯時と消灯時の値の差信号と、第2の明度信号の光源点
灯時と消灯時の値の差信号とを比較して受光位置のずれ
量を測定する構成である請求項1〜7のいずれか1つに
記載の三角測量式測距装置。
8. The measuring means compares the difference signal between the values of the first brightness signal when the light source is turned on and off and the difference signal between the values of the second brightness signal when the light source is turned on and off. The triangulation type distance measuring device according to any one of claims 1 to 7, wherein the triangulation type distance measuring device is configured to measure a shift amount of a light receiving position.
【請求項9】基準側受光手段表面における第1の光学系
の光軸との交点と受光位置との間の距離をRdとし、第
1の光学系の焦点距離をfとし、測定対象の方向角度θ
hを、 θh=atan(f/Rd) の演算式により算出する方向角度算出手段を備えた請求
項1〜8のいずれか1つに記載の三角測量式測距装置。
9. The direction of the object to be measured, wherein Rd is the distance between the light receiving position and the intersection of the optical axis of the first optical system on the surface of the reference side light receiving means, and f is the focal length of the first optical system. Angle θ
9. The triangulation type distance measuring device according to claim 1, further comprising a direction angle calculating means for calculating h by an arithmetic expression of θh = atan (f / Rd).
【請求項10】両光学系にシリンドリカルレンズを用いた
請求項1〜9のいずれか1つに記載の三角測量式測距装
置。
10. The triangulation type distance measuring device according to claim 1, wherein a cylindrical lens is used for both optical systems.
【請求項11】測定対象と受光手段との間に、光源の照射
光の波長以外の光をカットする光学フィルタを設置する
構成である請求項1〜10のいずれか1つに記載の三角測
量式測距装置。
11. The triangulation according to claim 1, wherein an optical filter that cuts light other than the wavelength of the irradiation light of the light source is installed between the measurement target and the light receiving means. Distance measuring device.
【請求項12】請求項1〜11のいずれか1つの三角測量式
測距装置と、該三角測量式測距装置で得られた測定対象
の位置情報を入力して表示する表示手段とを備えて構成
したことを特徴とする障害物検知装置。
12. A triangulation type distance measuring device according to any one of claims 1 to 11, and display means for inputting and displaying position information of a measurement target obtained by the triangulation type distance measuring device. An obstacle detection device characterized by being configured as follows.
【請求項13】前記表示手段は、扇状の表示部を有し、扇
の要の位置を測距装置の位置として測定対象の位置を表
示する構成である請求項12記載の障害物検知装置。
13. The obstacle detection device according to claim 12, wherein the display unit has a fan-shaped display unit and is configured to display a position of a measurement target with a main position of the fan as a position of the distance measuring device.
JP05929495A 1995-03-17 1995-03-17 Triangulation type distance measuring device and obstacle detection device Expired - Fee Related JP3401979B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05929495A JP3401979B2 (en) 1995-03-17 1995-03-17 Triangulation type distance measuring device and obstacle detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05929495A JP3401979B2 (en) 1995-03-17 1995-03-17 Triangulation type distance measuring device and obstacle detection device

Publications (2)

Publication Number Publication Date
JPH08261752A true JPH08261752A (en) 1996-10-11
JP3401979B2 JP3401979B2 (en) 2003-04-28

Family

ID=13109227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05929495A Expired - Fee Related JP3401979B2 (en) 1995-03-17 1995-03-17 Triangulation type distance measuring device and obstacle detection device

Country Status (1)

Country Link
JP (1) JP3401979B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006317200A (en) * 2005-05-11 2006-11-24 Canon Inc Surface shape measuring apparatus
JP2010105225A (en) * 2008-10-29 2010-05-13 Mitsuboshi Belting Ltd Device of manufacturing toothed belt and method of manufacturing toothed belt

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108573215B (en) * 2018-03-16 2021-08-03 海信集团有限公司 Road reflective area detection method and device and terminal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006317200A (en) * 2005-05-11 2006-11-24 Canon Inc Surface shape measuring apparatus
JP2010105225A (en) * 2008-10-29 2010-05-13 Mitsuboshi Belting Ltd Device of manufacturing toothed belt and method of manufacturing toothed belt

Also Published As

Publication number Publication date
JP3401979B2 (en) 2003-04-28

Similar Documents

Publication Publication Date Title
EP1739391B1 (en) Image obtaining apparatus
US4529316A (en) Arrangement of eliminating erroneous data in three-dimensional optical sensors
EP1422498B1 (en) Automatic reflector tracking apparatus
US6683675B2 (en) Distance measuring apparatus and distance measuring method
JP2006276012A (en) Measuring system for obtaining six degrees of freedom of object
JP2006322853A (en) Distance measuring device, distance measuring method and distance measuring program
JPS6215479A (en) Auto tracking distance measuring instrument
JP3401979B2 (en) Triangulation type distance measuring device and obstacle detection device
JPH07286858A (en) Obstacle detector and navigation device with it
KR20150089678A (en) calibaraton device and camera system
JPH09203631A (en) Distance-measuring sensor
US11402492B2 (en) Surroundings detection system for motor vehicles
JPH08129064A (en) Apparatus for measuring distance between vehicles
JP5487920B2 (en) Optical three-dimensional shape measuring apparatus and optical three-dimensional shape measuring method
EP1202074A2 (en) Distance measuring apparatus and distance measuring method
JP2007024731A (en) Distance measuring device, distance measuring method and distance measuring program
JP3976054B2 (en) Position measurement system
JP2004109122A (en) Angle sensing device and projector equipped with it
JPH06147887A (en) Distance detector for vehicle
JPH10227860A (en) Preceding vehicle judging device
JP2885703B2 (en) Optical distance measuring device
JP2851053B2 (en) Light beam incident angle detection sensor
JPH0933248A (en) Passive triangulation-type range finder
JP2002031511A (en) Three-dimensional digitizer
JP3601157B2 (en) Inter-vehicle distance measurement device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees