JPH08233601A - Magnetic measuring device, magnetic measuring method and underground object detecting method - Google Patents

Magnetic measuring device, magnetic measuring method and underground object detecting method

Info

Publication number
JPH08233601A
JPH08233601A JP4004395A JP4004395A JPH08233601A JP H08233601 A JPH08233601 A JP H08233601A JP 4004395 A JP4004395 A JP 4004395A JP 4004395 A JP4004395 A JP 4004395A JP H08233601 A JPH08233601 A JP H08233601A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic flux
magnetic field
coil
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4004395A
Other languages
Japanese (ja)
Other versions
JP2644208B2 (en
Inventor
Koichi Kimura
宏一 木村
Takeetsu Shibano
健悦 柴野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kidoh Construction Co Ltd
Original Assignee
Kidoh Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kidoh Construction Co Ltd filed Critical Kidoh Construction Co Ltd
Priority to JP4004395A priority Critical patent/JP2644208B2/en
Publication of JPH08233601A publication Critical patent/JPH08233601A/en
Application granted granted Critical
Publication of JP2644208B2 publication Critical patent/JP2644208B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measuring Magnetic Variables (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

PURPOSE: To provide a magnetic measuring device simple in structure, easy to manufacture and moreover obtaining magnetic field information correctly. CONSTITUTION: A magnetic measuring device is provided with three pairs of detecting coils 20x, 20y, 20z each pair of which has a pair of coils 22 coaxially arranged with a space and electrically connected to each other. The center axes of three pairs of detecting coils 20x... are arranged in mutually orthogonal triaxial directions and arranged orthogonally to one another among pairs of coils 22. In addition, the coils 22... of the adjacently arranged different detecting coils 20x... are arranged being spaced from one another.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、磁気測定装置、磁気測
定方法および地下物体検出方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic measuring device, a magnetic measuring method and an underground object detecting method.

【0002】[0002]

【従来の技術】地下にトンネルを掘ったり下水管やガス
管などを埋設施工する方法として推進工法が知られてい
る。推進工法では、地盤に掘削された立坑の側壁から掘
進機で水平方向にトンネルを掘削し、掘進機をトンネル
内に推進させながら掘進機の後方に下水管などの埋設管
を連結して掘進機とともに推進させて埋設施工する。こ
の推進工法では、地盤を開削しないので、地表面の交通
や利用を阻害せずに地下に埋設管を施工することがで
き、施工の作業能率も優れているという利点がある。
2. Description of the Related Art A propulsion method is known as a method of digging a tunnel underground or burying a sewer pipe or a gas pipe. In the propulsion method, a tunnel is excavated horizontally from the side wall of a shaft excavated on the ground with a tunnel machine. And buried construction. In this propulsion method, since the ground is not cut, the buried pipe can be constructed underground without hindering traffic and use on the ground surface, and there is an advantage that the work efficiency of the construction is excellent.

【0003】推進工法では、地下にある掘進機の位置を
正確に知る必要がある。そのため、掘進機に磁界発生器
を備え、この磁界発生器から発生する磁界を、地上に配
置された磁気測定装置で測定して、磁界発生器の位置す
なわち掘進機の位置を検出する方法が提案されている。
磁気測定方法として、磁気検出用のコイルを直線的に走
査し、磁気の作用でコイルに発生する起電力を検出する
方法がある。起電力の最大地点から走査直線と直交する
延長方向に磁界の中心すなわち磁界発生器が存在する。
このようなコイルの直線走査を複数個所で行い、それぞ
れの測定点から走査直線と直交する方向に延長した延長
線の交点が、磁界発生機すなわち掘進機の位置であると
判る。
In the propulsion method, it is necessary to accurately know the position of an excavator underground. For this reason, a method has been proposed in which the excavator is equipped with a magnetic field generator, and the magnetic field generated from the magnetic field generator is measured by a magnetic measuring device arranged on the ground to detect the position of the magnetic field generator, that is, the position of the excavator. Have been.
As a magnetic measurement method, there is a method in which a coil for magnetic detection is linearly scanned to detect an electromotive force generated in the coil by the action of magnetism. The center of the magnetic field, that is, the magnetic field generator exists in the extension direction perpendicular to the scanning line from the maximum point of the electromotive force.
It is understood that such a linear scanning of the coil is performed at a plurality of points, and the intersection of the extension lines extending from the respective measurement points in the direction orthogonal to the scanning line is the position of the magnetic field generator, that is, the excavator.

【0004】この方法では、測定作業に手間がかかり測
定精度も低いという問題がある。磁気測定装置として、
図10に示すように、磁気検出用のコイルCx、Cy、
Czを互いに直交する3軸方向に向けて各コイルCx…
の中心を一致させて配置した3要素コイルが考えられ
る。この3要素コイルでは、中心点C0 における磁束ベ
クトルVにより3軸方向のそれぞれのコイルに生じる起
電力すなわち検出信号に違いが生じる。各方向の検出信
号を比べれば、その地点における磁束の方向が判る。磁
束の方向を辿っていけば磁界発生器の位置が判る。前記
方法のようなコイルの直線走査を繰り返す必要がない。
[0004] In this method, there is a problem that the measurement operation is troublesome and the measurement accuracy is low. As a magnetic measuring device,
As shown in FIG. 10, coils for magnetic detection Cx, Cy,
Each coil Cx, with Cz directed in three axial directions orthogonal to each other.
Can be considered a three-element coil in which the centers of the three elements are aligned. In the 3 element coils, a difference occurs in the electromotive force i.e. the detection signals generated in each of the coils in the three axial directions by the magnetic flux vector V at the center point C 0. By comparing the detection signals in each direction, the direction of the magnetic flux at that point can be determined. The position of the magnetic field generator can be determined by following the direction of the magnetic flux. There is no need to repeat the linear scanning of the coil as in the above method.

【0005】[0005]

【発明が解決しようとする課題】前記のような3要素コ
イルでは、3軸方向のコイルの磁気特性が完全に一致し
ていないと、正確な磁束の方向は判らない。3軸方向の
コイルの磁気特性を一致させるには、全てのコイルが、
同じ形状および構造でしかも互いに全く同じ位置関係で
配置されていなければならない。
In the three-element coil described above, the exact direction of the magnetic flux cannot be known unless the magnetic characteristics of the coils in the three axial directions are completely matched. To match the magnetic characteristics of the coils in the three axis directions, all coils must be
They must be of the same shape and structure and in exactly the same positional relationship to each other.

【0006】しかし、図10をみれば判るように、3軸
方向のコイルCx…を互いの中心C 0 を一致させて配置
すると、少なくとも一部にコイルCx…同士が重なり合
う部分ができる。この重なり部分で内側になるコイルと
外側になるコイルでは径が違ってしまい、磁気特性も異
なってしまう。内外で重なり合うコイルCx…同士が磁
気的に干渉を起こして磁気特性が変わってしまう。
However, as can be seen from FIG. 10, the three axes
Coil in the direction Cx ... 0Match and place
Then, at least a part of the coils Cx ...
Part can be formed. With the coil that is inside at this overlap
The outer coil will have different diameters and different magnetic characteristics.
turn into. The coils Cx that overlap inside and outside are magnetic
The magnetic characteristics are changed due to the aerial interference.

【0007】また、3軸方向のコイルCx…が互いに重
なり合った状態で各コイルCx…を組み立てたり支持し
たりしておくには、装置構造がきわめて複雑になる。各
コイルCx…の支持構造に違いがあるとコイルCx…の
磁気特性も変わる可能性がある。その結果、前記のよう
な3要素コイルは、性能的に満足できるものが得られ難
く、製造コストも高くつく。
In order to assemble and support the coils Cx ... In a state where the coils Cx ... In the three-axis directions are overlapped with each other, the structure of the apparatus becomes extremely complicated. If there is a difference in the support structure of the coils Cx ..., The magnetic characteristics of the coils Cx. As a result, it is difficult to obtain a three-element coil having satisfactory performance, and the manufacturing cost is high.

【0008】本発明の目的は、前記3要素コイルをさら
に改良し、構造が簡単で製造し易く、しかも、磁界の情
報が正確に得られる磁気測定装置を提供することにあ
る。また、磁気測定方法として、前記のような磁気測定
装置を用いて磁気測定が簡単かつ正確に行えるようにす
ることにある。地下に存在する物体を地上で検出する方
法として、前記のような磁気測定装置および磁気測定方
法を用いて、地下物体を簡単かつ正確に検出できるよう
にすることにある。
It is an object of the present invention to further improve the three-element coil, to provide a magnetic measuring device which has a simple structure and is easy to manufacture and which can accurately obtain information on the magnetic field. Another object of the present invention is to provide a magnetism measuring method that can easily and accurately perform magnetism measurement using the magnetometer described above. An object of the present invention is to enable an underground object to be detected easily and accurately by using the above-described magnetic measuring device and magnetic measuring method as a method of detecting an object existing underground.

【0009】[0009]

【課題を解決するための手段】本発明の磁気測定装置
は、同軸上に間隔をあけて配置され電気的に接続された
一対のコイルからなる3組の検出コイル対を備える。3
組の検出コイル対の中心軸が互いに直交する3軸方向に
配置される。中心軸同士がそれぞれの一対のコイルの間
で互いに直交して配置されている。隣接して配置された
異なる検出コイル対のコイル同士が互いに間隔をあけて
配置されている。
The magnetic measuring device of the present invention includes three detection coil pairs each including a pair of coils which are coaxially spaced and electrically connected to each other. Three
The center axes of the pairs of detection coils are arranged in three axial directions orthogonal to each other. The central axes are arranged orthogonal to each other between each pair of coils. Coils of different detection coil pairs arranged adjacent to each other are arranged with a space therebetween.

【0010】なお、検出コイル対の一対のコイルをそれ
ぞれ支持する対向面を互いに直交する3軸方向にそれぞ
れ有する6面体からなる支持ブロックをさらに備えるこ
とができる。支持体が、対向面にコイルを巻回支持する
コイル巻回溝を有することができる。
[0010] It is possible to further include a hexahedron support block having opposing surfaces for supporting a pair of coils of the detection coil pair in three axial directions orthogonal to each other. The support may have a coil winding groove for winding and supporting the coil on the opposite surface.

【0011】本発明の磁気測定方法は、以下の工程を備
えている。磁界中に前記磁気測定装置を配置する工程。
磁界の作用で磁気測定装置の各検出コイル対に発生する
検出信号を取得する工程。3軸方向の検出コイル対のう
ちの少なくとも2軸方向の検出コイル対で取得される検
出信号が一致するように磁気測定装置を旋回させる工
程。
The magnetic measuring method of the present invention comprises the following steps. Placing the magnetometer in a magnetic field.
A step of acquiring a detection signal generated in each detection coil pair of the magnetometer by the action of the magnetic field. A step of rotating the magnetic measuring device so that the detection signals obtained by at least two detection coil pairs of the three detection coil pairs coincide with each other.

【0012】磁気測定装置の旋回姿勢から磁気測定装置
の場所における磁界の磁束方向を得る工程。本発明の地
下物体検出方法は、地下に配置された物体を地上で検出
する方法であって、以下の工程を備えている。地下に物
体とともに配置された磁界発生器で鉛直方向に磁束軸を
有する磁界を発生させる工程。
Obtaining the direction of the magnetic flux of the magnetic field at the location of the magnetic measuring device from the turning posture of the magnetic measuring device. The underground object detection method of the present invention is a method for detecting an object placed underground, on the ground, and includes the following steps. A step of generating a magnetic field having a magnetic flux axis in a vertical direction by a magnetic field generator arranged with an object underground.

【0013】地上で磁界中に前記磁気測定装置を配置す
る工程。前記磁気測定方法で磁気測定装置の場所におけ
る磁界の磁束方向を得る工程。磁束方向が鉛直方向に近
づく方向に磁気測定装置を移動させる工程。磁束方向が
鉛直方向である位置を、その地下に前記物体が存在する
位置であると判断する工程。
Arranging the magnetometer in a magnetic field on the ground; Obtaining the magnetic flux direction of the magnetic field at the location of the magnetometer by the magnetometer method. The step of moving the magnetic measurement device in a direction in which the magnetic flux direction approaches the vertical direction. A step of judging a position where the direction of the magnetic flux is vertical to be a position where the object exists under the ground;

【0014】なお、磁界発生器が、通電によりその軸方
向に磁束軸を有する磁界を発生するコイルであることが
できる。
The magnetic field generator may be a coil which, when energized, generates a magnetic field having a magnetic flux axis in its axial direction.

【0015】[0015]

【作用】本発明の磁気測定装置では、各検出コイル対
が、同軸上に間隔をあけて配置され電気的に接続された
一対のコイルからなり、この一対のコイルの間で3軸方
向の検出コイル対同士の中心軸が直交しており、隣接し
て配置されるコイル同士が間隔をあけているので、3軸
方向のコイル同士が重なったり干渉したりすることが防
げる。
In the magnetic measuring apparatus according to the present invention, each detecting coil pair is composed of a pair of coils which are coaxially arranged at an interval and electrically connected to each other. Since the central axes of the coil pairs are orthogonal to each other and the adjacent coils are spaced apart, it is possible to prevent the coils in the three axial directions from overlapping or interfering with each other.

【0016】その結果、3軸方向の検出コイル対の磁気
特性がきわめて揃ったものとなる。但し、一対のコイル
同士を接続する部分では3軸方向の検出コイル対で互い
に重なり合ったり互いに避けるために形状を変える必要
があったりするが、このような接続部分は磁気の検出特
性に大きな影響を与えない。なお、検出コイル対の一対
のコイルをそれぞれ支持する対向面を互いに直交する3
軸方向にそれぞれ有する6面体からなる支持ブロックを
さらに備えていれば、各検出コイル対を正確な姿勢で簡
単かつ確実に支持しておくことができる。
As a result, the magnetic characteristics of the detection coil pairs in the three axial directions are extremely uniform. However, in a portion where a pair of coils are connected to each other, it is necessary to change the shape of the detection coil pairs in the three axial directions so as to overlap each other or to avoid each other. However, such a connection portion has a great effect on the magnetic detection characteristics. Do not give. In addition, the opposing surfaces respectively supporting the pair of coils of the detection coil pair are orthogonal to each other.
If a support block comprising a hexahedron provided in each of the axial directions is further provided, each detection coil pair can be easily and reliably supported in an accurate posture.

【0017】支持体が、対向面にコイルを巻回支持する
コイル巻回溝を有するものであれば、コイルの支持が簡
単かつ確実に行える。本発明の磁気測定方法では、前記
磁気測定装置を用い、3軸方向の検出コイル対のうちの
少なくとも2軸方向の検出コイル対で取得される検出信
号が互いに一致するように磁気測定装置を旋回させるこ
とにより、前記2軸方向で構成される面内において2軸
方向の丁度中間になる方向に、その地点における磁束ベ
クトルの方向すなわち磁束方向が存在することが判る。
言い換えると、磁束方向に対して2軸方向の検出コイル
対の傾きあるいは姿勢が同じ状態であれば、両方の検出
コイル対で検出される検出信号も同じになるのである。
その結果、磁気測定装置の旋回姿勢から正確な磁束方向
を得ることができる。
If the support has a coil winding groove for supporting the coil on the opposing surface, the coil can be supported simply and reliably. In the magnetic measuring method of the present invention, the magnetic measuring device is used to rotate the magnetic measuring device so that the detection signals acquired by at least two axial detecting coil pairs of the three axial detecting coil pairs match each other. By doing so, it can be seen that the direction of the magnetic flux vector at that point, that is, the magnetic flux direction, exists in the direction that is just in the middle of the biaxial direction in the plane formed by the biaxial directions.
In other words, if the detection coil pairs in the two axial directions have the same inclination or posture with respect to the magnetic flux direction, the detection signals detected by both detection coil pairs are also the same.
As a result, an accurate magnetic flux direction can be obtained from the turning posture of the magnetometer.

【0018】2軸方向の検出信号が一致するか否かの判
断は電気的に容易に行える。例えば、ひとつのコイルで
検出信号が無くなったときにコイルの軸方向と磁束方向
とが一致していると判断する方法では、雑音の影響を受
け易く、磁界強度が弱いと判断がし難い。しかし、本発
明の方法では、2軸方向の検出信号は雑音に対して同じ
ように影響を受けるので、検出信号の差を測定するとき
には雑音の影響は受けない。磁界強度が弱くても2軸方
向の検出信号の差は明確に出る。
It is electrically easy to determine whether the detection signals in the two axial directions match. For example, the method of determining that the axial direction of the coil and the magnetic flux direction match when the detection signal disappears in one coil is easily affected by noise, and it is difficult to determine that the magnetic field strength is weak. However, in the method of the present invention, the detection signals in the two axial directions are similarly affected by noise, so that the noise is not affected when measuring the difference between the detection signals. Even if the magnetic field intensity is weak, the difference between the detection signals in the two axial directions clearly appears.

【0019】前記した磁気測定装置は、2軸方向におけ
る検出特性の違いが少ないので、上記のような2軸方向
の検出信号の一致による磁束方向の判定が正確に行え
る。3軸方向から選んだ2組の2軸方向について、上記
のような工程を経て、磁気測定装置の旋回姿勢から2軸
方向で構成される面内での磁束方向を得ることができれ
ば、直交する2つの面内での磁束方向から三次元的な磁
束方向を得ることができる。
Since the magnetic measuring apparatus described above has little difference in detection characteristics in the two-axis directions, it is possible to accurately determine the magnetic flux direction based on the coincidence of the detection signals in the two-axis directions as described above. With respect to two sets of two-axis directions selected from the three-axis directions, if the magnetic flux directions in a plane constituted by the two-axis directions can be obtained from the turning posture of the magnetic measurement device through the above-described steps, the two directions are orthogonal. A three-dimensional magnetic flux direction can be obtained from the magnetic flux directions in two planes.

【0020】本発明の地下物体検出方法では、地下に物
体とともに配置された磁界発生器で発生させた鉛直方向
に磁束軸を有する磁界を、地上に配置された前記磁気測
定装置で測定する。前記磁界による地上での磁束方向
は、磁界発生器すなわち物体の存在する地点から遠いほ
ど鉛直方向に対する傾きが大きくなり、物体の存在地点
に近づくほど鉛直方向に近づく。物体の存在する地点で
は磁束方向が鉛直方向になる。
In the method for detecting an underground object according to the present invention, a magnetic field having a magnetic flux axis in a vertical direction generated by a magnetic field generator arranged together with an object underground is measured by the magnetometer arranged on the ground. The direction of the magnetic flux on the ground due to the magnetic field becomes larger as it is farther from the magnetic field generator, that is, the point where the object is present, and is closer to the vertical direction as it is closer to the point where the object is present. At the point where the object exists, the direction of the magnetic flux is vertical.

【0021】そこで、地上の適当な地点で磁気測定装置
による磁束方向の測定を行い、磁気測定装置で測定され
た磁束方向が鉛直方向に近づく方向に磁気測定装置を移
動させれば、磁気測定装置は物体の存在地点に近づき、
磁束方向が鉛直方向になった位置で、その地下に物体が
存在することが判る。なお、磁界発生器が、通電により
その軸方向に磁束軸を有する磁界を発生するコイルであ
れば、簡単な構造で適切な磁界を発生させることができ
る。コイルからなる磁界発生器は小型であり、その作動
のための電源なども大がかりなものは必要ないから、地
下の物体に内蔵させておいても場所を取らず、保守管理
も容易である。
Then, the magnetic flux direction is measured by a magnetic measuring device at an appropriate point on the ground, and the magnetic measuring device is moved so that the magnetic flux direction measured by the magnetic measuring device approaches the vertical direction. Approaches the location of the object,
At the position where the magnetic flux direction is vertical, it can be seen that an object exists under the ground. If the magnetic field generator is a coil that generates a magnetic field having a magnetic flux axis in its axial direction when energized, an appropriate magnetic field can be generated with a simple structure. Since the magnetic field generator composed of the coil is small and does not require a large power source for its operation, it does not require much space even if it is built in an underground object, and maintenance is easy.

【0022】[0022]

【実施例】図1に示す磁気測定装置は、立方体状をなす
支持ブロック10と、支持ブロック10の3軸方向それ
ぞれに設けられた検出コイル対20x、20y、20z
とを有する。図2に詳しく示すように、支持ブロック1
0の各面には、円盤状のコイル支持環12が張り出して
いる。コイル支持環12の外周には凹溝状のコイル巻回
溝14を有する。コイル巻回溝14には、導線を多数巻
回して構成されたコイル22が支持されている。コイル
22の外径はコイル支持環12の外径よりも小さく、支
持ブロック10の面よりも外にはみ出ることはない。隣
接する面のコイル22…同士は十分な間隔をあけて配置
されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A magnetic measuring apparatus shown in FIG. 1 has a support block 10 having a cubic shape, and pairs of detection coils 20x, 20y, 20z provided in three axial directions of the support block 10, respectively.
Have and. As shown in detail in FIG.
A disk-shaped coil support ring 12 projects from each surface of 0. The outer periphery of the coil support ring 12 has a coil winding groove 14 having a concave shape. A coil 22 formed by winding a large number of conductive wires is supported in the coil winding groove 14. The outer diameter of the coil 22 is smaller than the outer diameter of the coil support ring 12, and does not extend beyond the surface of the support block 10. The coils 22 on adjacent surfaces are arranged with a sufficient space therebetween.

【0023】各検出コイル対20x…の中心軸は、XY
Zの3軸方向にそれぞれ沿って配置されている。また、
各検出コイル対20x…の中心軸は、支持ブロック10
の中心Cで3軸が直交する。支持ブロック10の3軸方
向それぞれの対向面に配置された一対のコイル22、2
2は、その一端同士が導線24で電気的に接続されて、
検出コイル対20x、20y、20zを構成している。
各検出コイル対20x…の接続導線24…同士は交差し
たり異なる経路に配置されている。各コイル22、22
の他端は、図示しない検出信号の制御装置に接続され
る。検出信号の制御装置は、検出コイル対20x…で発
生する起電力などの検出信号を電気的に処理して計器に
表示したり記録したりする。また、各検出コイル対20
x…の検出信号を比較したり演算処理したりする。制御
装置の具体的な構造は、通常の電気的測定装置と同様で
ある。
The center axis of each detection coil pair 20x...
They are arranged along the three axial directions of Z, respectively. Also,
The center axis of each detection coil pair 20x is
Are orthogonal to each other at the center C of. A pair of coils 22 and 2 arranged on opposing surfaces of the support block 10 in the three axial directions, respectively.
2 has one end electrically connected by a conducting wire 24,
The detection coil pairs 20x, 20y, and 20z are configured.
The connecting conductors 24 ... Of each detection coil pair 20x ... Cross or are arranged on different paths. Each coil 22, 22
The other end of is connected to a control device for a detection signal (not shown). The detection signal control device electrically processes a detection signal such as an electromotive force generated in the detection coil pair 20x, and displays or records it on an instrument. In addition, each detection coil pair 20
The detection signals of x... are compared and arithmetic processing is performed. The specific structure of the control device is similar to that of a normal electrical measuring device.

【0024】支持ブロック10および検出コイル対20
x…は、支持ブロック10の中心Cを基点にして全体の
姿勢を三次元的に自由に旋回できるように支持してい
る。具体的には、各種装置におけるジャイロ支持機構が
採用される。支持ブロック10の各面のコイル支持環1
2の中央に旋回支持軸を通すことができる。 〔磁気測定方法〕上記のような磁気測定装置を用いる磁
気測定方法について説明する。 <第1の測定方法>図3(a) に示すように、磁気測定装
置を磁界中に置く。磁気測定装置の中心点Cに作用する
磁界が磁束ベクトルVで表される。
Support block 10 and detection coil pair 20
x are supported so that the whole posture can be freely swiveled three-dimensionally from the center C of the support block 10. Specifically, gyro support mechanisms in various devices are employed. Coil support ring 1 on each surface of support block 10
2 can be passed through the pivot support shaft. [Magnetic Measuring Method] A magnetic measuring method using the above magnetic measuring device will be described. <First Measurement Method> As shown in FIG. 3A, the magnetometer is placed in a magnetic field. The magnetic field acting on the center point C of the magnetometer is represented by a magnetic flux vector V.

【0025】磁界の作用で各検出コイル対20x…に起
電力が発生する。この起電力を電気的に検出する。それ
ぞれの検出コイル対20x…毎に検出信号が得られる。
具体的には、例えば図3(b) に示すように、各検出コイ
ル対20x…の検出信号EはXYZの3軸方向それぞれ
に異なった値となる。この3軸XYZ方向の検出信号E
を合成すれば、各検出コイル対20x…の中心点Cにお
ける磁束ベクトルVの方向や大きさを知ることができ
る。検出信号Eの合成は検出信号の制御装置でマイクロ
コンピュータなどを用いて行うことができる。 <第2の測定方法>次に、3軸方向の検出信号から磁束
方向を得る別の方法を説明する。
An electromotive force is generated in each detection coil pair 20x ... By the action of the magnetic field. This electromotive force is electrically detected. A detection signal is obtained for each detection coil pair 20x.
Specifically, as shown in FIG. 3B, for example, the detection signals E of the respective detection coil pairs 20x... Have different values in the three X, Y, and Z directions. This three-axis XYZ direction detection signal E
Are combined, the direction and magnitude of the magnetic flux vector V at the center point C of each detection coil pair 20x... The detection signal E can be combined by a control device of the detection signal using a microcomputer or the like. <Second Measuring Method> Next, another method for obtaining the magnetic flux direction from the detection signals in the three axis directions will be described.

【0026】3軸方向のうちの2軸方向の検出コイル対
を組み合わせて、その検出信号を比べる。検出コイル対
20xと20y、検出コイル対20yと20z、検出コ
イル対20zと20xとの何れかの組み合わせである。
例えば図3(b) に示すように、検出コイル対20xと2
0yとで検出信号Eの大きさに差があるとする。この場
合、図3(a) に示すように、検出コイル対20xと20
yとの検出信号Eの差が小さくなる方向に磁気測定装置
を中心点Cを含むZ軸回りに旋回させる。図3では、検
出信号Eの小さなX軸方向から検出信号Eの大きなY軸
方向へと磁気測定装置を旋回させる。
The detection signals are compared by combining detection coil pairs in the two axial directions of the three axial directions. It is any combination of the detection coil pair 20x and 20y, the detection coil pair 20y and 20z, and the detection coil pair 20z and 20x.
For example, as shown in FIG.
It is assumed that there is a difference in the magnitude of the detection signal E between 0y. In this case, as shown in FIG. 3 (a), the detection coil pairs 20x and 20
The magnetic measurement device is turned around the Z axis including the center point C in a direction in which the difference between the detection signal E and y becomes smaller. In FIG. 3, the magnetic measurement device is turned from the X-axis direction where the detection signal E is small to the Y-axis direction where the detection signal E is large.

【0027】図4に示すように、XY軸方向で検出信号
Eの差が小さくなり全く一致するまで磁気測定装置を旋
回させる。図4(b) に示すようにXY軸方向の検出信号
Eが同じになった状態では、検出コイル対20xと20
yとの2軸方向で構成されるXY平面と直交して、2軸
方向の丁度中間になる方向を含む平面に磁束方向が存在
する。言い換えると、XY軸方向の両方と交差する支持
ブロック10の対角面(図4(a) に一点鎖線で示す)に
磁束ベクトルVが含まれる。
As shown in FIG. 4, the magnetic measurement device is turned until the difference between the detection signals E in the X and Y axes becomes small and completely coincides. As shown in FIG. 4 (b), when the detection signals E in the XY axis directions are the same, the detection coil pairs 20x and 20x
The magnetic flux direction exists in a plane that is orthogonal to the XY plane that is formed by the biaxial directions with y and that includes a direction that is just in the middle of the biaxial directions. In other words, the magnetic flux vector V is included in the diagonal plane of the support block 10 that intersects both directions of the XY axes (indicated by a dashed line in FIG. 4A).

【0028】このようにして、磁気測定装置を旋回させ
てその姿勢を変えることで磁束ベクトルVの方向を知る
ことができる。2軸XY方向の検出信号Eから磁束ベク
トルVが含まれる平面を得る前記工程を、別の2軸方
向、例えば、YZ軸方向あるいはZX軸方向についても
行い、前記同様に磁束ベクトルVが含まれる別の平面が
決まれば、これらの磁束ベクトルVが含まれる平面同士
の交線が磁束ベクトルVの三次元的方向を示す。 <第3の測定方法>磁束ベクトルVの三次元的方向を知
る別の方法を説明する。
In this way, the direction of the magnetic flux vector V can be known by turning the magnetic measuring device and changing its posture. The step of obtaining a plane including the magnetic flux vector V from the detection signal E in the two-axis XY directions is also performed in another two-axis direction, for example, the YZ-axis direction or the ZX-axis direction, and the magnetic flux vector V is included in the same manner as described above. If another plane is determined, the intersection of the planes including these magnetic flux vectors V indicates the three-dimensional direction of the magnetic flux vector V. <Third Measurement Method> Another method for determining the three-dimensional direction of the magnetic flux vector V will be described.

【0029】図4の状態では、X軸方向とY軸方向の検
出信号Eの大きさは同じであるが、Z軸方向の検出信号
Eの大きさが違っている。そして、前記説明からも判る
ように、磁束ベクトルVを含む面が特定されただけで、
三次元的な磁束ベクトルVの方向は特定されていない。
図4と同じ状態を別の方向から表した図5をみれば、磁
束ベクトルVはZ軸方向に対して傾いている。
In the state of FIG. 4, the magnitudes of the detection signals E in the X-axis direction and the Y-axis direction are the same, but the magnitudes of the detection signals E in the Z-axis direction are different. Then, as can be seen from the above description, only by identifying the surface including the magnetic flux vector V,
The direction of the three-dimensional magnetic flux vector V is not specified.
Referring to FIG. 5, which shows the same state as FIG. 4 from another direction, the magnetic flux vector V is inclined with respect to the Z-axis direction.

【0030】そこで今度は、図6に示すように、XY軸
方向の検出信号EとZ軸方向の検出信号Eとの差が小さ
くなり全く一致するまで磁気測定装置を旋回させる。こ
のとき、X軸方向とY軸方向との検出信号Eに違いが出
ない方向すなわち前記した磁束ベクトルVが含まれる平
面に沿って磁気測定装置を旋回させる。その結果、図6
(b) に示すように、XYZ軸方向の全ての検出信号Eが
同じ大きさになる。この状態では、XYZ軸の丁度真ん
中の方向、具体的には支持ブロック10の対角頂点同士
を結ぶ三次元的な対角線(図6(a) に一点鎖線で示す)
の方向が磁束ベクトルVの方向を示している。
Then, this time, as shown in FIG. 6, the magnetic measuring device is rotated until the difference between the detection signal E in the XY axis direction and the detection signal E in the Z axis direction becomes small and completely coincides. At this time, the magnetic measurement device is turned in a direction in which there is no difference in the detection signal E between the X-axis direction and the Y-axis direction, that is, along a plane including the above-described magnetic flux vector V. As a result, FIG.
As shown in (b), all the detection signals E in the XYZ axis directions have the same magnitude. In this state, the three-dimensional diagonal line connecting the diagonal vertices of the support block 10 in the direction exactly in the middle of the XYZ axes (shown by a dashed line in FIG. 6A)
Indicates the direction of the magnetic flux vector V.

【0031】このようにすれば、磁気測定装置をその中
心C回りに旋回させて、XYZ軸方向の検出信号Eが一
致する旋回姿勢を探すだけで、その地点における磁束ベ
クトルVの方向を簡単に知ることができる。 〔地下物体検出方法〕上記磁気測定装置および磁気測定
方法を、推進工法における掘進装置の位置検出に適用し
た場合について説明する。
In this way, the direction of the magnetic flux vector V at that point can be easily determined by simply turning the magnetic measuring device around its center C and searching for a turning posture in which the detection signals E in the XYZ-axis directions match. You can know. [Underground Object Detection Method] A case will be described in which the magnetic measurement device and the magnetic measurement method described above are applied to position detection of a digging device in a propulsion method.

【0032】図7に示すように、地盤50の内部を掘進
装置30と掘進装置30の後方に連結された埋設管32
…が推進される。掘進装置30には磁界発生器40が設
置されている。磁界発生器40は、導線が巻回されたコ
イルからなり、コイルの軸方向が鉛直方向を向いてい
る。磁界発生器40のコイルに通電すれば、コイルの両
端をループ状に結ぶ磁界が発生する。磁界発生器40か
ら地上に向けて磁束線が延びている。地上での磁束の方
向は、磁界発生器40に近い位置では鉛直方向に近くな
り、磁界発生器40から遠い位置では鉛直方向から傾斜
した水平方向に近い状態になる。地上での磁束の方向が
鉛直方向と一致した地点の真下に磁界発生器40および
掘進装置30が存在することになる。 <第1の検出方法>地上に磁気測定装置を配置して、そ
の地点における磁束ベクトルVの方向を前記した方法で
求める。
As shown in FIG. 7, the inside of the ground 50 is provided with a digging device 30 and a buried pipe 32 connected behind the digging device 30.
... is promoted. The digging device 30 is provided with a magnetic field generator 40. The magnetic field generator 40 is composed of a coil wound with a conductive wire, and the axial direction of the coil is oriented vertically. When the coil of the magnetic field generator 40 is energized, a magnetic field connecting both ends of the coil in a loop is generated. Magnetic flux lines extend from the magnetic field generator 40 toward the ground. The direction of the magnetic flux on the ground is close to the vertical direction at a position close to the magnetic field generator 40, and is close to the horizontal direction inclined from the vertical direction at a position far from the magnetic field generator 40. The magnetic field generator 40 and the excavation device 30 are located directly below the point where the direction of the magnetic flux on the ground coincides with the vertical direction. <First Detection Method> A magnetic measurement device is arranged on the ground, and the direction of the magnetic flux vector V at that point is determined by the above-described method.

【0033】具体的には、図8に示すように、磁気測定
装置が配置された地点で、その地点で検出されたXYZ
軸3方向の検出信号Eが一致するように磁気測定装置の
姿勢を3次元的に変えれば、支持ブロック10の対角線
方向から、その地点における磁束ベクトルVの3次元的
方向が検出される。この方法は、前記した第3の測定方
法に該当する。
Specifically, as shown in FIG. 8, at the point where the magnetic measuring device is disposed, the XYZ detected at that point is detected.
If the attitude of the magnetic measuring device is changed three-dimensionally so that the detection signals E in the three axial directions match, the three-dimensional direction of the magnetic flux vector V at that point is detected from the diagonal direction of the support block 10. This method corresponds to the third measuring method described above.

【0034】異なる位置で求められた磁束ベクトルVの
方向を比べたときに、磁束ベクトルVの方向がより鉛直
方向に近くなる位置ほど、磁界発生器40すなわち掘進
装置30に近づいていることになる。そして、磁気測定
装置を、磁束ベクトルVが鉛直方向に近づく方向に移動
させる。例えば、磁束ベクトルV1 の位置よりも磁束ベ
クトルV2 の位置のほうが磁界発生器40に近ければ、
磁気測定装置は、磁束ベクトルV1 の位置と磁束ベクト
ルV2 の位置を結ぶ線上を磁束ベクトルV2 の位置の延
長方向に移動させる。
When the directions of the magnetic flux vector V obtained at different positions are compared, the closer the magnetic flux vector V is to the vertical direction, the closer to the magnetic field generator 40, that is, the excavation device 30. . Then, the magnetic measurement device is moved in a direction in which the magnetic flux vector V approaches the vertical direction. For example, if the position of the magnetic flux vector V 2 is closer to the magnetic field generator 40 than the position of the magnetic flux vector V 1 ,
Magnetic measuring apparatus moves the line connecting the position the position of the flux vector V 2 of the magnetic flux vector V 1 in the extended position of the flux vector V 2.

【0035】上記のような磁束方向の測定と磁気測定装
置の移動とを行った結果、磁束ベクトルVがV1 〜V4
へと順次鉛直方向に近づき、最終的に磁束ベクトルVが
鉛直方向を向いた地点、すなわち磁束ベクトルV0 の位
置が磁気発生器40の真上の地点である。このように、
磁束ベクトルVが鉛直方向を向く地点を探すことで、磁
界発生器40および掘進装置30の正確な位置を知るこ
とができる。 <第2の検出方法>図9に示すように、地上の2個所
A、B点において、それぞれの位置での磁束ベクトルV
a および磁束ベクトルVb の方向を求める。このときに
は、水平面内での磁束ベクトルVの方向だけを求めれば
よい。2個所A、B点で求められた磁束ベクトルVa 、
Vb の方向を延長してその交点Pを求めれば、この交点
Pの真下の地下に磁気発生器40および掘進装置30が
あることが判る。なお、交点Pで磁束ベクトルVの3次
元方向を測定すれば、磁束ベクトルVは鉛直方向を向く
ので、目的とする磁気発生器40の位置であることが確
認できる。
As a result of the measurement of the magnetic flux direction and the movement of the magnetic measuring device as described above, the magnetic flux vector V becomes V 1 to V 4.
, The point where the magnetic flux vector V finally turns in the vertical direction, that is, the position of the magnetic flux vector V 0 is a point directly above the magnetic generator 40. in this way,
The exact position of the magnetic field generator 40 and the excavation device 30 can be known by searching for a point where the magnetic flux vector V is directed in the vertical direction. <Second detection method> As shown in FIG. 9, at two points A and B on the ground, the magnetic flux vector V at each position is shown.
a and the direction of the magnetic flux vector Vb are determined. In this case, only the direction of the magnetic flux vector V in the horizontal plane needs to be obtained. The magnetic flux vector Va obtained at two points A and B,
If the direction of Vb is extended and its intersection P is determined, it is understood that the magnetic generator 40 and the excavation device 30 are located under the intersection P. When the three-dimensional direction of the magnetic flux vector V is measured at the intersection P, the magnetic flux vector V is oriented in the vertical direction, so that it can be confirmed that the magnetic flux vector V is at the target position of the magnetic generator 40.

【0036】上記方法では2個所A、B点での測定から
交点Pを求めたが、3個所以上で磁束ベクトルVを求め
ることもできる。3個所以上の測定点から選択された2
個所の測定点を使って交点P1 を求め、別の2個所の測
定点を使って求めた交点P2と比較する。両交点P1
2 とが一致すれば、この交点P1 (P2 )が正確な交
点Pである。交点P1 と交点P2 にずれがある場合に
は、さらに別の交点P3を求め、何れか2点の交点P1
…が一致した点を正しい交点Pであると判断することが
できる。3点の交点P1 …が異なれば、これらの交点P
1 、P2 、P3 で構成する三角形範囲に磁気発生器40
が存在すると判断することができる。複数の交点P1
2 、P3 …の測定結果から統計的に演算処理して交点
Pを推測することもできる。 <第3の検出方法>前記第2の検出方法と同様に2個所
A、B点で磁束ベクトルVa 、Vb とその延長方向の交
点Pを求めた後、いずれかの測定点A点またはB点から
交点Pに向けて磁気測定装置を移動させながら、鉛直面
内における磁束ベクトルVの方向を測定する。
In the above method, the intersection point P is obtained from the measurement at two points A and B, but the magnetic flux vector V can be obtained at three or more points. 2 selected from 3 or more measurement points
Find the intersection P 1 with a measurement point locations, compared to the intersection P 2 obtained using the measurement point for another two places. If both intersections P 1 and P 2 match, this intersection P 1 (P 2 ) is the correct intersection P. Intersection P 1 and the point of intersection when there is a shift in the P 2, further obtains another intersection P 3, one of the two points intersection P 1
Can be determined to be a correct intersection P. If the three intersections P 1 are different, these intersections P
The magnetic generator 40 is placed in the triangular area defined by 1 , P 2 and P 3.
Can be determined to exist. A plurality of intersections P 1 ,
The intersection P can also be estimated by performing a statistical operation on the measurement results of P 2 , P 3 . <Third detection method> Similar to the above-described second detection method, the magnetic flux vectors Va and Vb and the intersection P in the extending direction thereof are obtained at two points A and B, and then any one of the measurement points A and B is measured. , The direction of the magnetic flux vector V in the vertical plane is measured while moving the magnetometer toward the intersection P.

【0037】すなわち、磁気測定装置の1軸方向の検出
コイル対、例えば検出コイル対20zを水平方向に固定
しておいて、残りの2軸方向の検出コイル対20x、2
0yの検出信号Eが一致するように、磁気測定装置の姿
勢を鉛直面内で旋回させる。検出コイル対20x、20
yの対角線方向が鉛直面内での磁束ベクトルVの方向で
ある。
That is, the detection coil pair in one axis direction of the magnetic measuring device, for example, the detection coil pair 20z is fixed in the horizontal direction, and the detection coil pairs 20x, 2x in the other two axis directions are fixed.
The attitude of the magnetic measurement device is turned within the vertical plane so that the detection signals E of 0y coincide with each other. Detection coil pair 20x, 20
The diagonal direction of y is the direction of the magnetic flux vector V in the vertical plane.

【0038】前記交点Pが磁気発生器40の正確な位置
を示していれば、磁気測定装置の移動に伴って、鉛直面
内での磁束ベクトルVの方向が鉛直方向を向くように変
化する。鉛直面内での磁束ベクトルVの方向が鉛直方向
に近づかなければ、先に求めた交点Pの位置がずれてい
る可能性がある。この場合は、前記した複数個所におけ
る水平面内での磁束方向の測定を再び行って、目標とす
る交点Pの位置すなわち磁気測定装置の移動方向を修正
することができる。交点Pで鉛直面内における磁束ベク
トルVの方向が鉛直方向を向くことを確認すれば、磁気
発生器40の位置が正確に求められたことが確かめられ
る。交点Pで磁束ベクトルVが鉛直方向からずれている
場合には、交点Pの周辺で磁束ベクトルVが鉛直方向を
向く位置を探せば良い。
If the intersection P indicates the accurate position of the magnetic generator 40, the direction of the magnetic flux vector V in the vertical plane changes so as to face the vertical direction as the magnetism measuring device moves. If the direction of the magnetic flux vector V in the vertical plane does not approach the vertical direction, there is a possibility that the position of the intersection P obtained earlier is shifted. In this case, the measurement of the direction of the magnetic flux in the horizontal plane at the plurality of locations can be performed again to correct the position of the target intersection P, that is, the moving direction of the magnetometer. By confirming that the direction of the magnetic flux vector V in the vertical plane at the intersection P is oriented in the vertical direction, it can be confirmed that the position of the magnetic generator 40 is accurately obtained. When the magnetic flux vector V deviates from the vertical direction at the intersection P, it is sufficient to search for a position where the magnetic flux vector V faces the vertical direction around the intersection P.

【0039】[0039]

【発明の効果】本発明の磁気測定装置では、3軸方向の
検出コイル対の磁気特性に違いが生じ難いので正確な測
定ができる。検出コイル対を構成するコイルの配置や支
持が簡単になるので、製造が簡単である。なお、前記の
ような支持ブロックをさらに備えていれば、各検出コイ
ル対の支持が確実かつ簡単に行え、コイルの磁気特性を
一致させ易いので、磁気測定装置の性能および生産性を
向上できる。
According to the magnetic measuring apparatus of the present invention, it is difficult to make a difference in the magnetic characteristics of the detection coil pairs in the three-axis directions, so that accurate measurement can be performed. Since the arrangement and support of the coils constituting the detection coil pair are simplified, the manufacture is simple. If the above-described support block is further provided, each detection coil pair can be reliably and easily supported, and the magnetic characteristics of the coils can be easily matched, so that the performance and productivity of the magnetic measurement device can be improved.

【0040】支持ブロックが前記コイル巻回溝を有する
ものであれば、コイルの支持が簡単かつ確実に行え、磁
気測定装置の性能および生産性が向上できる。本発明の
磁気測定方法では、各軸方向の検出信号を比較するだけ
て磁束方向が正確かつ簡単に得られる。本発明の地下物
体検出方法では、地下にある物体を地上から簡単かつ正
確に検出することができる。
If the support block has the coil winding groove, the coil can be easily and surely supported, and the performance and productivity of the magnetic measuring device can be improved. According to the magnetic measurement method of the present invention, the direction of the magnetic flux can be obtained accurately and simply by comparing the detection signals in the respective axial directions. According to the underground object detection method of the present invention, an object underground can be easily and accurately detected from the ground.

【0041】なお、磁界発生器が前記のようなコイルで
あれば、構造が簡単でかつ高い性能が発揮でき、地下物
体に内蔵させておくのも容易である。
If the magnetic field generator is a coil as described above, the structure is simple and high performance can be exhibited, and it is easy to incorporate it into an underground object.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を表す磁気測定装置の正面図FIG. 1 is a front view of a magnetic measuring device according to an embodiment of the present invention.

【図2】コイル支持環部分の要部拡大断面図FIG. 2 is an enlarged sectional view of an essential part of a coil support ring portion.

【図3】磁気測定方法を段階的に表し、第1段階におけ
る磁気測定装置の配置図(a) および検出信号線図(b)
FIG. 3 is a diagram illustrating a magnetic measurement method in a stepwise manner.

【図4】第2段階における磁気測定装置の配置図(a) お
よび検出信号線図(b)
FIG. 4 is a layout diagram (a) and a detection signal diagram (b) of the magnetic measurement device in the second stage.

【図5】図4の磁気測定装置を別の方向から見た配置図
(a) および検出信号線図(b)
FIG. 5 is a layout view of the magnetometer of FIG. 4 viewed from another direction.
(a) and detection signal diagram (b)

【図6】図5の次の段階における磁気測定装置の配置図
(a) および検出信号線図(b)
FIG. 6 is a layout diagram of the magnetometer in the next stage of FIG. 5;
(a) and detection signal diagram (b)

【図7】地下物体検出方法の実施例を表す縦断面図FIG. 7 is a longitudinal sectional view illustrating an embodiment of a method for detecting underground objects.

【図8】磁気測定装置の操作状態を表す拡大縦断面図FIG. 8 is an enlarged vertical sectional view showing an operation state of the magnetic measuring device.

【図9】別の実施例を表す平面図FIG. 9 is a plan view showing another embodiment.

【図10】参考技術を表す概略斜視図FIG. 10 is a schematic perspective view showing a reference technology.

【符号の説明】[Explanation of symbols]

10 支持ブロック 12 コイル支持環 14 コイル巻回溝 20x、20y、20z 検出コイル対 22 コイル 24 接続導線 C 中心 V 磁束ベクトル 30 掘進装置 32 埋設管 40 磁気発生器 50 地盤 10 Support Block 12 Coil Support Ring 14 Coil Winding Groove 20x, 20y, 20z Detection Coil Pair 22 Coil 24 Connection Wire C Center V Magnetic Flux Vector 30 Excavator 32 Buried Pipe 40 Magnetic Generator 50 Ground

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 G01V 3/10 9406−2G G01V 3/10 B ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location G01V 3/10 9406-2G G01V 3/10 B

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】同軸上に間隔をあけて配置され電気的に接
続された一対のコイルを有する3組の検出コイル対を備
え、前記3組の検出コイル対の中心軸が互いに直交する
3軸方向に配置され、前記中心軸同士がそれぞれの一対
のコイルの間で互いに直交して配置され、隣接して配置
された異なる検出コイル対のコイル同士が互いに間隔を
あけて配置されている磁気測定装置。
1. A three-axis detection coil pair having a pair of coils which are coaxially arranged at a distance and electrically connected to each other, and three central axes of the three detection coil pairs are orthogonal to each other. Direction measurement, the central axes are arranged orthogonal to each other between the respective pair of coils, and the coils of different detection coil pairs arranged adjacent to each other are spaced apart from each other. apparatus.
【請求項2】前記検出コイル対の前記一対のコイルをそ
れぞれ支持する対向面を互いに直交する3軸方向にそれ
ぞれ有する6面体からなる支持ブロックをさらに備える
前記請求項1に記載の磁気測定装置。
2. The magnetic measurement device according to claim 1, further comprising a support block formed of a hexahedron having facing surfaces respectively supporting the pair of coils of the detection coil pair in three axial directions orthogonal to each other.
【請求項3】前記支持体が、前記対向面に前記コイルを
巻回支持するコイル巻回溝を有する前記請求項2に記載
の磁気測定装置。
3. The magnetic measuring device according to claim 2, wherein the support body has a coil winding groove for winding and supporting the coil on the facing surface.
【請求項4】磁界中に前記請求項1〜3の磁気測定装置
を配置する工程と、 前記磁界の作用で前記磁気測定装置の各検出コイル対に
発生する検出信号を得る工程と、 前記3軸方向の検出コイル対のうちの少なくとも2軸方
向の検出コイル対で得られる検出信号が一致するように
磁気測定装置を旋回させる工程と、 前記磁気測定装置の旋回姿勢から前記磁気測定装置の位
置における前記磁界の磁束方向を得る工程とを備える磁
気測定方法。
4. A step of arranging the magnetic measurement device according to any one of claims 1 to 3 in a magnetic field; a step of obtaining a detection signal generated in each detection coil pair of the magnetic measurement device by the action of the magnetic field; A step of rotating the magnetic measuring device so that the detection signals obtained by at least two axial detecting coil pairs of the axial detecting coil pairs coincide; and a position of the magnetic measuring device from a turning posture of the magnetic measuring device. And a step of obtaining the magnetic flux direction of the magnetic field in.
【請求項5】地下に配置された物体を地上で検出する方
法であって、 前記地下に前記物体とともに配置された磁界発生器で鉛
直方向に磁束軸を有する磁界を発生させる工程と、 前記地上で前記磁界中に前記請求項1〜3のいずれかの
磁気測定装置を配置する工程と、 前記請求項4の磁気測定方法で前記磁気測定装置の位置
における前記磁界の前記磁束方向を得る工程と、 前記磁束方向が鉛直方向に近づく方向に前記磁気測定装
置を移動させる工程と、 前記磁束方向が鉛直方向である位置を、その地下に前記
物体が存在する位置であると判断する工程とを備える地
下物体検出方法。
5. A method for detecting an object located underground, on the ground, comprising: generating a magnetic field having a magnetic flux axis in a vertical direction by a magnetic field generator arranged together with the object underground. A step of disposing the magnetic measurement device according to any one of claims 1 to 3 in the magnetic field, and a step of obtaining the magnetic flux direction of the magnetic field at the position of the magnetic measurement device by the magnetic measurement method according to claim 4. , A step of moving the magnetic measurement device in a direction in which the magnetic flux direction approaches a vertical direction, and a step of determining a position in which the magnetic flux direction is a vertical direction as a position in which the object exists underground. Underground object detection method.
【請求項6】前記磁界発生器が、通電によりその軸方向
に磁束軸を有する磁界を発生するコイルである請求項5
に記載の地下物体検出方法。
6. The magnetic field generator is a coil for generating a magnetic field having a magnetic flux axis in its axial direction when energized.
2. The method for detecting underground objects according to item 1.
JP4004395A 1995-02-28 1995-02-28 Magnetic measurement method and underground object detection method Expired - Lifetime JP2644208B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4004395A JP2644208B2 (en) 1995-02-28 1995-02-28 Magnetic measurement method and underground object detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4004395A JP2644208B2 (en) 1995-02-28 1995-02-28 Magnetic measurement method and underground object detection method

Publications (2)

Publication Number Publication Date
JPH08233601A true JPH08233601A (en) 1996-09-13
JP2644208B2 JP2644208B2 (en) 1997-08-25

Family

ID=12569892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4004395A Expired - Lifetime JP2644208B2 (en) 1995-02-28 1995-02-28 Magnetic measurement method and underground object detection method

Country Status (1)

Country Link
JP (1) JP2644208B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100851817B1 (en) * 2006-05-30 2008-08-13 한국전력공사 Measurement position and time recording type magnetic field meter and measurement method using the same
US9117258B2 (en) 2008-06-03 2015-08-25 Covidien Lp Feature-based registration method
US9271803B2 (en) 2008-06-06 2016-03-01 Covidien Lp Hybrid registration method
US9575140B2 (en) 2008-04-03 2017-02-21 Covidien Lp Magnetic interference detection system and method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59132380A (en) * 1983-01-19 1984-07-30 Yokogawa Hokushin Electric Corp Three-dimensional magnetic flux detection coil

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59132380A (en) * 1983-01-19 1984-07-30 Yokogawa Hokushin Electric Corp Three-dimensional magnetic flux detection coil

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100851817B1 (en) * 2006-05-30 2008-08-13 한국전력공사 Measurement position and time recording type magnetic field meter and measurement method using the same
US9575140B2 (en) 2008-04-03 2017-02-21 Covidien Lp Magnetic interference detection system and method
US9117258B2 (en) 2008-06-03 2015-08-25 Covidien Lp Feature-based registration method
US10096126B2 (en) 2008-06-03 2018-10-09 Covidien Lp Feature-based registration method
US11074702B2 (en) 2008-06-03 2021-07-27 Covidien Lp Feature-based registration method
US11783498B2 (en) 2008-06-03 2023-10-10 Covidien Lp Feature-based registration method
US9271803B2 (en) 2008-06-06 2016-03-01 Covidien Lp Hybrid registration method
US10285623B2 (en) 2008-06-06 2019-05-14 Covidien Lp Hybrid registration method
US10478092B2 (en) 2008-06-06 2019-11-19 Covidien Lp Hybrid registration method
US10674936B2 (en) 2008-06-06 2020-06-09 Covidien Lp Hybrid registration method
US11931141B2 (en) 2008-06-06 2024-03-19 Covidien Lp Hybrid registration method

Also Published As

Publication number Publication date
JP2644208B2 (en) 1997-08-25

Similar Documents

Publication Publication Date Title
US4812812A (en) Apparatus and method for determining the position and orientation of a remote object
EP1859302B1 (en) Digital locating system and device for underground object detection
US3529682A (en) Location detection and guidance systems for burrowing device
EP2828689B1 (en) Gradient antenna coils and arrays for use in locating systems
CA1057354A (en) Surveying of subterranean magnetic bodies from adjacent off-vertical borehole
US20080052932A1 (en) Magnetic MEMS sensors
US6952101B2 (en) Method for determining direction to a target formation from a wellbore by analyzing multi-component electromagnetic induction signals
US20080246481A1 (en) Locating Arrangement and Method Using Boring Tool and Cable Locating Signals
US11487038B2 (en) Operating method of a metal detector capable of measuring target depth
MXPA02011107A (en) Measuring device for detecting a body moving in relation to a tubular container.
JP5386698B2 (en) Indoor position detector
JP2644208B2 (en) Magnetic measurement method and underground object detection method
JP4022352B2 (en) Complex buried object exploration equipment
EP0366221A2 (en) Buried metal detector
JP3420563B2 (en) Eccentricity measuring device for insulated wire
JP2866078B2 (en) Excavation propulsion position detecting device and position detecting method
JP3224004B2 (en) Drilling tube tip location method
JPH0933489A (en) Moving exciting coil type eddy current flaw detector employing squid flux meter
JPH08261708A (en) Method and device for detecting position of magnetic field-generating body, and method for detecting underground object
JPH11190602A (en) Device for measuring distance between pipes and the like
EP3534185B1 (en) Locator equipment
JPH0221288A (en) Plane distribution measuring apparatus for magnetic field
JP3285530B2 (en) Method for guiding tunnel excavation path in propulsion method and apparatus therefor
JP2006214776A (en) Small magnetic sensor element detecting field by three dimensions
JP2004271303A (en) Magnetic measurement system and position detection device for underground excavator using it