JPH08240611A - Calibrating device for three-axis accelerometer - Google Patents

Calibrating device for three-axis accelerometer

Info

Publication number
JPH08240611A
JPH08240611A JP7043158A JP4315895A JPH08240611A JP H08240611 A JPH08240611 A JP H08240611A JP 7043158 A JP7043158 A JP 7043158A JP 4315895 A JP4315895 A JP 4315895A JP H08240611 A JPH08240611 A JP H08240611A
Authority
JP
Japan
Prior art keywords
axis
accelerometer
horizontal plane
calibration
accelerometers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7043158A
Other languages
Japanese (ja)
Inventor
Hajime Okamoto
肇 岡本
Akira Tajima
明 田島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Building Systems Engineering and Service Co Ltd
Hitachi Building Systems Engineering Co Ltd
Original Assignee
Hitachi Building Systems Engineering and Service Co Ltd
Hitachi Building Systems Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Building Systems Engineering and Service Co Ltd, Hitachi Building Systems Engineering Co Ltd filed Critical Hitachi Building Systems Engineering and Service Co Ltd
Priority to JP7043158A priority Critical patent/JPH08240611A/en
Publication of JPH08240611A publication Critical patent/JPH08240611A/en
Pending legal-status Critical Current

Links

Landscapes

  • Geophysics And Detection Of Objects (AREA)

Abstract

PURPOSE: To make it possible to perform calibration simply in a short time by setting X and Y axes at the specified slant angles with respect to a horizontal plane under the state, wherein the Z axis of a three-axial accelerometer becomes parallel with the horizontal plane, and providing a calibrating plane, which supports a supporting body under this state. CONSTITUTION: A case body 1 comprises seven planes, and accelerometers 2, 3 and 4 for detecting the acceleration in the directions of X, Y and Z axes are fixed to a bottom plane 1a. A calibrating plane 1b is orthogonal to the bottom plane 1a and has the angle of 45 degrees in both directions of X and Y axes. At first, the bottom plane 1a is set on the horizontal plane. The X and Y axes are made parallel with the horizontal plane, and the Z axis is made orthogonal with the horizontal plane. The accelerometers 2 and 3 are set at an output 0, and the output of the accelerometer 4 is calibrated to gravity 1G. Then, the calibrating plane 1b is set on the horizontal plane, the X and Y axes are set at 45 degrees with the horizontal plane and the Z axis is set in parallel with the horizontal plane. The accelerometers 2 and 3 are calibrated to the output 0 and 707G, and the accelerometer 4 is calibrated to the output 0. In this way, the calibration can be quickly performed without removing the accelerometers 2, 3 and 4.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、三次元の振動の大きさ
を測定する3軸加速度計に対して、その校正を行うため
の3軸加速度計の校正装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a three-axis accelerometer calibration apparatus for calibrating a three-axis accelerometer for measuring the magnitude of three-dimensional vibration.

【0002】[0002]

【従来の技術】加速度計は振動の検出器として種々の分
野で使用されているが、その検出精度を保証するために
は、一般の測定器と同様に定期的に検出精度をチエック
し、検出精度が低下しているものについては校正が必要
である。従来、加速度計の静的特性を校正する方法とし
ては、特開平3−216557号公報に開示された、地
球の重力加速度1Gを利用する方法が知られている。
2. Description of the Related Art Accelerometers are used in various fields as vibration detectors, but in order to guarantee their detection accuracy, they are checked by periodically checking them as in the case of general measuring instruments. Calibration is required for items with reduced accuracy. Conventionally, as a method of calibrating the static characteristics of the accelerometer, a method of utilizing the gravitational acceleration 1G of the earth disclosed in Japanese Patent Laid-Open No. 3-216557 is known.

【0003】即ち、水準器により充分な水平が確保され
た水平面上に、校正の対象となる加速度計を垂直に設置
することにより重力加速度1Gを加え、次にこの状態か
ら加速度計を90°回転させて測定方向を水平にして重
力加速度をゼロとして校正する方法である。
That is, a gravitational acceleration of 1 G is applied by vertically installing an accelerometer to be calibrated on a horizontal plane whose level is ensured sufficiently, and then the accelerometer is rotated by 90 ° from this state. Then, the measurement direction is made horizontal and the gravitational acceleration is set to zero for calibration.

【0004】[0004]

【発明が解決しようとする課題】加速度計が1個であれ
ば、前述の方法で容易に校正し得るが、3軸方向を同時
に測定する3軸加速度計の場合は、1つの支持体に加速
度計が3個固定されているので、前述の校正方法に従う
と、それぞれの加速度計の検出軸方向に対して90°ず
つ回転させなければならない。
If there is only one accelerometer, it can be easily calibrated by the above-mentioned method. However, in the case of a three-axis accelerometer that simultaneously measures three-axis directions, acceleration is performed on one support. Since the three gauges are fixed, according to the above-mentioned calibration method, the accelerometers must be rotated by 90 ° with respect to the detection axis direction.

【0005】しかしながら、3軸方向に対して90°ず
つ精度良く回転設置できる支持体の外形構造は、3軸加
速度計の使い勝手上に無理を生じ、実際上採用困難であ
る。従って、従来はそれぞれの加速度センサを支持体か
ら取り外して外部に取り出し、1個ずつ校正することに
なるため、校正に多くの手間と時間がかかっていた。
However, the external structure of the support body which can be accurately rotated by 90 ° with respect to the three-axis directions makes it difficult to use the three-axis accelerometer and is practically difficult to employ. Therefore, conventionally, each acceleration sensor has to be removed from the support body, taken out to the outside, and calibrated one by one, which requires a lot of trouble and time for the calibration.

【0006】本発明の目的は、上記従来技術における課
題を解決し、校正を簡単な操作で短時間に行なうことが
できる3軸加速度計の校正装置を提供することにある。
An object of the present invention is to solve the above-mentioned problems in the prior art and to provide a calibration device for a three-axis accelerometer capable of performing calibration by a simple operation in a short time.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
め、本発明は、第1の軸方向の加速度を検出する第1の
加速度計と、前記第1の軸に対して直角をなす第2の軸
方向の加速度を検出する第2の加速度計と、前記第1の
軸及び前記第2の軸に対してそれぞれ直角をなす第3の
軸方向の加速度を検出する第3の加速度計とを、支持体
に固定して構成される3軸加速度計において、前記第3
の軸が水平面に平行となる状態で前記第1の軸及び前記
第2の軸をそれぞれ前記水平面に対して45度の傾きと
し、この状態で前記支持体を支持する校正面を設けた。
To achieve the above object, the present invention provides a first accelerometer for detecting acceleration in a first axial direction, and a first accelerometer forming a right angle with respect to the first axis. A second accelerometer for detecting acceleration in the second axial direction, and a third accelerometer for detecting acceleration in the third axial direction that is orthogonal to the first axis and the second axis. In a three-axis accelerometer fixed to a support,
The first axis and the second axis were each inclined by 45 degrees with respect to the horizontal plane in the state where the axis was parallel to the horizontal plane, and a calibration surface for supporting the support in this state was provided.

【0008】また、本発明は、第1の軸方向の加速度を
検出する第1の加速度計と、前記第1の軸に対して直角
をなす第2の軸方向の加速度を検出する第2の加速度計
と、前記第1の軸及び前記第2の軸に対してそれぞれ直
角をなす第3の軸方向の加速度を検出する第3の加速度
計とを支持体に固定して構成される3軸加速度計におい
て、前記支持体に連結され前記第1の軸と直交する第1
の校正面と、前記支持体に連結され前記第2の軸と直交
する第2の校正面とを設けるとともに、水平面に対して
45度の角をなし前記第1の校正面と面接触する第1の
受け面、及びこの第1の受け面に水平面に対して45度
の角をなして対向し前記第2の校正面と面接触する第2
の受け面を形成した受け台を備えた。
Further, according to the present invention, a first accelerometer for detecting acceleration in a first axial direction and a second accelerometer for detecting acceleration in a second axial direction perpendicular to the first axis. A triaxial structure in which an accelerometer and a third accelerometer that detects acceleration in a third axial direction that is perpendicular to the first axis and the second axis are fixed to a support body. A first accelerometer connected to the support and orthogonal to the first axis;
And a second calibration surface which is connected to the support and is orthogonal to the second axis, and which makes an angle of 45 degrees with a horizontal plane and makes a surface contact with the first calibration surface. A first receiving surface and a second receiving surface that faces the first receiving surface at an angle of 45 degrees with respect to a horizontal plane and is in surface contact with the second calibration surface.
And a pedestal having a receiving surface.

【0009】[0009]

【作用】水平面上に設置された状態では、前後方向と左
右方向の加速度センサに加えられる重力加速度はゼロで
あり、垂直方向の加速度センサには重力加速度1Gが加
えられている。
When installed on a horizontal plane, the gravitational acceleration applied to the longitudinal and lateral acceleration sensors is zero, and the vertical acceleration sensor is applied with gravitational acceleration 1G.

【0010】前後方向と左右方向の加速度センサの動作
方向を水平面に対して45度傾斜させるとともに、垂直
方向の加速度センサの動作方向を水平面と同一にさせる
ことで、前後方向と左右方向の加速度センサにはそれぞ
れ重力加速度0.707Gが加えられ、垂直方向の加速
度センサは重力加速度ゼロとなる。
By accelerating the operation directions of the acceleration sensor in the front-rear direction and the left-right direction with respect to the horizontal plane by 45 degrees and making the operation direction of the acceleration sensor in the vertical direction the same as the horizontal plane, the acceleration sensor in the front-rear direction and the left-right direction. Gravity acceleration of 0.707 G is applied to each of them, and the acceleration sensor in the vertical direction has zero gravity acceleration.

【0011】このように、3軸方向の加速度センサを同
時に1回だけ回転させることによって校正することが可
能となる。
As described above, calibration can be performed by rotating the acceleration sensors in the three-axis directions only once at the same time.

【0012】[0012]

【実施例】以下、本発明を図示の実施例に基づいて説明
する。図1は、本発明の第1の実施例に係る3軸加速度
計の斜視図である。この図で、1は加速度計を支持する
箱状の支持体(以下、箱体という)、2はX軸方向の加
速度を検出する加速度計、3はX軸方向と直交するY軸
方向の加速度を検出する加速度計、4はX軸及びY軸方
向に直交するZ軸方向の加速度を検出する加速度計を示
す。上記箱体1は図示のように7つの面で構成される
が、そのうちY軸で作る平面で、かつ、Z軸に垂直な底
面が符号1aで、又、後述する校正面が符号1bで示さ
れている。加速度計2,3,4は、それぞれ底面1aに
固定されている。校正面1bは、底面1aに垂直に形成
され、かつ、X軸及びY軸のいずれに対しても45度の
角度を有する面である。
The present invention will be described below with reference to the illustrated embodiments. FIG. 1 is a perspective view of a triaxial accelerometer according to a first embodiment of the present invention. In this figure, 1 is a box-shaped support (hereinafter referred to as a box) that supports an accelerometer, 2 is an accelerometer for detecting acceleration in the X-axis direction, and 3 is acceleration in the Y-axis direction orthogonal to the X-axis direction. Is an accelerometer that detects acceleration in the Z-axis direction orthogonal to the X-axis and Y-axis directions. The box 1 is composed of seven planes as shown in the figure. Of these, a plane formed by the Y-axis and a bottom surface perpendicular to the Z-axis is indicated by reference numeral 1a, and a calibration surface described later is indicated by reference numeral 1b. Has been done. The accelerometers 2, 3 and 4 are fixed to the bottom surface 1a. The calibration surface 1b is a surface formed perpendicular to the bottom surface 1a and having an angle of 45 degrees with respect to both the X axis and the Y axis.

【0013】次に、図1に示す3軸加速度計の校正方法
を図2および図3を参照して説明する。本実施例では、
校正面1bを図2に示すように水平面6に接触させて箱
体1を水平面6に載置することにより校正が行われる。
このような状態(図2に示す状態)において、各軸と底
面1a、校正面1bとの角度関係から、Z軸は水平面6
と平行になり、X軸及びY軸はそれぞれ水平面6と45
度の角度をなすことになる。この状態における校正を図
3により説明する。
Next, a method of calibrating the triaxial accelerometer shown in FIG. 1 will be described with reference to FIGS. In this embodiment,
Calibration is performed by placing the box body 1 on the horizontal surface 6 by bringing the calibration surface 1b into contact with the horizontal surface 6 as shown in FIG.
In such a state (state shown in FIG. 2), the Z-axis shows the horizontal plane 6 because of the angular relationship between each axis and the bottom surface 1a and the calibration surface 1b.
, And the X and Y axes are horizontal planes 6 and 45, respectively.
It will make an angle of degrees. Calibration in this state will be described with reference to FIG.

【0014】図3は本実施例の校正の原理を説明する図
である。図3の(a)は加速度計Aが水平面Hに置かれ
た状態を示し、その加速度計AがX軸及びY軸を検出軸
とするものの場合、加速度計Aに作用する重力は0Gで
あるので、その出力が0となるように校正する。又、加
速度計AがZ軸を検出軸とするものであれば、加速度計
Aに作用する重力は−1G(向きが下方であるので負号
となる)であるので、その出力がこれに対応する値とな
るような校正を行う。又、図3の(b)は加速度計Aを
(a)の状態から矢印Bに示すように90度回転した状
態を示す。この状態でZ軸は水平面Hと平行になり、X
軸及びY軸は重力の方向に対して45度の傾き(従って
水平面Hに対しても45度の傾き)となる。この場合、
加速度AがZ軸を検出軸とするものである場合、作用す
る重力は0Gであるので、出力が0となるように校正す
る。一方、加速度計AがX軸及びY軸を検出軸とするも
のである場合、作用する重力は0.707G(1/√2
G)となるので、その出力がこれに対応する値となるよ
うに校正する。
FIG. 3 is a diagram for explaining the principle of calibration in this embodiment. FIG. 3A shows a state in which the accelerometer A is placed on the horizontal plane H. When the accelerometer A has the X axis and the Y axis as detection axes, the gravity acting on the accelerometer A is 0G. Therefore, calibrate so that the output becomes 0. If the accelerometer A has the Z axis as the detection axis, the gravity acting on the accelerometer A is -1 G (because the direction is downward, it is a negative sign), so its output corresponds to this. Calibrate so that the specified value is reached. Further, FIG. 3B shows a state in which the accelerometer A is rotated by 90 degrees from the state shown in FIG. In this state, the Z axis becomes parallel to the horizontal plane H, and X
The axis and the Y-axis have an inclination of 45 degrees with respect to the direction of gravity (thus also an inclination of 45 degrees with respect to the horizontal plane H). in this case,
When the acceleration A has the Z axis as the detection axis, the acting gravity is 0 G, so the output is calibrated to be 0. On the other hand, when the accelerometer A has the X axis and the Y axis as detection axes, the acting gravity is 0.707 G (1 / √2
Since G), the output is calibrated so as to have a value corresponding to this.

【0015】上記図3の説明から明らかなように、図1
に示す状態は図3の(a)に示す状態に相当し、図2に
示す状態は図3の(b)に示す状態に相当する。そこ
で、本実施例の装置により校正を行う場合には、図1に
示す状態(X軸、Y軸が水平面6に平行、Z軸が水平面
6に垂直な状態)で、加速度計2,3を、出力が0にな
るように、又、加速度計4を出力が重力−1Gに対応す
る出力となるように校正する。次に、図2に示す状態
(X軸、Y軸が水平面6と45度の傾きをもち、Z軸が
水平面6に平行な状態)で、加速度計2,3を、出力が
重力0.707Gに対応する出力となるように校正す
る。
As is clear from the above description of FIG. 3, FIG.
3 corresponds to the state shown in FIG. 3A, and the state shown in FIG. 2 corresponds to the state shown in FIG. 3B. Therefore, when calibration is performed by the apparatus of this embodiment, the accelerometers 2 and 3 are set in the state shown in FIG. 1 (the X axis and the Y axis are parallel to the horizontal plane 6 and the Z axis is perpendicular to the horizontal plane 6). , The output is 0, and the accelerometer 4 is calibrated so that the output corresponds to gravity-1G. Next, in the state shown in FIG. 2 (the X-axis and the Y-axis have an inclination of 45 degrees with the horizontal plane 6 and the Z-axis is parallel to the horizontal plane 6), the accelerometers 2 and 3 output 0.7gravity gravity 0.707G. Calibrate so that the output corresponds to.

【0016】このように、本実施例では、箱体1に校正
面1bを形成したので、3つの加速度計2,3,4を1
つ1つ箱体1から取り外して校正を行い、再びそれを箱
体1に取付けるという手間と時間を不要とし、校正を簡
単な操作で、かつ、短時間で行うことができる。更に、
校正自体を定期的に他者に依頼している場合、本実施例
の装置では、図1に示す状態と図2に示す状態において
各加速度計2,3,4の出力をチエックすれば、校正が
必要か否かの判断を行うことができ、これにより、校正
が必要なもののみ他者に依頼すればよく、全ての3軸加
速度計の校正を定期的に依頼する場合に比較して、校正
のコストを低減することができる。
As described above, in this embodiment, since the calibration surface 1b is formed on the box body 1, the three accelerometers 2, 3, and 4 are combined into one.
It is possible to perform the calibration by a simple operation and in a short time without removing the labor and time of removing each one from the box body 1, performing the calibration, and reattaching it to the box body 1. Furthermore,
When the calibration itself is regularly requested to another person, in the apparatus of this embodiment, if the outputs of the accelerometers 2, 3 and 4 are checked in the state shown in FIG. 1 and the state shown in FIG. It is possible to judge whether or not is necessary, so that only those who need calibration need to be asked to another person, compared to the case where the calibration of all three-axis accelerometers is requested regularly, The cost of calibration can be reduced.

【0017】図4は本発明の第2の実施例に係る3軸加
速度計の斜視図である。図4で、2,3,4は図1,2
に示すものと同じ加速度計である。8は箱体であり、底
面8a及びこの底面8aに垂直な校正面8b1,8b2
有する。9は各加速度計2,3,4の出力を処理する処
理装置である。底面8aには加速度計2,3,4が固定
されており、加速度計2,3はその検出軸であるX軸,
Y軸かつ底面8aに平行になるように固定され、加速度
計4はその検出軸Z軸が底面8aに垂直になるように固
定される。これら各検出軸と底面8aとの関係は先の実
施例と同じであるが、本実施例では各加速度計2,3,
4の相互の位置関係が先の実施例のものと異なる。校正
面8b1,8b2は前述のように底面8aに垂直に形成さ
れているとともに、互いに直交関係に形成されている。
FIG. 4 is a perspective view of a triaxial accelerometer according to the second embodiment of the present invention. In FIG. 4, 2, 3 and 4 are shown in FIGS.
The same accelerometer as shown in. 8 is a box body having a vertical calibration plane 8b 1, 8b 2 on the bottom surface 8a and the bottom 8a. A processing device 9 processes the outputs of the accelerometers 2, 3 and 4. Accelerometers 2, 3 and 4 are fixed to the bottom surface 8a, and the accelerometers 2 and 3 are the X-axis, which is the detection axis thereof,
It is fixed so as to be parallel to the Y axis and the bottom surface 8a, and the accelerometer 4 is fixed so that its detection axis Z axis is perpendicular to the bottom surface 8a. The relationship between each of these detection axes and the bottom surface 8a is the same as in the previous embodiment, but in this embodiment, the accelerometers 2, 3, 2 are used.
The mutual positional relationship of 4 is different from that of the previous embodiment. The calibration surfaces 8b 1 and 8b 2 are formed perpendicularly to the bottom surface 8a as described above, and are also formed in a mutually orthogonal relationship.

【0018】図5は図4に示す3軸加速度計の校正に使
用する受け台の斜視図である。この図で、10は受け
台、10aは受け台の底面(水平面)、10b1,10
2は受け面を示す。受け面10b1,10b2は底面1
0aに対して45度の傾斜をもつように形成される。従
って、受け面10b1と受け面10b2とのなす角は90
度である。
FIG. 5 is a perspective view of a pedestal used for calibration of the three-axis accelerometer shown in FIG. In this figure, 10 is a pedestal, 10a is a bottom surface (horizontal surface) of the pedestal, 10b 1 and 10
b 2 indicates a receiving surface. The receiving surfaces 10b 1 and 10b 2 are bottom surfaces 1
It is formed to have an inclination of 45 degrees with respect to 0a. Therefore, the angle between the receiving surface 10b 1 and the receiving surface 10b 2 is 90
It is degree.

【0019】本実施例の3軸加速度計の校正方法を図6
を参照して説明する。加速度計2,3,4の各検出軸と
底面8aとの関係が、先の実施例のものと同じであるの
で、底面8aを水平面に接した状態で、加速度計2,3
の校正を、重力0Gに対する出力をみることにより行
い、加速度計4の校正を、重力−1Gに対する出力をみ
ることにより行う。
FIG. 6 shows the calibration method of the three-axis accelerometer of this embodiment.
Will be described with reference to. Since the relationship between the respective detection axes of the accelerometers 2, 3 and 4 and the bottom surface 8a is the same as that in the previous embodiment, the accelerometers 2, 3 with the bottom surface 8a in contact with the horizontal plane.
Is calibrated by observing the output for gravity 0G, and the accelerometer 4 is calibrated by observing the output for gravity -1G.

【0020】次に図6に示すように、受け台10の底面
10aが水平面である状態で、箱体8を、その校正面8
1,8b2が受け台10の受け面10b1、10b2に接
するように受け台10に載置する。各加速度計2,3,
4の各検出軸と底面8a、校正面8b1,8b2の関係が
上記の角度関係にあるので、加速度計2の検出軸Xと加
速度計3の検出軸Yは水平面に対して45度の角度をな
し、かつ、加速度計4の検出軸Zは水平面と平行とな
る。従って、各検出軸と水平面との関係は先の実施例の
図2に示す状態と同じになり、全く同様にして、加速度
計2,3は重力0.707Gに対する校正、加速度計4
は重力0Gに対する校正を行う。
Next, as shown in FIG. 6, with the bottom surface 10a of the pedestal 10 being a horizontal surface, the box body 8 is calibrated on its calibration surface 8.
It is placed on the pedestal 10 so that b 1 and 8b 2 are in contact with the receiving surfaces 10b 1 and 10b 2 of the pedestal 10. Each accelerometer 2, 3,
Since the respective detection axes of No. 4 and the bottom surface 8a and the calibration surfaces 8b 1 and 8b 2 have the above-described angular relationship, the detection axis X of the accelerometer 2 and the detection axis Y of the accelerometer 3 are 45 degrees with respect to the horizontal plane. An angle is formed, and the detection axis Z of the accelerometer 4 is parallel to the horizontal plane. Therefore, the relationship between each detection axis and the horizontal plane is the same as the state shown in FIG. 2 of the previous embodiment, and the accelerometers 2 and 3 are calibrated against the gravity of 0.707G and the accelerometer 4 in the same manner.
Calibrates for gravity 0G.

【0021】本実施例の効果も先の実施例の効果と同じ
であるが、先の箱体8の形状により一層簡素化できる効
果もある。
The effect of this embodiment is the same as that of the previous embodiment, but there is also the effect that the shape of the box 8 can further simplify the effect.

【0022】なお、上記各実施例の説明では、各加速度
計を固定するものとして箱体を例示して説明したが、各
検出軸、底面、及び校正面の関係が上記の関係であれ
ば、箱体でなくてもよいのは明らかである。
In the description of each of the above-described embodiments, the box body is described as an example for fixing each accelerometer, but if the relationship among the detection axes, the bottom surface, and the calibration surface is as described above, Obviously, it does not have to be a box.

【0023】[0023]

【発明の効果】以上述べたように、本発明では、3つの
加速度計のうちの1つの加速度計の軸を水平面と平行と
したとき、他の2つの加速度計の軸が水平面と45度の
角度をなすような面又は受け台を設けたので、各加速度
計の取外し、取付けを行うことなく、簡単な操作で迅速
に3軸加速度計の校正を行うことができ、又、校正の良
否の判断も容易、迅速に行うことができる。
As described above, in the present invention, when the axis of one of the three accelerometers is parallel to the horizontal plane, the axes of the other two accelerometers are 45 degrees with respect to the horizontal plane. Since an angled surface or pedestal is provided, it is possible to quickly calibrate the 3-axis accelerometer with simple operation without removing and mounting each accelerometer. Judgment can be made easily and quickly.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係る3軸加速度計の斜視図で
ある。
FIG. 1 is a perspective view of a triaxial accelerometer according to an embodiment of the present invention.

【図2】図1に示す3軸加速度計の校正時の状態を示す
図である。
FIG. 2 is a diagram showing a state during calibration of the triaxial accelerometer shown in FIG.

【図3】図1に示す単体の3軸加速度計の通常時と校正
時の加速度を示す図である。
FIG. 3 is a diagram showing accelerations of the single-axis three-axis accelerometer shown in FIG. 1 at normal time and at calibration.

【図4】本発明の他の実施例に係る3軸加速度計の斜視
図である。
FIG. 4 is a perspective view of a triaxial accelerometer according to another embodiment of the present invention.

【図5】図4に示す3軸加速度計を置く受け台の斜視図
である。
5 is a perspective view of a pedestal on which the triaxial accelerometer shown in FIG. 4 is placed.

【図6】図4に示す3軸加速度計の校正時の状態を示す
図である。
6 is a diagram showing a state during calibration of the triaxial accelerometer shown in FIG.

【符号の説明】[Explanation of symbols]

1 箱体 1b 校正時に使用する箱体の側面 2,3,4 加速度センサ 8 箱体 10 受け台 1 Box 1b Side of box used for calibration 2,3,4 Acceleration sensor 8 Box 10 Cradle

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 第1の軸方向の加速度を検出する第1の
加速度計と、前記第1の軸に対して直角をなす第2の軸
方向の加速度を検出する第2の加速度計と、前記第1の
軸及び前記第2の軸に対してそれぞれ直角をなす第3の
軸方向の加速度を検出する第3の加速度計とを支持体に
固定して構成される3軸加速度計において、前記第3の
軸が水平面に平行となる状態で前記第1の軸及び前記第
2の軸をそれぞれ前記水平面に対して45度の傾きと
し、この状態で前記支持体を支持する校正面を設けたこ
とを特徴とする3軸加速度計の校正装置。
1. A first accelerometer for detecting acceleration in a first axis direction, and a second accelerometer for detecting acceleration in a second axis perpendicular to the first axis. A three-axis accelerometer configured by fixing to a support a third accelerometer that detects acceleration in a third axis direction that is perpendicular to the first axis and the second axis, In the state where the third axis is parallel to the horizontal plane, the first axis and the second axis are inclined by 45 degrees with respect to the horizontal plane, and a calibration surface for supporting the support in this state is provided. A calibration device for a three-axis accelerometer characterized in that
【請求項2】 第1の軸方向の加速度を検出する第1の
加速度計と、前記第1の軸に対して直角をなす第2の軸
方向の加速度を検出する第2の加速度計と、前記第1の
軸及び前記第2の軸に対してそれぞれ直角をなす第3の
軸方向の加速度を検出する第3の加速度計とを支持体に
固定して構成される3軸加速度計において、前記支持体
に連結され前記第1の軸と直交する第1の校正面と、前
記支持体に連結され前記第2の軸と直交する第2の校正
面とを設けるとともに、水平面に対して45度の角をな
し前記第1の校正面と面接触する第1の受け面、及びこ
の第1の受け面に水平面に対して45度の角をなして対
向し前記第2の校正面と面接触する第2の受け面を形成
した受け台を備えたことを特徴とする3軸加速度計の校
正装置。
2. A first accelerometer for detecting acceleration in a first axis direction, and a second accelerometer for detecting acceleration in a second axis direction perpendicular to the first axis. A three-axis accelerometer configured by fixing to a support a third accelerometer that detects acceleration in a third axis direction that is perpendicular to the first axis and the second axis, A first calibration surface that is connected to the support and is orthogonal to the first axis and a second calibration surface that is connected to the support and is orthogonal to the second axis are provided. A first receiving surface forming an angle of degree and in surface contact with the first calibration surface, and a surface facing the second calibration surface facing the first receiving surface at an angle of 45 degrees with respect to a horizontal plane. A calibration device for a three-axis accelerometer, comprising a pedestal having a second receiving surface that comes into contact with the pedestal.
JP7043158A 1995-03-02 1995-03-02 Calibrating device for three-axis accelerometer Pending JPH08240611A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7043158A JPH08240611A (en) 1995-03-02 1995-03-02 Calibrating device for three-axis accelerometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7043158A JPH08240611A (en) 1995-03-02 1995-03-02 Calibrating device for three-axis accelerometer

Publications (1)

Publication Number Publication Date
JPH08240611A true JPH08240611A (en) 1996-09-17

Family

ID=12656066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7043158A Pending JPH08240611A (en) 1995-03-02 1995-03-02 Calibrating device for three-axis accelerometer

Country Status (1)

Country Link
JP (1) JPH08240611A (en)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08304448A (en) * 1995-05-11 1996-11-22 Nikon Corp Apparatus and method for detection of dynamic amount
US6164117A (en) * 1999-01-22 2000-12-26 Caterpillar Inc. Inclination sensor and method of measuring the accuracy thereof
JP2006153754A (en) * 2004-11-30 2006-06-15 Denso Corp Multi-axial semiconductor acceleration sensor inspection method
JP2007525676A (en) * 2004-02-27 2007-09-06 ハネウェル・インターナショナル・インコーポレーテッド Vertical die / chip on board
WO2007105559A1 (en) * 2006-03-15 2007-09-20 Matsushita Electric Industrial Co., Ltd. Angular velocity sensor, method of manufacturing the same, and electronic device using the angular velocity sensor
JP2007248189A (en) * 2006-03-15 2007-09-27 Matsushita Electric Ind Co Ltd Manufacturing method for angular velocity sensor
JP2007248187A (en) * 2006-03-15 2007-09-27 Matsushita Electric Ind Co Ltd Angular velocity sensor
JP2007248188A (en) * 2006-03-15 2007-09-27 Matsushita Electric Ind Co Ltd Angular velocity sensor
US20100116020A1 (en) * 2007-05-15 2010-05-13 Sequoia It S.R.L. Wide-band accelerometer self-recognising its calibration
US20110208093A1 (en) * 2010-01-21 2011-08-25 OrthAlign, Inc. Systems and methods for joint replacement
CN102322944A (en) * 2011-08-14 2012-01-18 浙江大学 Three-component vibration calibrating installation
US8256265B2 (en) 2007-12-25 2012-09-04 Denso Corporation Apparatus and method for inspecting sensor module
JP2014025791A (en) * 2012-07-26 2014-02-06 Olympus Corp Calibration device and program
US8888786B2 (en) 2003-06-09 2014-11-18 OrthAlign, Inc. Surgical orientation device and method
US8911447B2 (en) 2008-07-24 2014-12-16 OrthAlign, Inc. Systems and methods for joint replacement
US8974468B2 (en) 2008-09-10 2015-03-10 OrthAlign, Inc. Hip surgery systems and methods
US8974467B2 (en) 2003-06-09 2015-03-10 OrthAlign, Inc. Surgical orientation system and method
CN104793016A (en) * 2014-01-21 2015-07-22 无锡华润上华半导体有限公司 Clamp for calibrating axial directions of accelerometers as well as calibration device and method of accelerometers
EP2933608A1 (en) 2014-04-16 2015-10-21 Fuji Electric Co., Ltd. Sensitivity inspection system and sensitivity inspection method
JP2015210168A (en) * 2014-04-25 2015-11-24 株式会社日立ビルシステム Device for diagnosing elevator acceleration meter
US9271756B2 (en) 2009-07-24 2016-03-01 OrthAlign, Inc. Systems and methods for joint replacement
CN106125160A (en) * 2016-06-14 2016-11-16 重庆蓝岸通讯技术有限公司 Automatically the system and method in gravity sensor direction is calibrated
US9549742B2 (en) 2012-05-18 2017-01-24 OrthAlign, Inc. Devices and methods for knee arthroplasty
US9649160B2 (en) 2012-08-14 2017-05-16 OrthAlign, Inc. Hip replacement navigation system and method
US20170347922A1 (en) * 2010-05-06 2017-12-07 Sachin Bhandari Calibration Device for Inertial Sensor Based Surgical Navigation System
CN108152535A (en) * 2017-11-14 2018-06-12 歌尔科技有限公司 A kind of accelerometer calibration method and device
US10363149B2 (en) 2015-02-20 2019-07-30 OrthAlign, Inc. Hip replacement navigation system and method
US10863995B2 (en) 2017-03-14 2020-12-15 OrthAlign, Inc. Soft tissue measurement and balancing systems and methods
US10869771B2 (en) 2009-07-24 2020-12-22 OrthAlign, Inc. Systems and methods for joint replacement
US10918499B2 (en) 2017-03-14 2021-02-16 OrthAlign, Inc. Hip replacement navigation systems and methods
CN114878859A (en) * 2022-02-18 2022-08-09 太原理工大学 Triaxial accelerometer sensitivity matrix collaborative correction dynamic calibration system and method

Cited By (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08304448A (en) * 1995-05-11 1996-11-22 Nikon Corp Apparatus and method for detection of dynamic amount
US6164117A (en) * 1999-01-22 2000-12-26 Caterpillar Inc. Inclination sensor and method of measuring the accuracy thereof
US11903597B2 (en) 2003-06-09 2024-02-20 OrthAlign, Inc. Surgical orientation system and method
US8974467B2 (en) 2003-06-09 2015-03-10 OrthAlign, Inc. Surgical orientation system and method
US8888786B2 (en) 2003-06-09 2014-11-18 OrthAlign, Inc. Surgical orientation device and method
US11179167B2 (en) 2003-06-09 2021-11-23 OrthAlign, Inc. Surgical orientation system and method
JP2007525676A (en) * 2004-02-27 2007-09-06 ハネウェル・インターナショナル・インコーポレーテッド Vertical die / chip on board
JP2006153754A (en) * 2004-11-30 2006-06-15 Denso Corp Multi-axial semiconductor acceleration sensor inspection method
JP2007248188A (en) * 2006-03-15 2007-09-27 Matsushita Electric Ind Co Ltd Angular velocity sensor
JP2007248187A (en) * 2006-03-15 2007-09-27 Matsushita Electric Ind Co Ltd Angular velocity sensor
US8087296B2 (en) 2006-03-15 2012-01-03 Panasonic Corporation Angular velocity sensor
JP2007248189A (en) * 2006-03-15 2007-09-27 Matsushita Electric Ind Co Ltd Manufacturing method for angular velocity sensor
WO2007105559A1 (en) * 2006-03-15 2007-09-20 Matsushita Electric Industrial Co., Ltd. Angular velocity sensor, method of manufacturing the same, and electronic device using the angular velocity sensor
US20100116020A1 (en) * 2007-05-15 2010-05-13 Sequoia It S.R.L. Wide-band accelerometer self-recognising its calibration
US8256265B2 (en) 2007-12-25 2012-09-04 Denso Corporation Apparatus and method for inspecting sensor module
US8911447B2 (en) 2008-07-24 2014-12-16 OrthAlign, Inc. Systems and methods for joint replacement
US11547451B2 (en) 2008-07-24 2023-01-10 OrthAlign, Inc. Systems and methods for joint replacement
US11684392B2 (en) 2008-07-24 2023-06-27 OrthAlign, Inc. Systems and methods for joint replacement
US8998910B2 (en) 2008-07-24 2015-04-07 OrthAlign, Inc. Systems and methods for joint replacement
US9572586B2 (en) 2008-07-24 2017-02-21 OrthAlign, Inc. Systems and methods for joint replacement
US11871965B2 (en) 2008-07-24 2024-01-16 OrthAlign, Inc. Systems and methods for joint replacement
US9192392B2 (en) 2008-07-24 2015-11-24 OrthAlign, Inc. Systems and methods for joint replacement
US10864019B2 (en) 2008-07-24 2020-12-15 OrthAlign, Inc. Systems and methods for joint replacement
US10206714B2 (en) 2008-07-24 2019-02-19 OrthAlign, Inc. Systems and methods for joint replacement
US9855075B2 (en) 2008-07-24 2018-01-02 OrthAlign, Inc. Systems and methods for joint replacement
US11179062B2 (en) 2008-09-10 2021-11-23 OrthAlign, Inc. Hip surgery systems and methods
US9931059B2 (en) 2008-09-10 2018-04-03 OrthAlign, Inc. Hip surgery systems and methods
US8974468B2 (en) 2008-09-10 2015-03-10 OrthAlign, Inc. Hip surgery systems and methods
US11540746B2 (en) 2008-09-10 2023-01-03 OrthAlign, Inc. Hip surgery systems and methods
US10321852B2 (en) 2008-09-10 2019-06-18 OrthAlign, Inc. Hip surgery systems and methods
US10869771B2 (en) 2009-07-24 2020-12-22 OrthAlign, Inc. Systems and methods for joint replacement
US9271756B2 (en) 2009-07-24 2016-03-01 OrthAlign, Inc. Systems and methods for joint replacement
US10238510B2 (en) 2009-07-24 2019-03-26 OrthAlign, Inc. Systems and methods for joint replacement
US9775725B2 (en) 2009-07-24 2017-10-03 OrthAlign, Inc. Systems and methods for joint replacement
US11633293B2 (en) 2009-07-24 2023-04-25 OrthAlign, Inc. Systems and methods for joint replacement
US20110208093A1 (en) * 2010-01-21 2011-08-25 OrthAlign, Inc. Systems and methods for joint replacement
US9339226B2 (en) * 2010-01-21 2016-05-17 OrthAlign, Inc. Systems and methods for joint replacement
US20170347922A1 (en) * 2010-05-06 2017-12-07 Sachin Bhandari Calibration Device for Inertial Sensor Based Surgical Navigation System
US11246509B2 (en) * 2010-05-06 2022-02-15 Sachin Bhandari Calibration device for inertial sensor based surgical navigation system
CN102322944A (en) * 2011-08-14 2012-01-18 浙江大学 Three-component vibration calibrating installation
US10716580B2 (en) 2012-05-18 2020-07-21 OrthAlign, Inc. Devices and methods for knee arthroplasty
US9549742B2 (en) 2012-05-18 2017-01-24 OrthAlign, Inc. Devices and methods for knee arthroplasty
JP2014025791A (en) * 2012-07-26 2014-02-06 Olympus Corp Calibration device and program
US11653981B2 (en) 2012-08-14 2023-05-23 OrthAlign, Inc. Hip replacement navigation system and method
US9649160B2 (en) 2012-08-14 2017-05-16 OrthAlign, Inc. Hip replacement navigation system and method
US10603115B2 (en) 2012-08-14 2020-03-31 OrthAlign, Inc. Hip replacement navigation system and method
US11911119B2 (en) 2012-08-14 2024-02-27 OrthAlign, Inc. Hip replacement navigation system and method
CN104793016A (en) * 2014-01-21 2015-07-22 无锡华润上华半导体有限公司 Clamp for calibrating axial directions of accelerometers as well as calibration device and method of accelerometers
EP2933608A1 (en) 2014-04-16 2015-10-21 Fuji Electric Co., Ltd. Sensitivity inspection system and sensitivity inspection method
JP2015210168A (en) * 2014-04-25 2015-11-24 株式会社日立ビルシステム Device for diagnosing elevator acceleration meter
US11020245B2 (en) 2015-02-20 2021-06-01 OrthAlign, Inc. Hip replacement navigation system and method
US10363149B2 (en) 2015-02-20 2019-07-30 OrthAlign, Inc. Hip replacement navigation system and method
CN106125160A (en) * 2016-06-14 2016-11-16 重庆蓝岸通讯技术有限公司 Automatically the system and method in gravity sensor direction is calibrated
US11547580B2 (en) 2017-03-14 2023-01-10 OrthAlign, Inc. Hip replacement navigation systems and methods
US10918499B2 (en) 2017-03-14 2021-02-16 OrthAlign, Inc. Hip replacement navigation systems and methods
US11786261B2 (en) 2017-03-14 2023-10-17 OrthAlign, Inc. Soft tissue measurement and balancing systems and methods
US10863995B2 (en) 2017-03-14 2020-12-15 OrthAlign, Inc. Soft tissue measurement and balancing systems and methods
CN108152535A (en) * 2017-11-14 2018-06-12 歌尔科技有限公司 A kind of accelerometer calibration method and device
CN114878859A (en) * 2022-02-18 2022-08-09 太原理工大学 Triaxial accelerometer sensitivity matrix collaborative correction dynamic calibration system and method
CN114878859B (en) * 2022-02-18 2023-03-24 太原理工大学 Triaxial accelerometer sensitivity matrix collaborative correction dynamic calibration system and method

Similar Documents

Publication Publication Date Title
JPH08240611A (en) Calibrating device for three-axis accelerometer
TWI225154B (en) Acceleration measuring apparatus with calibration function
US7644602B2 (en) Method of measuring transverse sensitivity of sensor for detecting acceleration and acceleration measuring method
US7474591B2 (en) Six-component seismic data acquisition system
JP4751085B2 (en) Sensor assembly method
US20080202199A1 (en) Positioning System For Single Or Multi-Axis Sensitive Instrument Calibration And Calibration System For Use Therewith
JP2004502951A (en) Method and apparatus for correcting coordinate measurement errors caused by vibration of a coordinate measuring machine (CMM)
EP0342230A4 (en) Multi-axis angular rate sensor having a single dither axis
JP2004264053A (en) Acceleration sensor and tilt detection method
JP3111017B2 (en) 3-axis accelerometer calibration jig
EP0405152B1 (en) Method for adjusting a spinning piezoelectric beam of a dual-axis angular rate sensor
CN110631605B (en) Gyro array calibration method and system
US20100268508A1 (en) System and method for measuring tilt using lowest degrees of freedom of accelerometer
Schiavi et al. On the trustworthiness of a digital 3D MEMS gyroscope responsiveness to dynamic accelerations for ADAS applications
JPH08304448A (en) Apparatus and method for detection of dynamic amount
WO1996006328A1 (en) Three-dimensional measurement unit and position indicator
CN114152271A (en) Multi-axis integrated micro-electro-mechanical system inertial device testing device, system and method
CN112902954A (en) Tower frame shaking sensor and tower frame shaking angle measuring method
KR102143462B1 (en) Ahrs sensor and apparatus and method for compensating bias and scale error thereof
JP2001343396A (en) Sensor diagnostic device
JPH11337328A (en) Road surface measuring device
CN113267821B (en) Gravity gradient measurement method and system based on angular motion
US20240003936A1 (en) Physical Quantity Sensor And Inertial Measurement Unit
JPH06160166A (en) Vibration meter
JP7452383B2 (en) Manufacturing method of multi-axis inertial force sensor