JPH08238326A - Primary side core of transformer for contactless energy transmissoin system - Google Patents

Primary side core of transformer for contactless energy transmissoin system

Info

Publication number
JPH08238326A
JPH08238326A JP7070904A JP7090495A JPH08238326A JP H08238326 A JPH08238326 A JP H08238326A JP 7070904 A JP7070904 A JP 7070904A JP 7090495 A JP7090495 A JP 7090495A JP H08238326 A JPH08238326 A JP H08238326A
Authority
JP
Japan
Prior art keywords
core
primary side
transformer
side core
primary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7070904A
Other languages
Japanese (ja)
Inventor
Masaru Saito
賢 齋藤
Katsuya Hirachi
克也 平地
Yasushi Maejima
靖 前島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAAJIOPEESHINGU RES LAB KK
KAJIO PAGING RES LAB KK
Tabuchi Electric Co Ltd
Original Assignee
KAAJIOPEESHINGU RES LAB KK
KAJIO PAGING RES LAB KK
Tabuchi Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAAJIOPEESHINGU RES LAB KK, KAJIO PAGING RES LAB KK, Tabuchi Electric Co Ltd filed Critical KAAJIOPEESHINGU RES LAB KK
Priority to JP7070904A priority Critical patent/JPH08238326A/en
Publication of JPH08238326A publication Critical patent/JPH08238326A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrotherapy Devices (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

PURPOSE: To make it possible to suppress raising in the temp. of a transformer to be used for percutaneous charging system for a pace maker and to improve the efficiency of a charging system by preventing the overcurrent of a primary side core of this transformer. CONSTITUTION: The surface facing the secondary core of a circumferential outer leg 14 of the primary side core 16 is provided with an expanded width part 15 expanded in an inner circumferential direction. This expanded width part 15 is radially provided with many slits 21 from its center. The eddy current of the expanded width part 15 is prevented by these slits 21, by which the efficiency of the system is improved and heat generation is suppressed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、体内埋め込み形心臓
ペースメーカーなど、トランスの1次側と2次側の間に
大きな間隔を設けて電力を伝送する充電器などに使用す
るトランスの形状の改善、特にそのトランスの1次側コ
アの形状に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in the shape of a transformer used in a charger such as an implantable cardiac pacemaker which transmits electric power with a large gap between the primary side and the secondary side of the transformer. , Especially the shape of the primary core of the transformer.

【0002】[0002]

【従来の技術】図3は心臓ペースメーカー用経皮充電シ
ステムの概要を示す。同図において、鎖線で囲んだ部分
はペースメーカー(A)を示し、体内に埋め込まれる。
その中にはパルスを発生するパルスジェネレータ1やそ
の電源である2次電池2などが収納されている。
2. Description of the Related Art FIG. 3 shows an outline of a transcutaneous charging system for a cardiac pacemaker. In the same figure, the part surrounded by the chain line shows the pacemaker (A) and is embedded in the body.
A pulse generator 1 that generates pulses, a secondary battery 2 that is a power source thereof, and the like are housed therein.

【0003】上記パルスジェネレータ1で作られたパル
ス信号は電極リード3を介して心臓4に伝えられ、この
心臓4を規則正しく拍動させる。
The pulse signal generated by the pulse generator 1 is transmitted to the heart 4 through the electrode lead 3 and causes the heart 4 to pulsate regularly.

【0004】また、体外には高周波インバータ5を設置
して、トランスの1次側コイル6を励磁し、体内のペー
スメーカー(A)の内部に収納されたトランスの2次側
コイル7に電力を伝送する。
Further, a high frequency inverter 5 is installed outside the body to excite the primary coil 6 of the transformer, and power is transmitted to the secondary coil 7 of the transformer housed inside the pacemaker (A) in the body. To do.

【0005】2次側コイル7に発生した電圧は整流回路
8で直流に交換されて電池2を充電する。1次側コイル
6と2次側コイル7の間には皮膚9や脂肪などが存在す
る。従って、1次側コイル6と2次側コイル7は10m
mまたは、それ以上の大きな間隔を介してエネルギーを
伝送しなければならない。
The voltage generated in the secondary coil 7 is exchanged for direct current by the rectifier circuit 8 to charge the battery 2. Between the primary side coil 6 and the secondary side coil 7, there is skin 9, fat or the like. Therefore, the primary coil 6 and the secondary coil 7 are 10 m
Energy must be transmitted over large intervals of m or more.

【0006】上記のように、1次側コイルと2次側コイ
ルの間に大きな間隔が存在する場合は、極力コイルを大
きくし、1次側コイルと2次側コイルの対向する面積を
大きくしなければ、1次側と2次側の結合率を大きくす
ることはできない。
As described above, when there is a large gap between the primary side coil and the secondary side coil, the coil is made as large as possible to increase the area where the primary side coil and the secondary side coil face each other. If not, the coupling ratio between the primary side and the secondary side cannot be increased.

【0007】しかし、2次側コイルはペースメーカー内
部に収納されるものであるので、極力体積を小さくする
必要があり、図4(A)、(B)に示すように、2次側
コア11は、円盤状の薄いアモルファスからなり、2次
側コイル7は0.1mm程度の細い線材を渦巻き状に巻
回して、大変薄い形状にしている。
However, since the secondary coil is housed inside the pacemaker, it is necessary to make the volume as small as possible, and as shown in FIGS. 4A and 4B, the secondary core 11 is The secondary coil 7 is made of a disk-shaped thin amorphous material, and is made into a very thin shape by winding a thin wire rod of about 0.1 mm in a spiral shape.

【0008】これに対し、従来の1次側コイル6は、図
5に示すように、円盤状部分12の1面側に、中央中足
13と周囲の外足14を設け、外足14の2次側コアに
対向する面を内側に向かって拡張した円盤状の拡幅部分
15にして1次側コア16を形成し、この1次側コア1
6の外足14と拡幅部分15で包み込まれた空間に1次
側コイル6を配置した構造になっている。
On the other hand, in the conventional primary side coil 6, as shown in FIG. 5, the central middle foot 13 and the surrounding outer foot 14 are provided on one surface side of the disk-shaped portion 12, and the outer foot 14 is A primary side core 16 is formed by forming a disk-shaped widened portion 15 in which the surface facing the secondary side core is expanded inward to form the primary side core 1.
6 has a structure in which the primary coil 6 is arranged in a space surrounded by the outer legs 14 of 6 and the widened portion 15.

【0009】上記1次側コイル6と2次側コイル7は、
図5に示すように、中心軸心を一致させて対向状に配置
される。このように配置して1次側コイル6に電流を流
すことにより1次側コイル6を励磁し、2次側コイル7
に磁束を伝える。
The primary coil 6 and the secondary coil 7 are
As shown in FIG. 5, they are arranged so as to face each other with their central axes aligned. By arranging in this way, the primary coil 6 is excited by passing a current through the primary coil 6, and the secondary coil 7 is excited.
Transfer magnetic flux to.

【0010】図6に磁束の方向を示す。1次側コイル6
におけるコア16の中足13部分に発生した磁束は2次
側コイル7におけるコア11の中心付近に伝わり、2次
側コア11の周辺部分から1次側コア16の外足14の
拡張された部分に進む。そして、1次側コア16の外足
14と底部円盤状部分12を経て中足13に戻る。
FIG. 6 shows the directions of magnetic flux. Primary coil 6
The magnetic flux generated in the middle leg 13 of the core 16 is transmitted to the vicinity of the center of the core 11 in the secondary coil 7, and is expanded from the peripheral portion of the secondary core 11 to the outer leg 14 of the primary core 16. Proceed to. Then, the primary side core 16 returns to the middle leg 13 via the outer leg 14 and the bottom disk-shaped portion 12.

【0011】[0011]

【発明が解決しようとする課題】上記のように、従来の
トランスでも体内に配置された2次側コイル7に体外の
1次側コイル6から磁束を伝えることができ、2次側コ
イル7に電力を伝送することができる。
As described above, even in the conventional transformer, the magnetic flux can be transmitted from the primary side coil 6 outside the body to the secondary side coil 7 disposed inside the body, and the secondary side coil 7 can be transmitted to the secondary side coil 7. Power can be transmitted.

【0012】しかし、1次側コイル6のコア16が外足
14に拡幅部分15を設けた構造では、図7に示すよう
に拡幅部分15に矢印で示す方向の大きな渦電流が流れ
る。この渦電流による発熱のため、拡幅部分15の温度
上昇を招き、時には人体に低温火傷を与えることがあっ
た。
However, in the structure in which the core 16 of the primary coil 6 is provided with the widened portion 15 on the outer leg 14, a large eddy current flows in the widened portion 15 in the direction shown by the arrow as shown in FIG. The heat generated by this eddy current causes a temperature rise in the widened portion 15, and sometimes causes low-temperature burns to the human body.

【0013】また、渦電流による電力損失のため、経皮
充電器の効率の低下を招いていた。
In addition, the power loss due to the eddy current causes a decrease in efficiency of the transdermal charger.

【0014】そこで、この発明の課題は、1次側コアの
拡幅部分に渦電流が流れるのを防ぎ、温度上昇の発生が
なく、1次側コイルと2次側コイルの間の結合率を大き
くすることができる非接触エネルギー伝送システム用ト
ランスの1次側コアを提供することにある。
Therefore, an object of the present invention is to prevent the eddy current from flowing in the widened portion of the primary side core, to prevent the temperature rise and to increase the coupling rate between the primary side coil and the secondary side coil. It is to provide a primary side core of a transformer for a non-contact energy transmission system that can be used.

【0015】[0015]

【課題を解決するための手段】上記のような課題を解決
するため、この発明は、1次側コアの周囲外足部分の2
次側コアに対向する面を内側や外側に拡張した円盤状の
拡幅部分に形成し、この拡幅部分に中心から放射状の配
置でスリットを設けた構成を採用したものである。
SUMMARY OF THE INVENTION In order to solve the above problems, the present invention provides a secondary outer peripheral foot portion of a primary core.
The surface facing the next core is formed in a disk-shaped widening portion that is expanded inward or outward, and slits are provided in the widening portion in a radial arrangement from the center.

【0016】[0016]

【作用】1次側コアの拡幅部分に中心から放射状にスリ
ットを設けたので、拡幅部分に生じようとする渦電流の
経路がスリットによって絶たれ、渦電流を大幅に減少さ
せることができ、拡幅部分の温度上昇を抑えることがで
きる。また、スリットは磁束の流れを妨げることがな
く、経皮充電器の効率を向上させることができる。
Since slits are provided radially from the center in the widened portion of the primary side core, the slits cut off the path of the eddy current that tends to occur in the widened portion, and the eddy current can be greatly reduced. It is possible to suppress the temperature rise of the part. Further, the slit does not obstruct the flow of the magnetic flux, and the efficiency of the percutaneous charger can be improved.

【0017】[0017]

【実施例】以下、この発明の実施例を添付図面の図1と
図2に基づいて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of the present invention will be described below with reference to FIGS. 1 and 2 of the accompanying drawings.

【0018】図1に示す第1の実施例において、1次側
コア16は、フエライトからなる円盤状部分12の一面
側に、中央中足13と周囲に外足14を設け、外足14
の2次側コアと対向する面に内側に向かって拡張した円
盤状の拡幅部分15を設け、この拡幅部分15に中心か
ら放射状に多数のスリット21を設けている。この1次
側コア16の中央中足13に1次側コイル6を巻装して
いる。
In the first embodiment shown in FIG. 1, the primary side core 16 has a center midfoot 13 and an outer foot 14 around the central foot 13 on one side of a disk-shaped portion 12 made of ferrite.
A disk-shaped widening portion 15 that is expanded inward is provided on the surface facing the secondary side core, and a large number of slits 21 are provided in the widening portion 15 radially from the center. The primary side coil 6 is wound around the center midfoot 13 of the primary side core 16.

【0019】図1(B)に示す矢印は、拡幅部分15の
中を流れる磁束の向きを示し、スリット21を設けるこ
とにより渦電流の経路が絶たれ、磁束は拡幅部分15の
中心から放射状に流れる。従って、このように拡幅部分
15にスリット21を入れても磁束の流れは防げられる
ことはなく、磁石によると2次側コアへのエネルギーの
伝達はスムーズに行なわれる。このように、スリット2
1を入れると磁束の流れを妨げることはなく、渦電流を
大幅に減少させることができる。
The arrow shown in FIG. 1B indicates the direction of the magnetic flux flowing in the widened portion 15. The slit 21 interrupts the path of the eddy current, and the magnetic flux is radiated from the center of the widened portion 15. Flowing. Therefore, even if the slit 21 is formed in the widened portion 15 as described above, the flow of the magnetic flux is not prevented, and the energy can be smoothly transferred to the secondary side core by the magnet. In this way, slit 2
When 1 is entered, the flow of magnetic flux is not hindered and the eddy current can be greatly reduced.

【0020】図2(A)、(B)は第2の実施例を示
し、第1の実施例では拡幅部分15を内側に向って拡張
したのに対し、この第2の実施例では拡幅部分15を外
足14から外側に向って拡張し、この拡幅部分15に中
心から外部に向って放射状に多数のスリット21を設け
ている。
2A and 2B show a second embodiment, in which the widened portion 15 is expanded inward in the first embodiment, whereas the widened portion 15 is expanded in this second embodiment. 15 is expanded outward from the outer foot 14, and a large number of slits 21 are radially provided in the widened portion 15 from the center to the outside.

【0021】この第2の実施例においても、第1の実施
例と同様に磁束の流れを妨げることなく渦電流を大幅に
抑制することができ、効率の向上及び発熱の抑制を実現
することができる。
Also in the second embodiment, as in the first embodiment, the eddy current can be greatly suppressed without obstructing the flow of the magnetic flux, and the improvement of efficiency and the suppression of heat generation can be realized. it can.

【0022】次に、図2に示した第2の実施例の形状に
おけるスリットの効果の実験結果を表に示す。
Next, the experimental results of the effect of the slit in the shape of the second embodiment shown in FIG. 2 are shown in the table.

【0023】図2において、円盤状部分12の直径
(D)を36mmとし、拡幅部分15の寸法(a)が7
mmと17mmの2種類の場合においてコアの鉄損を測
定した。
In FIG. 2, the diameter (D) of the disk-shaped portion 12 is 36 mm, and the dimension (a) of the widened portion 15 is 7 mm.
The core iron loss was measured in two cases of mm and 17 mm.

【0024】拡幅部分15の寸法(a)が7mmの場合
において、スリットなしの時100mWの鉄損となるよ
うにトランスを励磁した場合、スリットを入れると鉄損
は84mWに減少した。
When the size (a) of the widened portion 15 was 7 mm and the transformer was excited so that the iron loss was 100 mW without the slit, the iron loss was reduced to 84 mW when the slit was inserted.

【0025】また、拡幅部分15の寸法(a)が17m
mの場合においてスリットなしの時100mWの鉄損と
なるようにトランスを励磁した場合、スリットを入れる
と鉄損は76mWに減少した。
The dimension (a) of the widened portion 15 is 17 m.
In the case of m, when the transformer was excited so that the core loss was 100 mW without the slit, the core loss was reduced to 76 mW when the slit was inserted.

【0026】[0026]

【表1】 [Table 1]

【0027】このように、拡幅部分にスリットを設ける
と、20%前後の損失の低減が実現できる。
As described above, when the slit is provided in the widened portion, the loss can be reduced by about 20%.

【0028】なお、この発明は、上記のようなペースメ
ーカ用経皮充電システムに利用できるだけでなく、人工
心臓などの、体外から体内に磁束を介して電力を伝送す
るシステムの全般について適用することができる。さら
に、例えば、携帯用機器の2次電池の充電などの非接触
状態で電力を伝送するシステムの全般について利用でき
る。
The present invention can be applied not only to the above-mentioned percutaneous charging system for pacemakers, but also to general systems such as artificial hearts that transmit electric power from outside the body to the body via magnetic flux. it can. Furthermore, for example, it can be used for all systems that transmit power in a non-contact state such as charging of a secondary battery of a portable device.

【0029】[0029]

【発明の効果】以上のように、この発明によると、1次
側コアから2次側コアの磁束の流れを阻害することな
く、効果的に渦電流を防止することができ、ペースメー
カーなどに用いられる非接触エネルギー伝送システムの
効率の向上および発熱の抑制を実現することができる。
As described above, according to the present invention, it is possible to effectively prevent eddy currents without obstructing the flow of magnetic flux from the primary side core to the secondary side core. It is possible to improve the efficiency and suppress heat generation of the contactless energy transmission system.

【図面の簡単な説明】[Brief description of drawings]

【図1】(A)はこの発明に係る1次側コアの第1の実
施例を示す縦断正面図、(B)は同上の底面図。
1A is a vertical sectional front view showing a first embodiment of a primary core according to the present invention, and FIG. 1B is a bottom view of the same.

【図2】(A)は1次側コアの第2の例を示す縦断正面
図、(B)は同上の底面図。
FIG. 2A is a vertical sectional front view showing a second example of the primary core, and FIG. 2B is a bottom view of the same.

【図3】心臓ペースメーカ用経皮的エネルギー伝達シス
テムの概要を示す回路図。
FIG. 3 is a circuit diagram showing an outline of a transcutaneous energy transfer system for a cardiac pacemaker.

【図4】(A)は従来の2次コイルを示す側面図、
(B)は同上の底面図。
FIG. 4A is a side view showing a conventional secondary coil,
(B) is a bottom view of the same.

【図5】従来の1次側コイルと2次側コイルを示す縦断
側面図。
FIG. 5 is a vertical sectional side view showing a conventional primary coil and secondary coil.

【図6】1次側コアと2次側コイルの磁束の流れを示す
縦断側面図。
FIG. 6 is a vertical cross-sectional side view showing the flow of magnetic flux of the primary side core and the secondary side coil.

【図7】従来の1次側コアを示し、(A)は縦断側面
図、(B)は同上の渦電流を示す底面図。
FIG. 7 shows a conventional primary core, (A) is a vertical side view, and (B) is a bottom view showing the eddy current of the same.

【符号の説明】[Explanation of symbols]

6 1次側コイル 7 2次側コイル 12 円盤状部分 13 中央中足 14 外足 15 拡幅部分 16 1次側コア 21 スリット 6 Primary coil 7 Secondary coil 12 Disc-shaped part 13 Center middle foot 14 Outer foot 15 Widened part 16 Primary core 21 Slit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 平地 克也 神奈川県足柄上郡中井町井ノ口1500番地 株式会社カージオペーシングリサーチ・ラ ボラトリー内 (72)発明者 前島 靖 兵庫県三田市テクノパーク5番地4 田淵 電機株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Katsuya Hirachi 1500 Inoguchi, Nakai-cho, Ashigarashami-gun, Kanagawa Inside the Cardio Pacing Research Laboratory Co., Ltd. (72) Yasushi Maejima 5 Techno Park, Mita City, Hyogo Prefecture 4 Tabuchi Denki Within the corporation

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 1次側コイルを中央中足に巻装した1次
側コアと、2次側コイルを平板状に巻装した2次側コア
とを非接触に配置し、1次側コイルに誘起された磁束を
1次側コアの中央中足から周囲外足部分を介して2次側
コアに伝送して2次側コイルにエネルギーを誘起させる
非接触エネルギー伝送システム用トランスの1次側コア
において、該1次側コアの周囲外足部分の2次側コアに
対向する面を内側や外側に拡張した円盤状の拡幅部分に
形成し、この拡幅部分に中心から放射状の配置でスリッ
トを設けたことを特徴とする非接触エネルギー伝送シス
テム用トランスの1次側コア。
1. A primary side coil in which a primary side coil is wound around a center midfoot and a secondary side core in which a secondary side coil is wound in a flat plate shape are arranged in a non-contact manner. The primary side of the transformer for the non-contact energy transfer system that transmits the magnetic flux induced in the secondary side core to the secondary side core from the center midfoot of the primary side core through the surrounding outer foot part. In the core, a surface of the outer peripheral portion of the primary side core facing the secondary side core is formed in a disk-shaped widening portion that is expanded inward or outward, and slits are radially arranged from the center in the widening portion. The primary core of the transformer for the non-contact energy transmission system, which is characterized by being provided.
JP7070904A 1995-03-03 1995-03-03 Primary side core of transformer for contactless energy transmissoin system Pending JPH08238326A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7070904A JPH08238326A (en) 1995-03-03 1995-03-03 Primary side core of transformer for contactless energy transmissoin system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7070904A JPH08238326A (en) 1995-03-03 1995-03-03 Primary side core of transformer for contactless energy transmissoin system

Publications (1)

Publication Number Publication Date
JPH08238326A true JPH08238326A (en) 1996-09-17

Family

ID=13444987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7070904A Pending JPH08238326A (en) 1995-03-03 1995-03-03 Primary side core of transformer for contactless energy transmissoin system

Country Status (1)

Country Link
JP (1) JPH08238326A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006006947A (en) * 2004-06-24 2006-01-12 Ethicon Endo Surgery Inc Primary coil for transdermal energy transmission accompanied by ferrite core of high aspect ratio
JP2009170627A (en) * 2008-01-16 2009-07-30 Ricoh Elemex Corp Noncontact receiving device
JP2009290764A (en) * 2008-05-30 2009-12-10 Nippon Telegr & Teleph Corp <Ntt> Portable terminal and charging system
JP2010530613A (en) * 2007-05-10 2010-09-09 オークランド ユニサービシズ リミテッド Electric vehicle using multiple power sources
JP2011259484A (en) * 2011-08-05 2011-12-22 Nippon Telegr & Teleph Corp <Ntt> Mobile phone
JP2012084894A (en) * 2006-03-24 2012-04-26 Toshiba Corp Electronic apparatus and non-contact charger
JP2012164728A (en) * 2011-02-04 2012-08-30 Hitachi Metals Ltd Coil component and power reception device and power supply device using the same
JP2012169633A (en) * 2006-01-12 2012-09-06 Toshiba Corp Electronic apparatus using power reception device and non contact charger
CN102782975A (en) * 2009-09-09 2012-11-14 皇家飞利浦电子股份有限公司 An electronic device as well as a base part and an electronic element suitable for use in such an electronic device
WO2013061618A1 (en) * 2011-10-28 2013-05-02 パナソニック株式会社 Contactless power transmission device and power supply device and power receiving device used therein
WO2013061615A1 (en) * 2011-10-28 2013-05-02 パナソニック株式会社 Contactless power transmission device, and power supply device and power receiving device used therein
JP2016015453A (en) * 2014-07-03 2016-01-28 富士通株式会社 Planar transformer, power supply unit, and method of manufacturing planar transformer
US9466419B2 (en) 2007-05-10 2016-10-11 Auckland Uniservices Limited Apparatus and system for charging a battery
KR101690500B1 (en) * 2015-07-20 2016-12-28 주식회사 아모센스 wireless power transmission module
JP2017004994A (en) * 2015-06-04 2017-01-05 株式会社Ihi Coil device
JP2017535069A (en) * 2014-09-25 2017-11-24 サフラン エレクトリカル アンド パワー Magnetic core of rotating transformer

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006006947A (en) * 2004-06-24 2006-01-12 Ethicon Endo Surgery Inc Primary coil for transdermal energy transmission accompanied by ferrite core of high aspect ratio
JP2012169633A (en) * 2006-01-12 2012-09-06 Toshiba Corp Electronic apparatus using power reception device and non contact charger
JP2012084894A (en) * 2006-03-24 2012-04-26 Toshiba Corp Electronic apparatus and non-contact charger
US8749334B2 (en) 2007-05-10 2014-06-10 Auckland Uniservices Ltd. Multi power sourced electric vehicle
JP2010530613A (en) * 2007-05-10 2010-09-09 オークランド ユニサービシズ リミテッド Electric vehicle using multiple power sources
US9466419B2 (en) 2007-05-10 2016-10-11 Auckland Uniservices Limited Apparatus and system for charging a battery
JP2009170627A (en) * 2008-01-16 2009-07-30 Ricoh Elemex Corp Noncontact receiving device
US9767955B2 (en) 2008-05-09 2017-09-19 Auckland Uniservices Limited Multi power sourced electric vehicle
JP2009290764A (en) * 2008-05-30 2009-12-10 Nippon Telegr & Teleph Corp <Ntt> Portable terminal and charging system
CN102782975A (en) * 2009-09-09 2012-11-14 皇家飞利浦电子股份有限公司 An electronic device as well as a base part and an electronic element suitable for use in such an electronic device
JP2013504869A (en) * 2009-09-09 2013-02-07 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Electronic device and base part and electronic element suitable for use of such electronic device
JP2012164728A (en) * 2011-02-04 2012-08-30 Hitachi Metals Ltd Coil component and power reception device and power supply device using the same
JP2011259484A (en) * 2011-08-05 2011-12-22 Nippon Telegr & Teleph Corp <Ntt> Mobile phone
WO2013061618A1 (en) * 2011-10-28 2013-05-02 パナソニック株式会社 Contactless power transmission device and power supply device and power receiving device used therein
WO2013061615A1 (en) * 2011-10-28 2013-05-02 パナソニック株式会社 Contactless power transmission device, and power supply device and power receiving device used therein
JP2016015453A (en) * 2014-07-03 2016-01-28 富士通株式会社 Planar transformer, power supply unit, and method of manufacturing planar transformer
JP2017535069A (en) * 2014-09-25 2017-11-24 サフラン エレクトリカル アンド パワー Magnetic core of rotating transformer
JP2020184647A (en) * 2014-09-25 2020-11-12 サフラン エレクトリカル アンド パワー Magnetic core for rotary transformer
JP2017004994A (en) * 2015-06-04 2017-01-05 株式会社Ihi Coil device
US10600561B2 (en) 2015-06-04 2020-03-24 Ihi Corporation Coil device
KR20170010736A (en) * 2015-07-20 2017-02-01 주식회사 아모센스 wireless power transmission module for car
JP2018530288A (en) * 2015-07-20 2018-10-11 アモセンス・カンパニー・リミテッドAmosense Co., Ltd. Wireless power transmission module
US10447065B2 (en) 2015-07-20 2019-10-15 Amosense Co., Ltd. Wireless power transmission module
WO2017014430A1 (en) * 2015-07-20 2017-01-26 주식회사 아모센스 Wireless power transmission module
KR101690500B1 (en) * 2015-07-20 2016-12-28 주식회사 아모센스 wireless power transmission module

Similar Documents

Publication Publication Date Title
JPH08238326A (en) Primary side core of transformer for contactless energy transmissoin system
US6663556B2 (en) Stimulators and stimulating coils for magnetically stimulating neuro-muscular tissue
US3867950A (en) Fixed rate rechargeable cardiac pacemaker
US9636508B2 (en) Inductive charger with magnetic shielding
US8862232B2 (en) Transcutaneous energy transfer module with integrated conversion circuitry
EP1609502B1 (en) Primary coil with ferrite core for transcutaneous energy transfer
US6324431B1 (en) Transcutaneous energy transfer device with magnetic field protected components in secondary coil
US11207516B2 (en) Distributed transformer
CN109996585B (en) Implantable medical device with magnetically permeable housing and induction coil disposed around the housing
KR20010033769A (en) Magnetic nerve stimulator for exciting peripheral nerves
US20140114373A1 (en) Intermediate Coupler to Facilitate Charging in an Implantable Medical Device System
CN104941069B (en) A kind of high intensity uniform induction field generator based on spiral of Archimedes circle
EA007347B1 (en) Magnetic pulse stimulation apparatus and magnetic field source thereof
US11065458B2 (en) Electronic pacemaker
WO2005000391A1 (en) Inductive link for a medical implant
JPH0878257A (en) Primary core of non-contact energy transmission system transformer
CN107929943B (en) Wireless charging cardiac pacemaker
Ueno et al. Magnetic nerve stimulation without interlinkage between nerve and magnetic flux
Newaskar et al. Wireless charging of AIMDs-compensation circuits
CN206283325U (en) Rechargeable type implantable medical device
Patil et al. EFFECT OF NUMBER OF TURNS AND MEDIUM BETWEEN COILS ON THE WIRELESS POWER TRANSFER EFFICIENCY OF AIMD’S
SU602195A1 (en) Implantable cardiostimulator receiver
Fraim et al. Performance of a tuned ferrite core transcutaneous transformer
SU776487A1 (en) Electric generator
Watada et al. The re-design at the transformer portion of transcutaneous energy transmission system for all implantable devices