JPH08245493A - Cold molten salt - Google Patents

Cold molten salt

Info

Publication number
JPH08245493A
JPH08245493A JP7047174A JP4717495A JPH08245493A JP H08245493 A JPH08245493 A JP H08245493A JP 7047174 A JP7047174 A JP 7047174A JP 4717495 A JP4717495 A JP 4717495A JP H08245493 A JPH08245493 A JP H08245493A
Authority
JP
Japan
Prior art keywords
lithium
salt
acetate
benzoate
molten salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7047174A
Other languages
Japanese (ja)
Inventor
Masayoshi Watanabe
正義 渡辺
Makoto Ue
誠 宇恵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP7047174A priority Critical patent/JPH08245493A/en
Publication of JPH08245493A publication Critical patent/JPH08245493A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Secondary Cells (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Primary Cells (AREA)

Abstract

PURPOSE: To obtain a cold molten salt useful as an electrolyte, etc., for lithium bells, electrolytic capacitors, electric double layer capacitors, electrochromic display elements, etc., by mixing an aliphatic quaternary ammonium salt of an organic carboxylic acid with a lithium salt. CONSTITUTION: This cold molten salt is obtained by mixing (A) an aliphatic quaternary ammonium salt of an organic carboxylic acid such as triethylmethylammonium benzoate, tetraethylammonium benzoate, trimethyldecylammonium benzoate, tributylmethylammonium acetate, triethylammonium acetate or trimethyldecylammonium acetate with (B) a lithium salt such as lithium acetate, lithium benzoate or lithium bis(trifluoromethylsulfonyl)imidate in a globe box in a nitrogen atmosphere, thermally melting the resultant mixture at about 150 deg.C, providing a uniform liquid and then quenching the liquid with a precooled stainless steel plate. The resultant molten salt is useful as an electrolyte for electrochemical devices and a medium, etc., for electrosynthesis or electroplating.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はリチウム一次電池、リチ
ウム二次電池、電解コンデンサ、電気二重層コンデン
サ、エレクトロクロミック表示素子などの電気化学的デ
バイスの電解質および電解合成や電気メッキ用の媒体と
して利用することができる常温溶融に関する。
INDUSTRIAL APPLICABILITY The present invention is used as an electrolyte for electrochemical devices such as lithium primary batteries, lithium secondary batteries, electrolytic capacitors, electric double layer capacitors and electrochromic display devices, and as a medium for electrolytic synthesis and electroplating. It relates to room temperature melting.

【0002】[0002]

【従来の技術】従来より、リチウム一次電池、リチウム
二次電池、電解コンデンサ、電気二重層コンデンサ、エ
レクトロクロミック表示素子などの電気化学的デバイス
の電解質としては、液体である溶媒(例えばガンマーブ
チロラクトン、N,N−ジメチルホルムアミド、プロピ
レンカーボネート、テトラヒドロフラン等)にイオノー
ゲンとしてイオン性化合物(例えば、過塩素酸リチウ
ム、ホウフッ化テトラエチルアンモニウム、フタル酸テ
トラメチルアンモニウム等)を溶解した電解液が使用さ
れている。しかし、電解液は溶媒が揮発しやすく、長期
間の信頼性に欠けるという欠点を有している。
2. Description of the Related Art Conventionally, as an electrolyte of an electrochemical device such as a lithium primary battery, a lithium secondary battery, an electrolytic capacitor, an electric double layer capacitor and an electrochromic display element, a liquid solvent (eg gamma-butyrolactone, N 2 , N-dimethylformamide, propylene carbonate, tetrahydrofuran, etc.) is used as an ionogen in which an ionic compound (eg, lithium perchlorate, tetraethylammonium borofluoride, tetramethylammonium phthalate, etc.) is dissolved. However, the electrolytic solution has a drawback that the solvent is liable to volatilize and lacks long-term reliability.

【0003】そこで、電解質として、溶媒を用いない常
温溶融塩の応用が提案されている(例えば、小浦ら、
J.Electrochem.Soc.,140巻、6
02頁、1993年)。常温溶融塩としては、N−ブチ
ルピリジニウムやN−エチル−N′−メチルイミダゾリ
ウムなどの芳香族四級アンモニウムのハロゲン化物とハ
ロゲン化アルミニウムとの錯体(高橋、電気化学、59
巻、14頁、1991年)や2種以上のリチウム塩の混
合物(C.A.Angellら,Nature,362
巻、137頁、1993年)などが知られている。しか
しながら、前者の錯体はハロゲン化物イオンによる腐食
性に問題があり、後者は熱力学的に不安定な過冷却液体
であり、経時的に固化するという問題点がある。
Therefore, application of a solvent-free room temperature molten salt as an electrolyte has been proposed (for example, Koura et al.
J. Electrochem. Soc. , 140 volumes, 6
02, 1993). As the room temperature molten salt, a complex of an aromatic quaternary ammonium halide such as N-butylpyridinium or N-ethyl-N'-methylimidazolium and aluminum halide (Takahashi, Electrochemistry, 59
Vol. 14, p. 1991) and mixtures of two or more lithium salts (CA Angell et al., Nature, 362).
Volume 137, 1993) and the like are known. However, the former complex has a problem of corrosiveness due to a halide ion, and the latter complex is a thermodynamically unstable supercooled liquid and has a problem of solidifying with time.

【0004】[0004]

【発明が解決しようとする課題】本発明は腐食性がな
く、常温にて溶融した状態を安定に保つ電解質の性質を
有する常温溶融塩を提供するものである。
DISCLOSURE OF THE INVENTION The present invention provides a room temperature molten salt which is not corrosive and has the property of an electrolyte which maintains a stable molten state at room temperature.

【0005】[0005]

【課題を解決するための手段】本発明は、有機カルボン
酸の脂肪族四級アンモニウム塩とリチウム塩を混合して
なる常温溶融塩を提供するものである。
The present invention provides a room temperature molten salt obtained by mixing an aliphatic quaternary ammonium salt of an organic carboxylic acid and a lithium salt.

【0006】(発明の概要)有機カルボン酸の脂肪族四級アンモニウム塩 本発明に使用する有機カルボン酸の脂肪族四級アンモニ
ウム塩は有機カルボン酸の共役陰イオンと脂肪族四級ア
ンモニウム陽イオンとから成る。上記有機カルボン酸と
しては、総炭素数が1〜10のカルボン酸、具体的に
は、脂肪族モノカルボン酸〔例えば、ギ酸、酢酸、プロ
ピオン酸、酪酸、イソ酪酸、カプリン酸、メタクリル酸
など〕、脂肪族多価カルボン酸〔例えば、シュウ酸、マ
ロン酸、コハク酸、グルタル酸、アジピン酸、セバシン
酸、マレイン酸、イタコン酸など〕、芳香族モノカルボ
ン酸〔安息香酸、サリチル酸など〕および芳香族多価カ
ルボン酸〔フタル酸、トリメリット酸、ピロメリット酸
など〕を例示することができる。これらのなかで好まし
いのは酢酸および安息香酸である。
(Outline of the Invention) Aliphatic Quaternary Ammonium Salt of Organic Carboxylic Acid The aliphatic quaternary ammonium salt of an organic carboxylic acid used in the present invention comprises a conjugated anion of an organic carboxylic acid and an aliphatic quaternary ammonium cation. Consists of. As the organic carboxylic acid, a carboxylic acid having a total carbon number of 1 to 10, specifically, an aliphatic monocarboxylic acid [for example, formic acid, acetic acid, propionic acid, butyric acid, isobutyric acid, capric acid, methacrylic acid, etc.] , Aliphatic polycarboxylic acids (for example, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, sebacic acid, maleic acid, itaconic acid, etc.), aromatic monocarboxylic acids (benzoic acid, salicylic acid, etc.) and aromatic Examples thereof include group polyvalent carboxylic acids [phthalic acid, trimellitic acid, pyromellitic acid, etc.]. Of these, preferred are acetic acid and benzoic acid.

【0007】又、脂肪族四級アンモニウムとしては、一
つのアルキル基の炭素数が1〜10のテトラアルキルア
ンモニウム、例えば、テトラメチルアンモニウム、テト
ラエチルアンモニウム、テトラブチルアンモニウム、テ
トラヘキシルアンモニウム、トリエチルメチルアンモニ
ウム、トリブチルメチルアンモニウム、トリメチルデシ
ルアンモニウムなどを例示することができる。これらの
なかで好ましいのはトリエチルメチルアンモニウム、ト
リブチルメチルアンモニウム、トリメチルデシルアンモ
ニウムなどの非対称テトラアルキルアンモニウムであ
る。
As the aliphatic quaternary ammonium, tetraalkylammonium having 1 to 10 carbon atoms in one alkyl group, for example, tetramethylammonium, tetraethylammonium, tetrabutylammonium, tetrahexylammonium, triethylmethylammonium, Examples thereof include tributylmethylammonium and trimethyldecylammonium. Among these, preferred are asymmetric tetraalkylammonium such as triethylmethylammonium, tributylmethylammonium, trimethyldecylammonium and the like.

【0008】本発明に使用する有機カルボン酸の脂肪族
四級アンモニウム塩の具体例を挙げれば安息香酸トリエ
チルメチルアンモニウム塩、安息香酸テトラエチルアン
モウム塩、安息香酸トリメチルデシルアンモニウム塩、
酢酸トリブチルメチルアンモニウム塩、酢酸トリエチル
メチルアンモニウム塩、酢酸トリブチルデシルアンモニ
ウム塩、等が挙げられる。これら有機カルボン酸の脂肪
族四級アンモニウム塩は単独で、または二種以上併用し
て用いられる。
Specific examples of the aliphatic quaternary ammonium salt of organic carboxylic acid used in the present invention include triethylmethylammonium benzoate, tetraethylammonium benzoate, trimethyldecylammonium benzoate,
Examples thereof include tributylmethylammonium acetate salt, triethylmethylammonium acetate salt, tributyldecylammonium acetate salt, and the like. These aliphatic quaternary ammonium salts of organic carboxylic acids may be used alone or in combination of two or more.

【0009】リチウム塩 本発明に使用するリチウム塩としては、有機酸のリチウ
ム塩〔例えば、酢酸リチウム、トリフロロ酢酸リチウ
ム、安息香酸リチウム、トリフロロメタンスルホン酸リ
チウム、p−トルエンスルホン酸リチウム、ビス(トリ
フロロメチルスルホニル)イミド酸リチウム、トリス
(トリフロロメチルスルホニル)炭素酸リチウムなど〕
および無機酸のリチウム塩〔例えば、LiNO3 ,Li
SCN,LiClO3 ,LiClO4 ,LiBF4 ,L
iPF6 ,LiAsF6 ,LiSbF 6 など〕を例示す
ることができる。これらのなかで好ましいのは酢酸リチ
ウム、安息香酸リチウム、ビス(トリフロロメチルスル
ホニル)イミド酸リチウムなどの有機酸のリチウム塩で
ある。
[0009]Lithium salt As the lithium salt used in the present invention, an organic acid such as lithium
Salt (eg, lithium acetate, lithium trifluoroacetate)
System, lithium benzoate, trifluoromethanesulfonic acid
Lithium, lithium p-toluenesulfonate, bis (tri
Fluoromethylsulfonyl) lithium imidate, Tris
(Trifluoromethylsulfonyl) lithium carbonate etc.]
And lithium salts of inorganic acids [eg LiNO3, Li
SCN, LiClO3, LiClOFour, LiBFFour, L
iPF6, LiAsF6, LiSbF 6Etc.]
Can be Of these, preferred is lithium acetate.
Um, lithium benzoate, bis (trifluoromethylsulfur)
A lithium salt of an organic acid such as lithium imidate
is there.

【0010】常温溶融塩 本発明に使用する常温溶融塩は上記の一種以上の有機カ
ルボン酸の脂肪族四級アンモニウム塩と一種以上のリチ
ウム塩を適当な混合比で混ぜることにより得られるが、
その混合比は混合する塩の種類により決まり、高温にて
相溶し、室温に冷却しても固化しない混合比である。一
般的には、有機カルボン酸の脂肪族四級アンモニウム塩
1モルに対し、リチウム塩は、0.1〜10モルの割合
で用いられる。本発明の常温溶融塩は溶媒を含んでいな
いため、高温中で外部に揮発したりすることがなく、ま
た、常温にて溶融した状態を安定に保つので、長期間の
信頼性に耐える電気化学的デバイスの電解質となる。
Room Temperature Molten Salt The room temperature molten salt used in the present invention can be obtained by mixing the above-mentioned one or more aliphatic quaternary ammonium salt of organic carboxylic acid and one or more lithium salt in a suitable mixing ratio.
The mixing ratio is determined by the type of salt to be mixed, and is a mixing ratio that is compatible at high temperature and does not solidify even when cooled to room temperature. Generally, the lithium salt is used in a proportion of 0.1 to 10 mol per 1 mol of the aliphatic quaternary ammonium salt of the organic carboxylic acid. Since the room-temperature molten salt of the present invention does not contain a solvent, it does not volatilize to the outside at high temperature, and since it maintains a stable molten state at room temperature, it is an electrochemical that withstands long-term reliability. It becomes the electrolyte of the device.

【0011】[0011]

【実施例】以下に、実施例を挙げて、本発明を更に具体
的に説明する。 実施例1 窒素雰囲気下のグローブボックス中で、安息香酸トリエ
チルメチルアンモニウム塩(TEMAB)、酢酸リチウ
ム(LiOAc)およびビス(トリフロロメチルスルホ
ニル)イミド酸リチウム(LiTFSI)をモル比7:
2:1で混合し、約150℃に加熱溶融し、均一な液体
を得た。これをあらかじめ冷却しておいたステンレス板
を用いて急冷し、常温溶融塩を得た。この常温溶融塩を
良く研磨したステンレス電極間に直径1cm、厚さ1m
mのテフロン性スペーサーを介して挟み、密閉型導電率
測定用セル、インピーダンスアナライザ、および恒温槽
を用いて、周波数範囲5Hz〜13MHz、温度範囲8
0〜−10℃でセルのインピーダンスを発振レベル50
0mVにてイオン伝導率を測定した。30℃でのイオン
伝導率は、1.1×10-4S/cmであった。このもの
の60日経過後のイオン伝導率は、1.0×10-4S/
cmであった。
EXAMPLES The present invention will be described more specifically below with reference to examples. Example 1 In a glove box under a nitrogen atmosphere, triethylmethylammonium benzoate (TEMAB), lithium acetate (LiOAc) and lithium bis (trifluoromethylsulfonyl) imidate (LiTFSI) were used in a molar ratio of 7 :.
The mixture was mixed at a ratio of 2: 1 and heated and melted at about 150 ° C. to obtain a uniform liquid. This was rapidly cooled using a stainless plate that had been cooled in advance to obtain a room temperature molten salt. This room temperature molten salt is well polished and has a diameter of 1 cm and a thickness of 1 m between stainless electrodes.
It is sandwiched by a Teflon spacer of m, and a closed conductivity measuring cell, an impedance analyzer, and a constant temperature bath are used, and a frequency range is 5 Hz to 13 MHz and a temperature range is 8
The cell impedance is oscillated at a level of 50 at 0 to -10 ° C.
The ionic conductivity was measured at 0 mV. The ionic conductivity at 30 ° C. was 1.1 × 10 −4 S / cm. The ionic conductivity of this product after 60 days was 1.0 × 10 −4 S /
It was cm.

【0012】実施例2 実施例1において、TEMAB、LiOAcおよびLi
TFSIの混合モル比を8:1:1に変更する他は同様
にして常温溶融塩を得た時のイオン伝導率を図1に示し
た。なお、30℃でのイオン伝導率は、0.7×10
-4S/cmであった。又、60日経過後のイオン伝導
率は左程、低下していなかった。
Example 2 In Example 1, TEMAB, LiOAc and Li
The ionic conductivity when a room temperature molten salt was obtained in the same manner except that the mixing molar ratio of TFSI was changed to 8: 1: 1 is shown in FIG. The ionic conductivity at 30 ° C. is 0.7 × 10
It was -4 S / cm. Also, the ionic conductivity after 60 days had not decreased to the left.

【0013】[0013]

【発明の効果】長期の使用に耐える電解質である。EFFECT OF THE INVENTION An electrolyte that can withstand long-term use.

【図面の簡単な説明】[Brief description of drawings]

【図1】常温溶融塩の温度とイオン伝導率の相関を示す
図である。
FIG. 1 is a diagram showing a correlation between a temperature of a room temperature molten salt and ionic conductivity.

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01M 10/40 9375−5E H01G 9/00 301D // G02F 1/15 508 9/02 311 Continuation of front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location H01M 10/40 9375-5E H01G 9/00 301D // G02F 1/15 508 9/02 311

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 有機カルボン酸の脂肪族四級アンモニウ
ム塩とリチウム塩を混合してなる常温溶融塩。
1. A room temperature molten salt obtained by mixing an aliphatic quaternary ammonium salt of an organic carboxylic acid and a lithium salt.
【請求項2】 有機カルボン酸の脂肪族四級アンモニウ
ム塩が安息香酸トリエチルメチルアンモニウム塩、安息
香酸テトラエチルアンモニウム塩、安息香酸トリメチル
デシルアンモニウム塩、酢酸トリブチルメチルアンモニ
ウム塩、酢酸トリエチルメチルアンモニウム塩、酢酸ト
リメチルデシルアンモニウム塩、より選ばれた化合物で
ある請求項1記載の常温溶融塩。
2. An aliphatic quaternary ammonium salt of an organic carboxylic acid is triethylmethylammonium benzoate, tetraethylammonium benzoate, trimethyldecylammonium benzoate, tributylmethylammonium acetate acetate, triethylmethylammonium acetate trimethyl acetate. The room temperature molten salt according to claim 1, which is a compound selected from decyl ammonium salt.
【請求項3】 リチウム塩が、酢酸リチウム、安息香酸
リチウム、ビス(トリフロロメチルスルホニル)イミド
酸リチウムより選ばれた化合物である請求項1記載の常
温溶融塩。
3. The room temperature molten salt according to claim 1, wherein the lithium salt is a compound selected from lithium acetate, lithium benzoate and lithium bis (trifluoromethylsulfonyl) imidate.
JP7047174A 1995-03-07 1995-03-07 Cold molten salt Pending JPH08245493A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7047174A JPH08245493A (en) 1995-03-07 1995-03-07 Cold molten salt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7047174A JPH08245493A (en) 1995-03-07 1995-03-07 Cold molten salt

Publications (1)

Publication Number Publication Date
JPH08245493A true JPH08245493A (en) 1996-09-24

Family

ID=12767715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7047174A Pending JPH08245493A (en) 1995-03-07 1995-03-07 Cold molten salt

Country Status (1)

Country Link
JP (1) JPH08245493A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001526450A (en) * 1997-12-10 2001-12-18 イギリス国 Electrochemical cell containing liquid organic electrolyte with conductive additives
WO2003049224A1 (en) * 2001-12-07 2003-06-12 Nesscap Co., Ltd. Electric energy storage system
WO2003054986A1 (en) * 2001-12-21 2003-07-03 Sanyo Electric Co.,Ltd. Non-aqueous electrolytic secondary battery
KR100467430B1 (en) * 2002-09-12 2005-01-24 삼성에스디아이 주식회사 Electrolyte for lithium sulfur batteries and lithium sulfur batteries comprising the same
KR100467453B1 (en) * 2002-09-12 2005-01-24 삼성에스디아이 주식회사 Electrolyte for lithium secondary batteries and lithium secondary batteries comprising the same
JP2006195190A (en) * 2005-01-13 2006-07-27 Sharp Corp Sheet shaped picture display device
JPWO2005012599A1 (en) * 2003-07-31 2006-09-21 株式会社カネカ Method for forming metal surface oxide film using ionic liquid, electrolytic capacitor and electrolyte thereof
WO2007013693A2 (en) * 2005-07-29 2007-02-01 Koei Chemical Company, Limited Electrochemical device
JP2007141860A (en) * 2007-01-22 2007-06-07 Toshiba Corp Non-aqueous electrolytic battery
WO2007110621A2 (en) * 2006-03-25 2007-10-04 Ionic Polymer Solutions Limited Quaternary ammonium compounds and their uses
EP1906481A1 (en) * 2005-07-19 2008-04-02 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte solution and electrochemical energy storage device using same
EP2115808A1 (en) * 2007-02-08 2009-11-11 LG Chem, Ltd. Lithium secondary battery of improved high-temperature cycle life characteristics
US9196922B2 (en) 2007-02-08 2015-11-24 Lg Chem, Ltd. Lithium secondary battery of improved high-temperature cycle life characteristics
RU2612192C1 (en) * 2015-12-28 2017-03-03 Открытое акционерное общество "Элеконд" Working electrolyte for double electric layer capacitor, method of its preparation and capacitor with this electrolyte

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001526450A (en) * 1997-12-10 2001-12-18 イギリス国 Electrochemical cell containing liquid organic electrolyte with conductive additives
WO2003049224A1 (en) * 2001-12-07 2003-06-12 Nesscap Co., Ltd. Electric energy storage system
US7524583B2 (en) 2001-12-21 2009-04-28 Sanyo Electric Co., Ltd. Non-aqueous electrolytic secondary battery
WO2003054986A1 (en) * 2001-12-21 2003-07-03 Sanyo Electric Co.,Ltd. Non-aqueous electrolytic secondary battery
KR100467430B1 (en) * 2002-09-12 2005-01-24 삼성에스디아이 주식회사 Electrolyte for lithium sulfur batteries and lithium sulfur batteries comprising the same
KR100467453B1 (en) * 2002-09-12 2005-01-24 삼성에스디아이 주식회사 Electrolyte for lithium secondary batteries and lithium secondary batteries comprising the same
JPWO2005012599A1 (en) * 2003-07-31 2006-09-21 株式会社カネカ Method for forming metal surface oxide film using ionic liquid, electrolytic capacitor and electrolyte thereof
JP4685631B2 (en) * 2003-07-31 2011-05-18 株式会社カネカ Capacitor and its manufacturing method
JP2011091428A (en) * 2003-07-31 2011-05-06 Kaneka Corp Method for forming oxide film on metal surface using ionic liquid, electrolytic capacitor, and electrolyte thereof
JP2006195190A (en) * 2005-01-13 2006-07-27 Sharp Corp Sheet shaped picture display device
JP4546266B2 (en) * 2005-01-13 2010-09-15 シャープ株式会社 Sheet image display device
EP1906481A4 (en) * 2005-07-19 2010-02-17 Panasonic Corp Nonaqueous electrolyte solution and electrochemical energy storage device using same
EP1906481A1 (en) * 2005-07-19 2008-04-02 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte solution and electrochemical energy storage device using same
WO2007013693A3 (en) * 2005-07-29 2007-04-19 Koei Chemical Co Electrochemical device
WO2007013693A2 (en) * 2005-07-29 2007-02-01 Koei Chemical Company, Limited Electrochemical device
WO2007110621A3 (en) * 2006-03-25 2008-02-28 Ionic Polymer Solutions Ltd Quaternary ammonium compounds and their uses
WO2007110621A2 (en) * 2006-03-25 2007-10-04 Ionic Polymer Solutions Limited Quaternary ammonium compounds and their uses
JP2007141860A (en) * 2007-01-22 2007-06-07 Toshiba Corp Non-aqueous electrolytic battery
JP4560056B2 (en) * 2007-01-22 2010-10-13 株式会社東芝 Non-aqueous electrolyte battery
EP2115808A1 (en) * 2007-02-08 2009-11-11 LG Chem, Ltd. Lithium secondary battery of improved high-temperature cycle life characteristics
EP2115808A4 (en) * 2007-02-08 2012-01-04 Lg Chemical Ltd Lithium secondary battery of improved high-temperature cycle life characteristics
US9196922B2 (en) 2007-02-08 2015-11-24 Lg Chem, Ltd. Lithium secondary battery of improved high-temperature cycle life characteristics
RU2612192C1 (en) * 2015-12-28 2017-03-03 Открытое акционерное общество "Элеконд" Working electrolyte for double electric layer capacitor, method of its preparation and capacitor with this electrolyte

Similar Documents

Publication Publication Date Title
Takechi et al. A highly concentrated catholyte based on a solvate ionic liquid for rechargeable flow batteries
Moreno et al. Ionic liquid electrolytes for safer lithium batteries
Liang et al. New binary room-temperature molten salt electrolyte based on urea and LiTFSI
JPH08245493A (en) Cold molten salt
Appetecchi et al. Lithium insertion in graphite from ternary ionic liquid-lithium salt electrolytes: I. Electrochemical characterization of the electrolytes
Yang et al. Ionic conductivity in complexes of poly (ethylene oxide) and MgCl2
Aurbach et al. Impedance spectroscopy of lithium electrodes: Part 1. General behavior in propylene carbonate solutions and the correlation to surface chemistry and cycling efficiency
Paillard et al. Electrochemical and physicochemical properties of PY14FSI-based electrolytes with LiFSI
Marom et al. Revisiting LiClO4 as an electrolyte for rechargeable lithium-ion batteries
JPH10265674A (en) Polymer compound composite material and its production
Ding et al. How Conductivities and Viscosities of PC-DEC and PC-EC Solutions of LiBF4, LiPF6, LiBOB, Et4 NBF 4, and Et4 NPF 6 Differ and Why
Zhou et al. Lithium-doped, organic ionic plastic crystal electrolytes exhibiting high ambient-temperature conductivities
Morita et al. Ionic conductance behavior of polymeric gel electrolyte containing ionic liquid mixed with magnesium salt
Reiter et al. Ternary polymer electrolytes with 1-methylimidazole based ionic liquids and aprotic solvents
Pitawala et al. Structure and properties of Li-ion conducting polymer gel electrolytes based on ionic liquids of the pyrrolidinium cation and the bis (trifluoromethanesulfonyl) imide anion
Fan et al. Enhanced ionic conductivities in composite polymer electrolytes by using succinonitrile as a plasticizer
US11695153B2 (en) Alkali ion conducting plastic crystals
Fisher et al. Anion effects on solid polymer electrolytes containing sulfur based ionic liquid for lithium batteries
Egashira et al. Cyano-containing quaternary ammonium-based ionic liquid as a ‘co-solvent’for lithium battery electrolyte
Bolloli et al. Effect of carbonates fluorination on the properties of LiTFSI-based electrolytes for Li-ion batteries
Moreno et al. N-Alkyl-N-ethylpyrrolidinium cation-based ionic liquid electrolytes for safer lithium battery systems
Sun et al. A new additive for lithium battery electrolytes based on an alkyl borate compound
JPH10265673A (en) Polymer compound composite material and its production
Asenbauer et al. Solubilities and ionic conductivities of ionic liquids containing lithium salts
Chagnes et al. Thermal analysis of γ-butyrolactone+ 1 butyl-3-methyl-imidazolium ionic liquids mixtures