JPH08201515A - Information processor for navigation - Google Patents

Information processor for navigation

Info

Publication number
JPH08201515A
JPH08201515A JP7008304A JP830495A JPH08201515A JP H08201515 A JPH08201515 A JP H08201515A JP 7008304 A JP7008304 A JP 7008304A JP 830495 A JP830495 A JP 830495A JP H08201515 A JPH08201515 A JP H08201515A
Authority
JP
Japan
Prior art keywords
ship
data
seabed
inclination
gyro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7008304A
Other languages
Japanese (ja)
Inventor
Kenji Akimoto
健治 秋本
Takuya Sekiguchi
卓也 関口
Shinichi Takahashi
紳一 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7008304A priority Critical patent/JPH08201515A/en
Publication of JPH08201515A publication Critical patent/JPH08201515A/en
Pending legal-status Critical Current

Links

Landscapes

  • Instructional Devices (AREA)
  • Navigation (AREA)
  • Traffic Control Systems (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

PURPOSE: To prevent running on rocks and improve safety in navigation in a shallow sea by accurately calculating the minimum depth required by a ship when a pitch angle which is the inclination of an own ship is included in processing on navigation and performing display along with the generation of alarm when the running-on-rocks is predicted. CONSTITUTION: When a transmitter/receiver 8 measures the straight-line distance to a seabed obstacle due to running-on-rocks, it calculates the depth of the seabed obstacle by calculating at a data processing part 1. A gyro 7' periodically measures the pitch angle of a ship and temporarily stores the data measured by the gyro at a data part 4. Also, the data processing part 1 compensates a sonar measurement value due to the inclination of the ship from measurement data and then calculates seabed information. A display 3 displays a sea trench diagram based on the seabed information data calculated by the data processing part 1, displays the location of running-on-rocks and the distance from a current own ship when the running-on-rocks is predicted in the route of the own ship based on the sea trench diagram and the maximum value of the amplitude of the inclination of the ship, and at the same time generates an alarm.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、船舶の航行時に於いて
利用される航海用情報処理装置、特に送受波器で測定し
た海底データからジャイロによって測定された船体の傾
きであるピッチ角を基に、航行に必要最小限の深度を正
確に算出する事によって、暗礁等の海底障害物のある航
路での航行の安全性を確保する航海用情報処理装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a navigation information processing apparatus used when a ship is navigating, and in particular to a pitch angle which is a tilt of a hull measured by a gyro from seabed data measured by a transducer. In addition, the present invention relates to a navigation information processing device for ensuring safety of navigation on a route having a seabed obstacle such as a reef by accurately calculating the minimum required depth for navigation.

【0002】[0002]

【従来の技術】従来の装置においては、ソーナの海底エ
コー信号と海図情報による海底図の断面投影図を生成
し、座礁予防する機能を備えたものがある。
2. Description of the Related Art Some conventional apparatuses have a function of preventing a grounding by generating a sectional projection view of a seabed from a seabed echo signal of a sonar and chart information.

【0003】この従来装置は、特開平02−95293
号公報に記載されているように、ソーナの情報から海底
の断面投影図と平面投影図を作成し、この両投影図から
3次元表示を行い、自船シンボルを表示し、安全性の向
上を図っている。
This conventional apparatus is disclosed in Japanese Patent Laid-Open No. 02-95293.
As described in Japanese Patent Publication, a cross-sectional projection view and a plane projection view of the sea floor are created from the information of the sonar, a three-dimensional display is performed from these projection views, and the ship symbol is displayed to improve safety. I am trying.

【0004】また、他に、従来公知のものに、特開昭6
3−40882号公報、特開平5−134031号公報
等がある。
In addition, in addition to the above-mentioned conventional ones, Japanese Patent Laid-Open No.
3-40882, JP-A-5-134031, and the like.

【0005】[0005]

【発明が解決しようとする課題】従来、船体に取り付け
られた送受波器からの情報を基に、暗礁等の海底障害物
までの距離を求める事は可能であったが、上記特開平0
2−95293号公報等に記載されている従来技術で
は、波等の外部的要因によって船体が傾いている時の船
舶が最低限必要としている深度を正確に算出し、航行中
座礁が予測される時にアラームを発生する機能はなかっ
た。
Conventionally, it has been possible to obtain the distance to a seabed obstacle such as a reef based on information from a wave transmitter / receiver attached to a hull.
In the conventional technique described in Japanese Patent Laid-Open No. 2-95293, the minimum depth required by the ship when the hull is tilted due to external factors such as waves is accurately calculated, and grounding during navigation is predicted. Sometimes there was no function to raise an alarm.

【0006】本発明の目的は、波等の外部的要因による
船のピッチ角を計算した上で送受波器で測定される障害
物に対する方向の誤差をなくし、また、航路の深度を正
確に求め、航行する海底の深度と船体の傾斜の情報を基
に座礁が予測される場合は、アラームを発生し、座礁す
る場所の情報を表示によって知らせることにある。
The object of the present invention is to eliminate the error in the direction with respect to an obstacle measured by a transducer after calculating the pitch angle of a ship due to external factors such as waves, and to accurately determine the depth of a route. If a grounding is predicted based on the depth of the seabed and the inclination of the hull, an alarm will be generated and the information on the grounding location will be displayed.

【0007】[0007]

【課題を解決するための手段】上記の目的は、船舶の航
行時に暗礁等の海底障害物のある領域での海底障害物ま
での直線距離を測定する為の送受波器と、船舶基準軸に
対してどれ位船が傾いているのか、すなわちピッチ角を
測定する為のジャイロ部と、航行速度や船体に関わるパ
ラメータを入力する入力部、海底障害物のある位置を計
算によって算出し、航行する海底の情報を処理し、船体
のピッチ角によって発生するマージを含んだ上で海面か
ら船底までの深さを算出し、航行可能かどうか処理計算
するデータ処理部と、航行する海底の情報を表示し、座
礁が予測される場合には、警告のアラームを発生し、座
礁すると予測されるポイントにシンボルを表示する表示
部を有することによって達成される。
[Means for Solving the Problems] The above-mentioned object is to provide a transmitter / receiver for measuring a linear distance to an undersea obstacle in an area where an undersea obstacle such as a reef is present when the ship is navigating, and a ship reference axis. On the other hand, how much the ship is tilted, that is, the gyro part for measuring the pitch angle, the input part for inputting navigation speed and parameters related to the hull, the position where there is a seabed obstacle are calculated, and sailing The data processing section that processes the information of the seabed and calculates the depth from the sea surface to the ship bottom including the merge generated by the pitch angle of the hull and calculates whether it is navigable, and displays the information of the navigating seabed If a grounding is predicted, a warning alarm is generated and a display unit that displays a symbol at a point predicted to be grounded is achieved.

【0008】[0008]

【作用】上記手段によると、送受波器は、ビーム角内に
存在する暗礁等の海底障害物との直線距離を測定し、こ
の時、ジャイロで測定されたピッチ角が0でない時に、
ピッチ角によって自船から障害物に対する角度に誤差が
生じるので、航海情報処理装置では、この誤差をなくす
為に送受波器で測定した海底障害物に対して出来る角度
と、海底障害物の距離を測定した時刻の自船のピッチ角
を計算によって求め、差分をとる事により、暗礁等の海
底障害物の測定時の誤差をなくす。
According to the above means, the transducer measures the linear distance from the seabed obstacle such as a reef within the beam angle, and when the pitch angle measured by the gyro is not zero,
There is an error in the angle from the ship to the obstacle due to the pitch angle.Therefore, in the navigation information processing device, in order to eliminate this error, the angle that can be measured with the transducer to the seabed obstacle and the distance of the seabed obstacle are calculated. By calculating the pitch angle of the ship at the measured time and calculating the difference, the error when measuring the seabed obstacle such as a reef is eliminated.

【0009】次に、海底障害物の深度と自船からの水平
距離を算出し、この時、航行先の海底障害物の深度と、
最大ピッチ角を考慮した船舶が必要とする最小限の深度
を比較し、座礁が予測される時は、表示部にて、図5に
示す様な表示を行い、アラームを発生する。
Next, the depth of the seabed obstacle and the horizontal distance from the ship are calculated. At this time, the depth of the seabed obstacle at the destination and
The minimum depth required by the ship in consideration of the maximum pitch angle is compared, and when a grounding is predicted, a display as shown in FIG. 5 is displayed on the display unit and an alarm is generated.

【0010】[0010]

【実施例】以下、本発明を実施例によって説明する。図
1は、本発明の一実施例構成図で、図9がデータ処理部
のフローチャートである。送受波器8は、発生した音波
信号が水中の障害物に当たり、再び送受波器8にはね返
って来た信号を受信する。データ処理部1では、ステッ
プ101で、送受波器8から音波を発生する時刻Aを、
CLOCK5から入力時刻を参照しデータ部4に保存す
る(ステップ102)。ステップ103で、音波が海底
の障害物に当たり、再び送受波器8に返って来た時刻B
を、CLOCK5からの入力により、データ部へ保存す
る(ステップ104)。そして、データ部4に保存され
た時刻A,Bの差分を取り、水中音速で割ることにより
海底の障害物までの直線距離Rを測定する。更に、この
送受波器8にビーム(指向性)を持たせ、送受波器8の
向きを変える事によって海底の障害物が存在する位置の
角度θを測定する。
EXAMPLES The present invention will be described below with reference to examples. FIG. 1 is a block diagram of an embodiment of the present invention, and FIG. 9 is a flowchart of a data processing unit. The wave transmitter / receiver 8 receives the signal that the generated sound wave signal hits an obstacle in the water and bounces back to the wave transmitter / receiver 8. In the data processing unit 1, at step 101, the time A at which the sound wave is generated from the transducer 8 is
The input time is referred to from CLOCK 5 and stored in the data section 4 (step 102). At step 103, the sound wave hits an obstacle on the sea floor and returns to the transmitter / receiver 8 at time B.
Is stored in the data section by the input from CLOCK 5 (step 104). Then, the difference between the times A and B stored in the data section 4 is taken and divided by the underwater sound velocity to measure the straight line distance R to the obstacle on the seabed. Further, the transducer 8 is provided with a beam (directivity), and the direction of the transducer 8 is changed to measure the angle θ at the position where the obstacle on the seabed exists.

【0011】測定された、距離Rと角度θのデータは、
ピッチ角が0の場合(ステップ105)は、そのままデ
ータ部4に保存し(ステップ107)。ピッチ角がαで
ある場合は、測定角度θにθ+αを代入して(ステップ
106)、保存する(ステップ107)。保存は図10
の様な表の形でデータ部4にて保存される。データ処理
部1では、データ部4に保存された距離R,角度θを基
に各送受波器が測定したポイント毎に、水平方向距離χ
とポイントでの深度Dを以下の計算により算出する。
The measured data of the distance R and the angle θ are
When the pitch angle is 0 (step 105), it is stored in the data section 4 as it is (step 107). When the pitch angle is α, θ + α is substituted for the measurement angle θ (step 106) and the measurement angle θ is saved (step 107). Save as Figure 10
The data is stored in the data section 4 in the form of a table like this. In the data processing unit 1, based on the distance R and the angle θ stored in the data unit 4, for each point measured by each transducer, the horizontal distance χ
And the depth D at the point is calculated by the following calculation.

【0012】図2でD1,2 は共に送受波器8のセンサ
部12の深度から測定した深度なので、センサ部12の
位置する深度をD0 とすると、海底のd1,2 の海面か
らの深度は以下のように、d1 の深度は数1、d2 の深
度は数2で表せる。
[0012] D 1 in FIG. 2, since D 2 is a depth that both measured from the depth of the sensor portion 12 of the transducer 8, the depth of the position of the sensor unit 12 when the D 0, the seabed d 1, of d 2 The depth from the sea surface can be expressed by the following formula 1 as the depth of d 1 and the formula 2 as the depth of d 2 .

【0013】[0013]

【数1】 d1 の深度:D0 +D1 =γ1 ・sinθ1
+D0
## EQU1 ## Depth of d 1 : D 0 + D 1 = γ 1 · sin θ 1
+ D 0

【0014】[0014]

【数2】 d2 の深度:D0 +D2 =γ2 ・sinθ2
+D0 また、d1 ,d2 の水平方向のセンサからの距離χ1,χ
2 は、数3、数4で表せる。
(2) Depth of d 2 : D 0 + D 2 = γ 2 · sin θ 2
+ D 0 and the distances d 1 and d 2 from the horizontal sensor χ 1, χ
2 can be expressed by Equations 3 and 4.

【0015】[0015]

【数3】 χ1 =γ1 ・cosθ1 [Equation 3] χ 1 = γ 1 · cos θ 1

【0016】[0016]

【数4】 χ2 =γ2 ・cosθ2 上記の数式を用いる事により、水平方向距離χ、離れた
地点での深度Dを算出する事ができる(ステップ10
8)。
By Equation 4] χ 2 = γ 2 · cosθ 2 the use of the above formula, it is possible to calculate the depth D in the horizontal direction distance chi, distant point (Step 10
8).

【0017】以上の処理において、前方の一定範囲内の
方位について、縦方向に向きを変えながら送受波器No
毎のポイントを測定する事により、図3(a)に示すデ
ータのプロットにより図3(b)の3次元情報での海構
図データを作成し、表示部3にて表示する(ステップ1
09)。またこの3次元情報はデータ処理部1にて、図
11の様な表の形で保存する。
In the above processing, the transducer number is changed while changing the direction in the vertical direction for the azimuth within a certain range in front.
By measuring each point, the sea composition data in the three-dimensional information of FIG. 3B is created by plotting the data shown in FIG. 3A and displayed on the display unit 3 (step 1
09). The three-dimensional information is stored in the data processing unit 1 in the form of a table as shown in FIG.

【0018】次に、暗礁に座礁する事が予測される場合
を図4を参照して説明する。
Next, a case where it is predicted that a ground reef will be stranded will be described with reference to FIG.

【0019】図4で水平方向の距離χ3 の地点でのセン
サ部12の深度から測定した深度D3 は、下記に示す数
5式で表せる。
In FIG. 4, the depth D 3 measured from the depth of the sensor portion 12 at the point of the distance χ 3 in the horizontal direction can be expressed by the following equation (5).

【0020】[0020]

【数5】 D3 =γ3 ・sinθ3 この時に、センサ部12と船底間の距離nとD3 の関係
が数6であり、
[Formula 5] D 3 = γ 3 · sin θ 3 At this time, the relationship between the distance n between the sensor unit 12 and the ship bottom and D 3 is Formula 6,

【0021】[0021]

【数6】 n≧D3 さらに数6式により、数7、数8式が成立する場合(ス
テップ110)に、
[Equation 6] n ≧ D 3 Further, if Equations 7 and 8 are satisfied by the Equation 6 (step 110),

【0022】[0022]

【数7】 n+D0 ≧D3 +D0 (7) n + D 0 ≧ D 3 + D 0

【0023】[0023]

【数8】 m≧D 船体16は座礁する事が予測されるので、図5の様に表
示部3にて、座礁すると予測される位置、水平方向距
離、時間を表示し(ステップ112)、アラームを発生
する(ステップ111)。
[Mathematical formula-see original document] m ≧ D Since it is predicted that the hull 16 will be aground, the position, horizontal distance, and time predicted to be aground are displayed on the display unit 3 as shown in FIG. 5 (step 112). An alarm is generated (step 111).

【0024】また船舶が速度vでd3 の上を通過する迄
の時間をtとすると、tは以下の数9式で求まる。
If the time required for the ship to pass over d 3 at the speed v is t, then t can be obtained by the following equation (9).

【0025】[0025]

【数9】 [Equation 9]

【0026】次にこれまでの処理に於いて、図6に示す
様な波による船体の傾き角(ピッチ角α)が発生する場
合を説明する。図7で示す様にジャイロによって船体の
χ,y,z方向に対する傾きを測定する。
Next, a case will be described in which, in the above-described processing, the inclination angle (pitch angle α) of the hull due to waves as shown in FIG. 6 is generated. As shown in FIG. 7, the inclination of the hull with respect to the χ, y, z directions is measured by a gyro.

【0027】ピッチ角であるαの値は、測定周期に同期
してデータ部4に取り込まれ、図10の送受波器測定情
報をデータ部4へ書き込むときに測定角度θ+αを代入
(ステップ106)して保存(ステップ107)されて
いる。データ処理部1では、保存されている角度θ+α
にしたがって数1〜数4及び数9により海底情報を算出
し保存(ステップ107)する。またデータ処理部1で
は、過去のピッチ角と入力部2から入力された図12に
示すデータ(h,i,p,j)による三角関数曲線を基
に、船体が航行に必要とする深度を算出する。ジャイロ
で測定したピッチ角の最大値をPとすると図8を基に、
以下の数10式が成り立つ。
The value of α, which is the pitch angle, is taken into the data section 4 in synchronism with the measurement cycle, and the measurement angle θ + α is substituted when writing the transducer measurement information of FIG. 10 into the data section 4 (step 106). And is stored (step 107). In the data processing unit 1, the stored angle θ + α
According to the equations 1 to 4 and 9, the seabed information is calculated and stored (step 107). In the data processing unit 1, the depth required by the hull for navigation is determined based on the past pitch angle and the trigonometric function curve based on the data (h, i, p, j) shown in FIG. calculate. If the maximum value of the pitch angle measured with the gyro is P, based on Fig. 8,
The following formula 10 is established.

【0028】[0028]

【数10】 (h+i)×sin(P)−j ≧ D h:船体重心から船体の先までの長さ(前方か後方か長
い方の値を使用) i:安全係数 P:最大ピッチ角 j:船体重心からきっ水の長さ 測定値を基に算出されたデータである図11の表のDの
値について、数10式の条件を満たす場合には、アラー
ムを発生し、図11の表のデータを基に図5に示す様な
座礁すると予測される位置と、時間、距離を表示する。
[Equation 10] (h + i) × sin (P) −j ≧ D h: Length from the center of gravity of the ship to the tip of the hull (use the value in front, rear or longer) i: Safety factor P: Maximum pitch angle j : Regarding the value of D in the table of FIG. 11 which is the data calculated based on the measured value of the water from the body weight of the ship, when the condition of the expression 10 is satisfied, an alarm is generated and the table of FIG. 11 is generated. The position, time, and distance predicted to be aground as shown in FIG.

【0029】本実施例によれば、船舶の航行中に暗礁等
の障害物をあらかじめ発見し、安全で確実な迂回航路を
確保する事が出来る。
According to the present embodiment, obstacles such as reefs can be found in advance while the vessel is traveling, and a safe and reliable detour route can be secured.

【0030】[0030]

【発明の効果】以上説明したように、本発明によれば自
船の傾きであるピッチ角を測定する事によって、航行先
の航路に暗礁等の海底障害物が存在する場合の航行に於
いて、深度と船底を単純に比較するのではなく、自船の
ピッチ角によるマージを加算して比較する為、浅海等の
航行時の安全な航行を確保する事が出来る。
As described above, according to the present invention, by measuring the pitch angle, which is the inclination of the ship, in the navigation when there is a seabed obstacle such as a reef in the navigation route of the destination. , It is possible to secure safe navigation when navigating in shallow water, etc., because the depth and the bottom of the ship are not simply compared, but the merge by the pitch angle of the own ship is added and compared.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例航海用情報処理装置の構成
図。
FIG. 1 is a configuration diagram of a navigation information processing apparatus according to an embodiment of the present invention.

【図2】本発明の一実施例の送受波器の測定図。FIG. 2 is a measurement diagram of a transceiver according to an embodiment of the present invention.

【図3】本発明の一実施例の送受波器の測定値表示範囲
(a),及び表示部の表示(b)の図。
FIG. 3 is a diagram showing a measured value display range (a) and a display (b) of the display unit of the transducer according to the embodiment of the present invention.

【図4】本発明の一実施例の送受波器の測定図(暗礁が
存在する場合)。
FIG. 4 is a measurement diagram of a transducer according to an embodiment of the present invention (when a reef exists).

【図5】本発明の一実施例の表示部の表示図(アラーム
発生時)。
FIG. 5 is a display diagram of the display unit according to the embodiment of the present invention (when an alarm occurs).

【図6】本発明の一実施例のジャイロコンパスによって
測定されるピッチ角説明図。
FIG. 6 is an explanatory diagram of a pitch angle measured by a gyro compass according to an embodiment of the present invention.

【図7】本発明の一実施例のピッチ角説明図。FIG. 7 is an explanatory diagram of a pitch angle according to an embodiment of the present invention.

【図8】本発明の一実施例のピッチ角を含んだ時の船舶
の傾斜図。
FIG. 8 is a tilting diagram of a ship including a pitch angle according to an embodiment of the present invention.

【図9】本発明の一実施例におけるデータ処理部の処理
のフローチャート。
FIG. 9 is a flowchart of processing of a data processing unit according to an embodiment of the present invention.

【図10】本発明の一実施例の送受波器測定情報(デー
タ部)説明図。
FIG. 10 is an explanatory diagram of the transmitter / receiver measurement information (data section) according to the embodiment of the present invention.

【図11】本発明の一実施例の表示データ情報(データ
部)説明図。
FIG. 11 is an explanatory diagram of display data information (data section) according to the embodiment of the present invention.

【図12】本発明の一実施例の入力データ説明図。FIG. 12 is an explanatory diagram of input data according to the embodiment of this invention.

【符号の説明】[Explanation of symbols]

1…データ処理部、2…入力部、3…表示部、4…デー
タ部、5…CLOCK、6…ブザー、7…送受波器用ジ
ャイロ、7′…船体用ジャイロ、8…送受波器、9…送
受波器(No.1)、10…送受波器(No.2)、1
1…送受波器(No,100)、12…センサ部、13
…過去の測定結果を表示する領域、14…現在の測定結
果を表示する領域、15…自船、16…船体、17…ポ
イントに表示するシンボル。
DESCRIPTION OF SYMBOLS 1 ... Data processing part, 2 ... Input part, 3 ... Display part, 4 ... Data part, 5 ... CLOCK, 6 ... Buzzer, 7 ... Transceiver gyro, 7 '... Ship gyro, 8 ... Transceiver, 9 ... Transceiver (No. 1), 10 ... Transceiver (No. 2), 1
1 ... Transducer (No, 100), 12 ... Sensor part, 13
... area for displaying past measurement results, 14 ... area for displaying current measurement results, 15 ... own ship, 16 ... ship, 17 ... symbols displayed at points.

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 G01S 15/89 15/93 G08G 3/02 A 8907−2F G01S 15/89 Z 8907−2F 15/93 Continuation of front page (51) Int.Cl. 6 Identification number Office reference number FI Technical display location G01S 15/89 15/93 G08G 3/02 A 8907-2F G01S 15/89 Z 8907-2F 15/93

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 浅海や暗礁等の障害物のある航路を航行
する時の船舶の座礁を避ける為の情報処理装置であっ
て、暗礁等の障害物までの距離方向を測定する送受波器
と、船体の傾きを測定するジャイロと、上記送受波器と
上記ジャイロから得られるデータを基に、上記ジャイロ
から受信したデータの中から上記送受波器の測定した時
刻の船体の傾き角のデータを求め船体の傾きによるソー
ナ測定値を補正して海底情報の計算処理をするデータ処
理部と、該データ処理部によって算出された海底情報デ
ータに基づいて海構図を表示する表示部とを有すること
を特徴とする航海用情報処理装置。
1. An information processing device for avoiding grounding of a ship when navigating a route having obstacles such as shallow water or reef, which comprises a transducer for measuring the distance direction to the obstacle such as reef. , A gyro that measures the inclination of the hull, based on the data obtained from the transducer and the gyro, from the data received from the gyro, the data of the inclination angle of the hull at the time measured by the transducer It has a data processing unit that corrects the sonar measurement value due to the inclination of the obtained hull and calculates the seafloor information, and a display unit that displays the sea composition based on the seafloor information data calculated by the data processing unit. Characteristic navigation information processing equipment.
【請求項2】 上記データ処理部は、上記算出された海
底情報データと上記ジャイロから受信したデータによる
船体の傾きの振幅の最大値とに基づき自船の航路におい
て座礁が予想される場合にアラーム発生要求し、上記表
示部にアラームを発生させるものであることを特徴とす
る請求項1記載の航海用情報処理装置。
2. The data processing unit alarms when a grounding is expected in the route of the ship based on the calculated seabed information data and the maximum value of the amplitude of the inclination of the hull based on the data received from the gyro. 2. The navigation information processing apparatus according to claim 1, wherein a request for generation is made and an alarm is generated on the display unit.
【請求項3】 請求項1または請求項2記載の航海用情
報処理装置を備えたことを特徴とする船舶。
3. A ship comprising the navigation information processing apparatus according to claim 1.
JP7008304A 1995-01-23 1995-01-23 Information processor for navigation Pending JPH08201515A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7008304A JPH08201515A (en) 1995-01-23 1995-01-23 Information processor for navigation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7008304A JPH08201515A (en) 1995-01-23 1995-01-23 Information processor for navigation

Publications (1)

Publication Number Publication Date
JPH08201515A true JPH08201515A (en) 1996-08-09

Family

ID=11689421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7008304A Pending JPH08201515A (en) 1995-01-23 1995-01-23 Information processor for navigation

Country Status (1)

Country Link
JP (1) JPH08201515A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006052987A (en) * 2004-08-10 2006-02-23 Furuno Electric Co Ltd Forward detection sonar and underwater imaging display apparatus
JP2007024548A (en) * 2005-07-12 2007-02-01 Furuno Electric Co Ltd Underwater detection unit
CN102278986A (en) * 2011-06-21 2011-12-14 海华电子企业(中国)有限公司 Optimization method for electronic marine chart ship route design
CN105629975A (en) * 2016-02-05 2016-06-01 哈尔滨工程大学 Method for avoiding moving obstacle in UUV navigation process based on virtual puffing
CN111412918A (en) * 2020-03-13 2020-07-14 天津大学 Unmanned ship global safety path planning method
US10856612B2 (en) 2012-09-20 2020-12-08 Nike, Inc. Sole structures and articles of footwear having plate moderated fluid-filled bladders and/or foam type impact force attenuation members
CN113012491A (en) * 2021-03-18 2021-06-22 河海大学 Visual ocean forecast simulation system and implementation method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006052987A (en) * 2004-08-10 2006-02-23 Furuno Electric Co Ltd Forward detection sonar and underwater imaging display apparatus
JP2007024548A (en) * 2005-07-12 2007-02-01 Furuno Electric Co Ltd Underwater detection unit
CN102278986A (en) * 2011-06-21 2011-12-14 海华电子企业(中国)有限公司 Optimization method for electronic marine chart ship route design
US10856612B2 (en) 2012-09-20 2020-12-08 Nike, Inc. Sole structures and articles of footwear having plate moderated fluid-filled bladders and/or foam type impact force attenuation members
CN105629975A (en) * 2016-02-05 2016-06-01 哈尔滨工程大学 Method for avoiding moving obstacle in UUV navigation process based on virtual puffing
CN105629975B (en) * 2016-02-05 2018-04-03 哈尔滨工程大学 A kind of bypassing method of the dyskinesia based on during virtual expanded UUV navigation
CN111412918A (en) * 2020-03-13 2020-07-14 天津大学 Unmanned ship global safety path planning method
CN113012491A (en) * 2021-03-18 2021-06-22 河海大学 Visual ocean forecast simulation system and implementation method thereof

Similar Documents

Publication Publication Date Title
US20220252708A1 (en) Sonar transducer having a gyroscope
JPH10325871A (en) Narrow multi-beam depth measuring system
US20220390542A1 (en) Live sonar systems and methods
JPH08201515A (en) Information processor for navigation
JP2002090456A (en) Topographic measuring apparatus
WO2019130940A1 (en) Video generation device and video generation method
JPH10123247A (en) Real-time underwater execution control method
JP2006194806A (en) Display device for vessel
JP3666848B2 (en) Slope surveying system
JPS61262674A (en) Apparatus for measuring position in water
JP2004170632A (en) Three-dimensional seabed topographic data preparation apparatus
JP3935828B2 (en) Navigation support device and navigation support system
RU2260191C1 (en) Navigation complex for high-speed ships
JPH0385476A (en) Sea bottom searching apparatus
JP3192448B2 (en) Tide meter
JPH0375580A (en) Preparing apparatus of bathymetric chart
JP2931881B2 (en) Display device
JPH06988B2 (en) Posture display method for piles in pile driving ships
JPS6132200A (en) Cource minitor for ship
JPS6140580A (en) Ship's position display
JP2885451B2 (en) Measuring device for block installation
WO2023175715A1 (en) Information processing device, control method, program, and storage medium
JPH0762660A (en) Rubble mound leveled surface measurement system
JPH0625666B2 (en) Sounding device with seafloor reference point
JPS622184A (en) Doppler underwater speed measuring instrument