JPH08220585A - Electronic camera - Google Patents

Electronic camera

Info

Publication number
JPH08220585A
JPH08220585A JP7024255A JP2425595A JPH08220585A JP H08220585 A JPH08220585 A JP H08220585A JP 7024255 A JP7024255 A JP 7024255A JP 2425595 A JP2425595 A JP 2425595A JP H08220585 A JPH08220585 A JP H08220585A
Authority
JP
Japan
Prior art keywords
light
incident
flux
beam splitter
electronic camera
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7024255A
Other languages
Japanese (ja)
Inventor
Satoshi Ejima
聡 江島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP7024255A priority Critical patent/JPH08220585A/en
Publication of JPH08220585A publication Critical patent/JPH08220585A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exposure Control For Cameras (AREA)

Abstract

PURPOSE: To increase the quantity of light incident on a light measuring means extensively without reducing the quantity of light incident on an image pick-up element, by leading the first light flux and the second light flux reflected by an image pick-up means and a reflecting means to the light measuring means. CONSTITUTION: The light flux A of a subject image is divided into a light flux B toward an image pick-up element 19 and a light flux C toward a total reflecting mirror 21 by a beam splitter 15, and thereafter, a light flux D and a light flux F reflected by the element 19 and the total reflecting mirror 21 are led to a light measuring element 25. As a result, the quantity of light incident to the element 19 is not reduced, and the quantity of light incident to the light measuring element 25 can be increased extensively. In other words, since both the reflecting light of the beam splitter 15 and the reflecting light of the element 19 are injected to the light measuring element 25, a light flux of the incident light quantity larger than the conventional system is to be injected to the light measuring means 25, and as a result, the output of the light measuring element 25 is increased, and the influence by a disturbance such as a noise is hardly received.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電子スチルカメラ等の
電子カメラに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electronic camera such as an electronic still camera.

【0002】[0002]

【従来の技術】一般に、電子スチルカメラ等の電子カメ
ラでは、撮影レンズにより投影された被写体像を、電気
的映像信号に変換する撮像素子が配置されており、ま
た、被写体像の明るさを測定する測光センサが配置され
ている。そして、従来、このような電子カメラとして、
例えば、特開昭63−62478号公報に開示されるも
のが知られている。
2. Description of the Related Art Generally, in an electronic camera such as an electronic still camera, an image pickup device for converting a subject image projected by a photographing lens into an electric video signal is arranged, and the brightness of the subject image is measured. A photometric sensor is installed. And conventionally, as such an electronic camera,
For example, the one disclosed in JP-A-63-62478 is known.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
電子カメラでは、一般に、光量が減少すると光電変換素
子である測光センサの出力が小さくなり、出力信号にお
けるノイズの割合が増え、測光誤差が増えるという問題
がある。
However, in the conventional electronic camera, generally, when the light amount decreases, the output of the photometric sensor, which is a photoelectric conversion element, becomes small, the proportion of noise in the output signal increases, and the photometric error increases. There's a problem.

【0004】一方、同じ光電変換素子である撮像素子に
おいても、入射光量の減少は、ノイズの発生による画質
の劣化を招き好ましくない。従って、撮像素子、測光セ
ンサともに、できるだけ多くの光量が入射することが望
ましい。例えば、上述した特開昭63−62478号公
報に開示される電子カメラにおいて、仮にビームスプリ
ッタの透過率を95パーセント、反射率を5パーセント
とすると、測光センサに入射する光量は、撮影レンズを
透過したうちの5パーセント、撮像素子には95パーセ
ントの光量が入射する。
On the other hand, even in the case of an image pickup device which is the same photoelectric conversion device, a decrease in the amount of incident light is not preferable because it causes deterioration of image quality due to generation of noise. Therefore, it is desirable that as much light as possible be incident on both the image sensor and the photometric sensor. For example, in the electronic camera disclosed in JP-A-63-62478, if the transmittance of the beam splitter is 95% and the reflectance is 5%, the amount of light incident on the photometric sensor is transmitted through the taking lens. Of this amount, 5% and 95% of the light amount is incident on the image sensor.

【0005】ここで、ビームスプリッタの透過率を増や
せば、撮像素子へ入射する光量は増加するが、測光セン
サへ入射する光量は減少する。一方、ビームスプリッタ
の反射率を増やせば、測光センサへ入射する光量は増加
するが、撮像素子へ入射する光量は減少する。このよう
な矛盾する従来技術に対して、撮像素子に入射する光量
は減少させずに、測光センサに入射する光量を増やす技
術が望まれていた。
Here, if the transmittance of the beam splitter is increased, the amount of light incident on the image sensor is increased, but the amount of light incident on the photometric sensor is decreased. On the other hand, if the reflectance of the beam splitter is increased, the amount of light incident on the photometric sensor increases, but the amount of light incident on the image sensor decreases. In contrast to such contradictory conventional techniques, there has been a demand for a technique of increasing the amount of light incident on the photometric sensor without reducing the amount of light incident on the image sensor.

【0006】本発明は、かかる従来の事情に対処してな
されたもので、撮像素子に入射する光量を減少すること
なく、測光手段に入射する光量を従来より大幅に増大す
ることができる電子カメラを提供することを目的とす
る。
The present invention has been made in response to such a conventional situation, and an electronic camera capable of significantly increasing the amount of light incident on the photometric means without reducing the amount of light incident on the image pickup device. The purpose is to provide.

【0007】[0007]

【課題を解決するための手段】請求項1の電子カメラ
は、被写体像を投影する投影手段と、前記投影手段によ
り投影された前記被写体像を電気的映像信号に変換する
撮像手段と、前記被写体像の明るさを測定する測光手段
とを備えた電子カメラにおいて、前記投影手段と撮像手
段との間に、前記被写体像の光束を、前記撮像手段に向
かう第1の光束と、反射手段に向かう第2の光束とに分
割するとともに、前記撮像手段および前記反射手段で反
射した前記第1の光束および第2の光束を、前記測光手
段に導びく光束分割手段を配置してなることを特徴とす
る。
According to another aspect of the present invention, there is provided an electronic camera comprising: a projection means for projecting a subject image; an imaging means for converting the subject image projected by the projection means into an electric video signal; and the subject. In an electronic camera provided with a photometric means for measuring the brightness of an image, between the projection means and the imaging means, the light flux of the subject image is directed to a first light flux toward the imaging means and toward the reflection means. And a light beam splitting unit for splitting the first light beam and the second light beam reflected by the image pickup unit and the reflecting unit to the photometric unit. To do.

【0008】請求項2の電子カメラは、請求項1におい
て、前記光束分割手段は、ビームスプリッタであること
を特徴とする。請求項3の電子カメラは、請求項2にお
いて、前記ビームスプリッタには、前記反射手段が一体
形成されていることを特徴とする。
According to a second aspect of the present invention, in the first aspect, the light beam splitting means is a beam splitter. According to a third aspect of the present invention, in the second aspect, the beam splitter is integrally formed with the reflecting means.

【0009】[0009]

【作用】請求項1の電子カメラでは、光束分割手段によ
り、被写体像の光束が、撮像手段に向かう第1の光束
と、反射手段に向かう第2の光束とに分割され、この
後、撮像手段および反射手段で反射した第1の光束およ
び第2の光束が、測光手段に導びかれる。
According to the electronic camera of the present invention, the luminous flux splitting means splits the luminous flux of the object image into a first luminous flux toward the image pickup means and a second luminous flux toward the reflecting means, and thereafter, the image pickup means. The first light flux and the second light flux reflected by the reflection means are guided to the photometric means.

【0010】請求項2の電子カメラでは、光束分割手段
が、ビームスプリッタにより形成される。請求項3の電
子カメラでは、ビームスプリッタに、反射手段が一体形
成される
According to another aspect of the electronic camera, the light beam splitting means is formed by a beam splitter. In the electronic camera of claim 3, the beam splitter is integrally formed with the reflecting means.

【0011】[0011]

【実施例】以下、本発明の実施例を図面を用いて詳細に
説明する。
Embodiments of the present invention will now be described in detail with reference to the drawings.

【0012】図1は、本発明の電子カメラの第1の実施
例の断面図である。この電子カメラでは、図示しない被
写体像からの光束は、撮影レンズ11、絞り13、ビー
ムスプリッタ15、オプティカルローパスフィルタ17
を通り、撮像素子19に入射する。ビームスプリッタ1
5の上方には、全反射ミラー21が設けられ、ビームス
プリッタ15の下方には、集光レンズ23、測光素子2
5が設けられている。
FIG. 1 is a sectional view of a first embodiment of an electronic camera of the present invention. In this electronic camera, the light flux from a subject image (not shown) is taken by the taking lens 11, diaphragm 13, beam splitter 15, optical low-pass filter 17
And enters the image sensor 19. Beam splitter 1
5, a total reflection mirror 21 is provided above the beam splitter 15, and a condenser lens 23 and a photometric element 2 are provided below the beam splitter 15.
5 are provided.

【0013】撮影レンズ11は、レンズ27,29から
なり鏡筒31に保持されている。鏡筒31は、筐体33
にネジ35により固定されている。筐体33の右側に
は、複数の突起37aを有する第1結合部材37が配置
されている。第1結合部材37は、固定板39と筐体3
3との間に配置されている。
The taking lens 11 comprises lenses 27 and 29 and is held by a lens barrel 31. The lens barrel 31 has a housing 33.
It is fixed by screws 35. A first coupling member 37 having a plurality of protrusions 37a is arranged on the right side of the housing 33. The first coupling member 37 includes the fixed plate 39 and the housing 3.
It is arranged between 3 and 3.

【0014】また、固定板39には、ネジ穴39aが形
成されており、第一結合部材37には貫通穴37bが形
成されている。そして、筐体33側からのネジ41を、
固定板39に形成されたネジ穴39aに螺合することに
より、第1結合部材37が、固定板39と筐体33との
間に挟持固定されている。
A screw hole 39a is formed in the fixed plate 39, and a through hole 37b is formed in the first coupling member 37. Then, screw 41 from the housing 33 side,
The first coupling member 37 is sandwiched and fixed between the fixing plate 39 and the housing 33 by being screwed into the screw holes 39 a formed in the fixing plate 39.

【0015】ネジ41が貫通する第1結合部材37の貫
通穴37bは、ネジ41の直径に対して十分に大きな寸
法になっており、ネジ41が緩んだ状態では、光軸Oに
対して直交方向に若干量移動可能となっている。撮像素
子保持部材43は、図示しないネジにより第2結合部材
45に固設されており、撮像素子保持部材43と第2結
合部材45との間には、オプティカルローパスフィルタ
ー17、防塵ゴム47、撮像素子19が挟持されてい
る。
The through hole 37b of the first coupling member 37 through which the screw 41 penetrates has a size sufficiently larger than the diameter of the screw 41, and is orthogonal to the optical axis O when the screw 41 is loose. It is possible to move a little in the direction. The image sensor holding member 43 is fixed to the second coupling member 45 with a screw (not shown), and the optical low-pass filter 17, the dust-proof rubber 47, and the image pickup device are provided between the image sensor holding member 43 and the second coupling member 45. The element 19 is sandwiched.

【0016】第2結合部材45には、円筒状の複数の突
起45aが一体的に設けられており、その先端には、第
1結合部材37の突起37aが嵌合されている。また、
筐体33と撮像素子保持部材43との間には、蛇腹状の
防塵ゴム49が設けられている。以下、この第1の実施
例の電子カメラの動作の説明を行う。
The second coupling member 45 is integrally provided with a plurality of cylindrical protrusions 45a, and the protrusions 37a of the first coupling member 37 are fitted to the tips thereof. Also,
A bellows-shaped dustproof rubber 49 is provided between the housing 33 and the image sensor holding member 43. The operation of the electronic camera of the first embodiment will be described below.

【0017】この電子カメラでは、図示しない被写体か
ら発せられた光束Aは、撮影レンズ11に入射し、絞り
13で所定光量に絞られた後、ビームスプリッタ15に
入射する。ビームスプリッタ15は、光束Aに対して5
%の光束Cを反射し、95%の光束Bを透過させる。
In this electronic camera, a light flux A emitted from a subject (not shown) is incident on the taking lens 11, is focused by the diaphragm 13 to a predetermined amount, and then is incident on the beam splitter 15. The beam splitter 15 is 5 for the light flux A.
% Of the luminous flux C is reflected and 95% of the luminous flux B is transmitted.

【0018】光束Bは、オプティカルローパスフィルタ
17を透過し、撮像素子19に入射する。光束Bは、撮
像素子19で反射し、光束Dとなってビームスプリッタ
15に再度入射する。光束Dは、光束Bに比べて約40
パーセント、光束Aに比べて38パーセントの光量とな
っている。
The light beam B passes through the optical low pass filter 17 and enters the image pickup element 19. The light flux B is reflected by the image pickup element 19 and becomes a light flux D and is incident on the beam splitter 15 again. The luminous flux D is about 40 compared to the luminous flux B.
The amount of light is 38% compared to the percentage, and the luminous flux A.

【0019】そして、光束Dの一部は、ビームスプリッ
タ15で下方向に反射され、光束Dの内の5パーセン
ト、光束Aの2パーセントの光束が、光束Eとなって集
光レンズ23に入射し、測光素子25に入射する。一
方、光束Cは、全反射ミラー21で反射され、殆ど光量
の損失のないまま光束Fとなってビームスプリッタ15
に再度入射する。
A part of the light beam D is reflected downward by the beam splitter 15, and 5% of the light beam D and 2% of the light beam A become a light beam E and enter the condenser lens 23. Then, the light enters the photometric element 25. On the other hand, the light flux C is reflected by the total reflection mirror 21 and becomes the light flux F with almost no loss of light quantity.
Incident again.

【0020】光束Fの内の95パーセント、光束Aに対
して4.8パーセントの光束が、光束Gとして集光レン
ズ23で集光され、測光素子25に入射する。上記の結
果、光束Eと光束Gとを合わせて、光束Aに対して6.
8パーセントの光束が、測光素子25に入射する。この
値は、同じく5パーセントの反射率を有するビームスプ
リッタを使用した場合に、撮像素子に入射する光量は同
じでありながら、測光素子へは光束Aに対して5パーセ
ントの光束しか入射しない従来例と比較すると、約36
%も測光素子25に入射する光量が増えていることを意
味している。
95% of the luminous flux F and 4.8% of the luminous flux A are condensed as the luminous flux G by the condenser lens 23 and enter the photometric element 25. As a result, the light flux E and the light flux G are combined to be 6.
Eight percent of the luminous flux enters the photometric element 25. This value is the same as the conventional example in which, when a beam splitter having a reflectance of 5% is used, the amount of light incident on the image sensor is the same, but only 5% of the light flux A is incident on the photometric element. Compared to about 36
% Also means that the amount of light incident on the photometric element 25 is increasing.

【0021】以上のようにして測光素子25に入射した
光束を基に、ストロボなどの閃光発光装置の光量制御等
が行われる。また、撮像素子19に入射した光束は、図
示しない信号処理回路を経て、記録媒体に記録される。
以上のように構成された電子カメラでは、ビームスプリ
ッタ15により、被写体像の光束Aが、撮像素子19に
向かう光束と、全反射ミラー21に向かう光束Cとに分
割され、この後、撮像素子19および全反射ミラー21
で反射した光束Dおよび光束Fが、測光素子25に導び
かれるため、撮像素子19に入射する光量を減少するこ
となく、測光素子25に入射する光量を従来より大幅に
増大することができる。
As described above, the light amount control of the flash light emitting device such as a strobe is performed on the basis of the luminous flux incident on the photometric element 25. Further, the light flux incident on the image pickup element 19 is recorded on a recording medium through a signal processing circuit (not shown).
In the electronic camera configured as described above, the beam splitter 15 splits the light flux A of the subject image into a light flux toward the image sensor 19 and a light flux C toward the total reflection mirror 21, and thereafter, the image sensor 19. And total reflection mirror 21
Since the light flux D and the light flux F reflected by are guided to the photometric element 25, the quantity of light incident on the photometric element 25 can be significantly increased as compared with the conventional case without reducing the quantity of light incident on the imaging element 19.

【0022】すなわち、上述した実施例では、ビームス
プリッタ15の反射光および撮像素子19の反射光の両
方が測光素子25に入射するため、例えば、反射率5パ
ーセントのビームスプリッタ15を使用した場合に、従
来より多い入射光量の6.8パーセントの光束が測光素
子25に入射することになり、これにより、測光素子2
5の出力が増え、ノイズなどの外乱による影響を受けに
くくなる。
That is, in the above-described embodiment, both the reflected light of the beam splitter 15 and the reflected light of the image pickup device 19 are incident on the photometric device 25. Therefore, for example, when the beam splitter 15 having a reflectance of 5% is used. The luminous flux of 6.8% of the amount of incident light which is larger than that in the conventional case is incident on the photometric element 25.
The output of 5 increases, and it is less likely to be affected by disturbance such as noise.

【0023】また、測光素子25の入射光量を増やす必
要のない場合には、ビームスプリッタ15の透過率を高
めることにより、撮像素子19により多くの光束が入射
するようにすることができる。そして、上述した電子カ
メラでは、光束CとFおよび光束BとDが同じ光路を往
復することによって、撮影レンズ11から測光素子25
までの必要な光路長を確保することが可能となり、装置
を小型化することができる。
If it is not necessary to increase the amount of light incident on the photometric element 25, the light transmittance of the beam splitter 15 can be increased so that more light flux can enter the image pickup element 19. In the electronic camera described above, the light fluxes C and F and the light fluxes B and D reciprocate in the same optical path, so that the light from the taking lens 11 to the photometric element 25.
It is possible to secure the required optical path length up to and to downsize the device.

【0024】また、光束分割手段が、ビームスプリッタ
15により形成されるため、光束分割手段を容易,確実
に構成することができる。さらに、上述した電子カメラ
では、筐体33から分離可能な第1結合部材37に、第
2結合部材45を接続するようにしたので、撮影レンズ
11と撮像素子19との位置調整が容易になる。
Further, since the light beam splitting means is formed by the beam splitter 15, the light beam splitting means can be easily and surely constructed. Furthermore, in the electronic camera described above, the second coupling member 45 is connected to the first coupling member 37 that can be separated from the housing 33, so that the position adjustment of the taking lens 11 and the image sensor 19 becomes easy. .

【0025】図2は、本発明の電子カメラの第2の実施
例であり、第1の実施例と同じ機能を有する部分には同
じ符号を付して説明を省略する。この実施例では、ビー
ムスプリッタ59の光束分割面59aより前側が上方に
延在され、この延在部59bの上面に、全反射コーティ
ングにより全反射ミラー61が形成され、ビームスプリ
ッタ59と全反射ミラー61とが一体に構成されてい
る。
FIG. 2 shows a second embodiment of the electronic camera of the present invention. The parts having the same functions as those of the first embodiment are designated by the same reference numerals and the description thereof will be omitted. In this embodiment, the front side of the beam splitting surface 59a of the beam splitter 59 extends upward, and the total reflection mirror 61 is formed on the upper surface of the extending portion 59b by total reflection coating. 61 and 61 are formed integrally.

【0026】この実施例では、ビームスプリッタ59と
全反射ミラー61とを一体に構成したので、部品点数を
低減し組立性を向上することができる。図3は、本発明
の第3の実施例であり、第1の実施例と同じ機能を有す
る部分には同じ符号を付して説明を省略する。この第3
の実施例は、35mmフィルムで使用される撮影レンズ6
3によって一次結像面65に作られる36mm×24mm角
の空中像を、約9mm×7mmの有効画素サイズを有する撮
像素子19上へ縮小投影し、画像を電気的信号として記
録するための装置である。
In this embodiment, since the beam splitter 59 and the total reflection mirror 61 are integrally formed, the number of parts can be reduced and the assembling property can be improved. FIG. 3 shows a third embodiment of the present invention, and parts having the same functions as those of the first embodiment are designated by the same reference numerals and the description thereof will be omitted. This third
The example is a taking lens 6 used with 35 mm film.
A device for reducing and projecting an aerial image of 36 mm × 24 mm square formed on the primary image plane 65 by 3 onto the image sensor 19 having an effective pixel size of about 9 mm × 7 mm, and recording the image as an electric signal. is there.

【0027】この装置では、撮影レンズ63によって集
光した光束が、45度ミラー67で上方に反射され、焦
点板69に結像した後に、測光光学系71で被写体輝度
が測定され、またファインダー光学系73によって被写
体像が使用者に観察される。一方、撮影時には、45度
ミラー67は上方に待避し、シャッター75が開口し、
撮影レンズ63によって結像した空中像が一次結像面6
5に結像し、その後に設けられたフィールドレンズ7
7、リレーレンズ79、ビームスプリッタ15を経て第
1の実施例と同様に撮像素子19に入射し結像する。
In this apparatus, the light flux condensed by the taking lens 63 is reflected upward by the 45-degree mirror 67 and focused on the focusing screen 69, and then the subject brightness is measured by the photometric optical system 71, and the finder optical system is used. The system 73 allows the subject image to be viewed by the user. On the other hand, at the time of shooting, the 45-degree mirror 67 is retracted upward, the shutter 75 is opened,
The aerial image formed by the taking lens 63 is the primary image plane 6
5. A field lens 7 formed on the image 5 and provided after that
7, the relay lens 79, and the beam splitter 15, the light enters the image sensor 19 and forms an image as in the first embodiment.

【0028】なお、リレーレンズ79は、通常、複数の
枚数のレンズによって構成されるが、説明上、理想的な
一枚の薄いレンズとして示してある。上記の構成におい
ても、第1の実施例と同様に、ビームスプリッタ15へ
入射した光束の一部は撮像素子19へ透過し、その反射
光は再度ビームスプリッタ15で反射し、測光素子25
へ入射する。
Although the relay lens 79 is usually composed of a plurality of lenses, it is shown as an ideal single thin lens for the sake of explanation. Also in the above-described configuration, as in the first embodiment, a part of the light flux incident on the beam splitter 15 is transmitted to the image pickup element 19, and the reflected light is reflected by the beam splitter 15 again, and the photometric element 25.
Incident on.

【0029】また、ビームスプリッタ15へ入射した残
りの光束は、全反射ミラー21へ反射し、全反射ミラー
21で反射した光束は、再度ビームスプリッタ15を透
過し、測光素子25へ入射する。従って、第1の実施例
と同様に、撮像素子19へ入射する光量を減少すること
なく、測光素子25への入射光量を増やすことが可能で
ある。
The rest of the light beam incident on the beam splitter 15 is reflected by the total reflection mirror 21, and the light beam reflected by the total reflection mirror 21 passes through the beam splitter 15 again and enters the photometric element 25. Therefore, as in the first embodiment, it is possible to increase the amount of light incident on the photometric element 25 without decreasing the amount of light incident on the image sensor 19.

【0030】そして、この実施例では、撮影レンズ63
で一次結像面65に結像した被写体像を、フィールドレ
ンズ77とリレーレンズ79とを有する縮小光学系81
でさらに縮小して撮像素子19に投影することができ
る。図4は、本発明の第4の実施例であり、第1の実施
例と同じ機能を有する部分には同じ符号を付して説明を
省略する。
In this embodiment, the taking lens 63
The subject image formed on the primary image forming surface 65 by the reduction optical system 81 having the field lens 77 and the relay lens 79.
Can be further reduced in size and projected on the image pickup device 19. FIG. 4 shows a fourth embodiment of the present invention, and parts having the same functions as those of the first embodiment are designated by the same reference numerals and the description thereof will be omitted.

【0031】この実施例では、第1結合部材83は、筐
体85に対して、隙間からなる調整代87を介して設け
られており、撮像素子19の調整後に、調整代87に接
着剤を充填するようになっている。この実施例では、第
1結合部材83と第2結合部材89との間に調整代91
が設けられ、接着剤が充填可能とされている。
In this embodiment, the first coupling member 83 is provided in the housing 85 through an adjustment allowance 87 formed of a gap, and after adjusting the image pickup element 19, an adhesive is applied to the adjustment allowance 87. It is designed to be filled. In this embodiment, an adjustment allowance 91 is provided between the first connecting member 83 and the second connecting member 89.
Is provided so that the adhesive can be filled.

【0032】なお、接着剤としてはエポキシ系の樹脂の
他、ハンダなどの溶融金属を使用しても良いが、周囲の
部材が熱膨張を起こさないように冷却しながら接合する
必要がある。この第4の実施例においても第2の実施例
とほぼ同様の効果を得ることができる。
As the adhesive, a molten metal such as solder may be used in addition to the epoxy resin, but it is necessary to join the peripheral members while cooling them so as not to cause thermal expansion. Also in the fourth embodiment, it is possible to obtain substantially the same effect as in the second embodiment.

【0033】そして、この実施例では、筐体85および
第1結合部材83の熱膨張量と、第2結合部材89の熱
膨張量を等しくなるように、各部材の熱膨張係数を設定
することにより、熱膨張による画像のボケを防止するこ
とができる。また、この実施例では、第2結合部材89
を、第1結合部材83に嵌合する必要がないので、その
分設計の自由度を増大することができる。
Then, in this embodiment, the thermal expansion coefficients of the respective members are set so that the thermal expansion amounts of the housing 85 and the first coupling member 83 are equal to the thermal expansion amounts of the second coupling member 89. As a result, it is possible to prevent image blurring due to thermal expansion. Also, in this embodiment, the second coupling member 89
Need not be fitted to the first coupling member 83, the degree of freedom in design can be increased accordingly.

【0034】[0034]

【発明の効果】以上述べたように、請求項1の電子カメ
ラでは、光束分割手段により、被写体像の光束が、撮像
手段に向かう第1の光束と、反射手段に向かう第2の光
束とに分割され、この後、撮像手段および反射手段で反
射した第1の光束および第2の光束が、測光手段に導び
かれるため、撮像素子に入射する光量を減少することな
く、測光手段に入射する光量を従来より大幅に増大する
ことができる。
As described above, in the electronic camera of the first aspect, the luminous flux splitting means divides the luminous flux of the object image into the first luminous flux toward the image pickup means and the second luminous flux toward the reflecting means. The first light flux and the second light flux that have been split and then reflected by the imaging means and the reflection means are guided to the photometric means, and therefore enter the photometric means without reducing the amount of light incident on the imaging element. The amount of light can be increased significantly compared to the conventional one.

【0035】すなわち、光束分割手段から測光素子へ直
接入射する光束の他に、撮像素子で反射した光束も測光
素子に入射するため、撮像素子に入射する光量を減少さ
せることなく、測光手段に入射する光量を増やすことが
可能になる。請求項2の電子カメラでは、光束分割手段
が、ビームスプリッタにより形成されるため、光束分割
手段を容易,確実に構成することができる。請求項3の
電子カメラでは、ビームスプリッタに、反射手段を一体
形成したので、部品点数が減少し、組立性を向上するこ
とができるという利点がある。
That is, in addition to the luminous flux directly incident on the photometric element from the luminous flux splitting means, the luminous flux reflected by the image pickup element is also incident on the photometric element, so that it is incident on the photometric means without reducing the amount of light incident on the image pickup element. It is possible to increase the amount of light to be emitted. In the electronic camera of the second aspect, since the light beam splitting means is formed by the beam splitter, the light beam splitting means can be easily and surely constructed. In the electronic camera of the third aspect, since the beam splitter is integrally formed with the reflecting means, there is an advantage that the number of parts can be reduced and the assemblability can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の電子カメラの第1の実施例を示す断面
図である。
FIG. 1 is a sectional view showing a first embodiment of an electronic camera of the present invention.

【図2】本発明の電子カメラの第2の実施例を示す断面
図である。
FIG. 2 is a sectional view showing a second embodiment of the electronic camera of the present invention.

【図3】本発明の電子カメラの第3の実施例を示す断面
図である。
FIG. 3 is a sectional view showing a third embodiment of the electronic camera of the present invention.

【図4】本発明の電子カメラの第4の実施例を示す断面
図である。
FIG. 4 is a sectional view showing a fourth embodiment of the electronic camera of the present invention.

【符号の説明】[Explanation of symbols]

11 撮影レンズ 15 ビームスプリッタ 19 撮像素子 21,61 全反射ミラー 25 測光素子 11 Photographing lens 15 Beam splitter 19 Imaging device 21,61 Total reflection mirror 25 Photometric device

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 被写体像を投影する投影手段と、 前記投影手段により投影された前記被写体像を電気的映
像信号に変換する撮像手段と、 前記被写体像の明るさを測定する測光手段とを備えた電
子カメラにおいて、 前記投影手段と撮像手段との間に、前記被写体像の光束
を、前記撮像手段に向かう第1の光束と、反射手段に向
かう第2の光束とに分割するとともに、前記撮像手段お
よび前記反射手段で反射した前記第1の光束および第2
の光束を、前記測光手段に導びく光束分割手段を配置し
てなることを特徴とする電子カメラ。
1. A projection means for projecting a subject image, an image pickup means for converting the subject image projected by the projection means into an electrical video signal, and a photometric means for measuring the brightness of the subject image. In the electronic camera, the light flux of the subject image is divided into a first light flux toward the image pickup means and a second light flux toward the reflecting means, and the image pickup is performed between the projection means and the image pickup means. Means and said first light flux and second light reflected by said reflecting means
The electronic camera is characterized in that a luminous flux splitting means for guiding the luminous flux of 1. to the photometric means is arranged.
【請求項2】 請求項1記載の電子カメラにおいて、 前記光束分割手段は、ビームスプリッタであることを特
徴とする電子カメラ。
2. The electronic camera according to claim 1, wherein the light beam splitting means is a beam splitter.
【請求項3】 請求項2記載の電子カメラにおいて、 前記ビームスプリッタには、前記反射手段が一体形成さ
れていることを特徴とする電子カメラ。
3. The electronic camera according to claim 2, wherein the reflecting means is integrally formed with the beam splitter.
JP7024255A 1995-02-13 1995-02-13 Electronic camera Pending JPH08220585A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7024255A JPH08220585A (en) 1995-02-13 1995-02-13 Electronic camera

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7024255A JPH08220585A (en) 1995-02-13 1995-02-13 Electronic camera

Publications (1)

Publication Number Publication Date
JPH08220585A true JPH08220585A (en) 1996-08-30

Family

ID=12133144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7024255A Pending JPH08220585A (en) 1995-02-13 1995-02-13 Electronic camera

Country Status (1)

Country Link
JP (1) JPH08220585A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017139596A1 (en) 2016-02-12 2017-08-17 Contrast Optical Design & Engineering, Inc. Devices and methods for high dynamic range video
US10742847B2 (en) 2016-02-12 2020-08-11 Contrast, Inc. Devices and methods for high dynamic range video
US10819925B2 (en) 2016-02-12 2020-10-27 Contrast, Inc. Devices and methods for high dynamic range imaging with co-planar sensors
US10951888B2 (en) 2018-06-04 2021-03-16 Contrast, Inc. Compressed high dynamic range video
US11265530B2 (en) 2017-07-10 2022-03-01 Contrast, Inc. Stereoscopic camera
US11375135B2 (en) 2016-08-09 2022-06-28 Contrast, Inc. Real-time HDR video for vehicle control

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11463605B2 (en) 2016-02-12 2022-10-04 Contrast, Inc. Devices and methods for high dynamic range video
WO2017139596A1 (en) 2016-02-12 2017-08-17 Contrast Optical Design & Engineering, Inc. Devices and methods for high dynamic range video
US10742847B2 (en) 2016-02-12 2020-08-11 Contrast, Inc. Devices and methods for high dynamic range video
US10805505B2 (en) 2016-02-12 2020-10-13 Contrast, Inc. Combined HDR/LDR video streaming
US10819925B2 (en) 2016-02-12 2020-10-27 Contrast, Inc. Devices and methods for high dynamic range imaging with co-planar sensors
US11785170B2 (en) 2016-02-12 2023-10-10 Contrast, Inc. Combined HDR/LDR video streaming
EP3414890A4 (en) * 2016-02-12 2019-09-18 Contrast, Inc. Devices and methods for high dynamic range video
US11368604B2 (en) 2016-02-12 2022-06-21 Contrast, Inc. Combined HDR/LDR video streaming
US11637974B2 (en) 2016-02-12 2023-04-25 Contrast, Inc. Systems and methods for HDR video capture with a mobile device
US11375135B2 (en) 2016-08-09 2022-06-28 Contrast, Inc. Real-time HDR video for vehicle control
US11910099B2 (en) 2016-08-09 2024-02-20 Contrast, Inc. Real-time HDR video for vehicle control
US11265530B2 (en) 2017-07-10 2022-03-01 Contrast, Inc. Stereoscopic camera
US10951888B2 (en) 2018-06-04 2021-03-16 Contrast, Inc. Compressed high dynamic range video
US11985316B2 (en) 2018-06-04 2024-05-14 Contrast, Inc. Compressed high dynamic range video

Similar Documents

Publication Publication Date Title
JP3975395B2 (en) Camera system
US7570299B2 (en) Automatic focusing system
US20040042078A1 (en) Optical filter and optical device provided with this optical filter
JPH09211287A (en) Image pickup device
US10234650B2 (en) Lens barrel
JP2010160312A (en) Lens adapter for visible light/infrared light photography
JP2006126652A (en) Imaging apparatus
JPH09130683A (en) Optical element-integrated image pickup element and image pickup device
JP2002202455A (en) Photographing optical system and photographing device
JPH08220585A (en) Electronic camera
JP2010102281A (en) Lens adapter for visible light/infrared light photography
JPH08220409A (en) Optical instrument
KR100390435B1 (en) Optical system for digital camera
JPH1188733A (en) Electronic image pickup device
JP4378004B2 (en) Color separation optical system and television camera using the same
JP2005065015A (en) Holding structure for solid-state image pickup element
US8106992B2 (en) Automatic focusing system using a magnification or reduction optical system
JP2007052358A (en) Optical unit
JP3391978B2 (en) Imaging device and video equipment system
JP2009109792A (en) Autofocusing device and camera using it
JPH11205664A (en) Image pickup device and video camera
JPS6012525A (en) Photoelectric converter
WO2021143204A1 (en) Light-splitting flat panel, light-splitting device, light-splitting lens, camera, and electronic device
KR100358806B1 (en) Optical system of view finder
KR100323388B1 (en) device for measuring a distance and brightness of an object in digital still camera