JPH08196042A - Charging and discharging protection unit for secondary battery - Google Patents

Charging and discharging protection unit for secondary battery

Info

Publication number
JPH08196042A
JPH08196042A JP353595A JP353595A JPH08196042A JP H08196042 A JPH08196042 A JP H08196042A JP 353595 A JP353595 A JP 353595A JP 353595 A JP353595 A JP 353595A JP H08196042 A JPH08196042 A JP H08196042A
Authority
JP
Japan
Prior art keywords
secondary battery
charging
voltage
path
diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP353595A
Other languages
Japanese (ja)
Inventor
Hiroyuki Hasegawa
博之 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP353595A priority Critical patent/JPH08196042A/en
Priority to US08/565,818 priority patent/US5789900A/en
Publication of JPH08196042A publication Critical patent/JPH08196042A/en
Pending legal-status Critical Current

Links

Landscapes

  • Protection Of Static Devices (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

PURPOSE: To protect an element from deterioration and destruction, by connecting a diode in series with a switch means in a reverse direction against the conduction direction of a parasitic diode in a charging circuit and a discharging circuit. CONSTITUTION: Voltages of secondary batteries 10 and 12 are measured by a control circuit 210 at charging time. When the voltages are in a given value, the voltage is supplied through a terminal 32, a charging path diode 240, and a charging-path breaking switch element 220 to the secondary batteries 10 and 12 during the charging time. When one of batteries 10 and 12 is full charged to an upper level, a drain/source current is stopped to prevent overcharging. The discharging current is carried from a positive terminal of the secondary battery through the charging breaking switch element 230 and a charging path diode 250 to the terminal 32 during discharging. Though the current tends to flow through a parasitic diode 222, the reverse conduction against the charging path diode 240 can be prevented. As a result, a deterioration in performance or destruction of an element is prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、二次電池の過充電およ
び過放電を防止する二次電池の充放電保護装置に係り、
特に、たとえば、携帯型の電子機器に着脱自在に搭載さ
れる電源装置などに用いられる二次電池の充放電保護装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a secondary battery charge / discharge protection device for preventing overcharge and overdischarge of a secondary battery,
In particular, the present invention relates to a secondary battery charge / discharge protection device used in, for example, a power supply device detachably mounted in a portable electronic device.

【0002】[0002]

【従来の技術】たとえば、ビデオカメラ一体型VTR(ビデ
オテープレコーダ)、パーソナルコンピュータまたは電
話機などの種々の電子機器の小型化にともない、多くの
携帯型の電子機器が開発されている。これら携帯型の電
子機器には、その電源として一次電池または二次電池な
どが広く用いられている。特に、二次電池は、繰り返し
使用できるので携帯型の電子機器に多く普及している。
2. Description of the Related Art With the miniaturization of various electronic devices such as video camera integrated VTRs (video tape recorders), personal computers, and telephones, many portable electronic devices have been developed. A primary battery or a secondary battery is widely used as a power source for these portable electronic devices. In particular, secondary batteries are widely used in portable electronic devices because they can be used repeatedly.

【0003】このような二次電池を電源装置として使用
する場合には、二次電池の過充電および過放電を防止す
ることが必要である。たとえば、二次電池が過充電状態
または過放電状態になると電池内部の物質の分解が生
じ、その結果、電池容量が低下する不具合が生じる。こ
のような過充電、過放電を繰り返して行なうと、電池の
容量が加速度的に低下して、電池の寿命が尽きてしま
う。
When such a secondary battery is used as a power supply device, it is necessary to prevent overcharge and overdischarge of the secondary battery. For example, when the secondary battery is in an overcharged state or an overdischarged state, a substance inside the battery is decomposed, resulting in a problem that the battery capacity is reduced. If such overcharging and overdischarging are repeated, the capacity of the battery is reduced at an accelerating rate and the life of the battery is exhausted.

【0004】これらの防止策として電池電圧を監視し
て、充電時には所定の設定電圧以上に電池電圧がなった
場合に充電経路を遮断し、また、放電時には別の設定電
圧以下に電池電圧がなった場合に放電経路を遮断する方
法がとられている。たとえば、実開平02-136445 号公報
には、直列に接続された複数の二次電池のそれぞれの電
池電圧を検出して、いずれか一つの二次電池の電圧が設
定電圧以上または以下になった場合に充電経路または放
電経路をそれぞれ遮断する充電式電池の保護回路が提案
されている。
As a preventive measure against these problems, the battery voltage is monitored so that the charging path is shut off when the battery voltage exceeds a predetermined set voltage during charging, and the battery voltage drops below another set voltage during discharging. In this case, a method of cutting off the discharge path is adopted. For example, in Japanese Utility Model Laid-Open No. 02-136445, the battery voltage of each of a plurality of rechargeable batteries connected in series is detected, and the voltage of any one of the rechargeable batteries is above or below a set voltage. In this case, a protection circuit for a rechargeable battery has been proposed, which cuts off the charging path or the discharging path, respectively.

【0005】この場合、充電経路および放電経路を遮断
する手段として、コスト上また外形サイズを考慮して、
有利には半導体スイッチによる遮断が一般的に適用され
る。たとえば、特開平04-33271号公報、特開平04-75430
号公報または特開平04-75431号公報などには、内部に寄
生ダイオードを含む電界効果トランジスタをスイッチ素
子として用いた二次電池の電源装置が提案されている。
特に、特開平04-75430号公報に記載の電源装置は、二次
電池の一方の端子側に、充電経路遮断用の第1の電界効
果トランジスタと放電経路遮断用の第2の電界効果トラ
ンジスタを直列に接続し、電池の両端電圧が充電可能電
圧近傍の第1の電圧に下がったとき第1の電界効果トラ
ンジスタをオンとして充電経路を開放し、第1の電圧よ
り高い第2の電圧に上がったとき第1の電界効果トラン
ジスタをオフとして充電経路を遮断して、電池電圧が放
電可能電圧の近傍の第3の電圧に上がったとき第2の電
界効果トランジスタをオンとして放電経路を開放し、第
3の電圧よりも低い第4の電圧に下がったとき第2の電
界効果トランジスタをオフとして放電経路を遮断してい
るものであった。この場合、充電経路を遮断している過
充電保護時に、オフ状態の第1の電界効果トランジスタ
では充電方向と反対方向に導通する内部の寄生ダイオー
ドにて放電経路を確保していた。また、放電経路を遮断
している過放電保護時には、オフ状態の第2の電界効果
トランジスタでは放電方向と反対方向に導通する内部の
寄生ダイオードにて充電経路を確保していた。つまり、
電界効果トランジスタは、その構造上、遮断した方向と
反対方向に電流を流す寄生ダイオードを含むため、一方
向のみの遮断効果しか期待できない。上記公報では、こ
の現象を積極的に利用して、2つの電界効果トランジス
タを逆向きに直列に接続して遮断した方向と逆方向の経
路を確保しつつ、二次電池の過充電保護および過放電保
護を実現していた。
In this case, as means for shutting off the charging path and the discharging path, considering cost and external size,
Switching off by means of semiconductor switches is generally applied to advantage. For example, JP-A-04-33271 and JP-A-04-75430
Japanese Patent Laid-Open Publication No. 04-75431 and the like propose a power supply device for a secondary battery using a field effect transistor including a parasitic diode inside as a switch element.
In particular, the power supply device described in Japanese Patent Laid-Open No. 04-75430 has a first field effect transistor for blocking a charging path and a second field effect transistor for blocking a discharging path on one terminal side of a secondary battery. When connected in series, when the voltage across the battery drops to a first voltage near the chargeable voltage, the first field effect transistor is turned on to open the charging path and rise to a second voltage higher than the first voltage. When the first field effect transistor is turned off to cut off the charging path, and when the battery voltage rises to a third voltage near the dischargeable voltage, the second field effect transistor is turned on to open the discharge path, When the voltage dropped to the fourth voltage lower than the third voltage, the second field effect transistor was turned off to interrupt the discharge path. In this case, at the time of overcharge protection that cuts off the charging path, the first field effect transistor in the off state secures the discharging path by the internal parasitic diode that conducts in the direction opposite to the charging direction. In addition, during over-discharge protection that cuts off the discharge path, the second field effect transistor in the off state secures the charge path by the internal parasitic diode that conducts in the direction opposite to the discharge direction. That is,
Because of its structure, the field effect transistor includes a parasitic diode that causes a current to flow in the opposite direction to the blocking direction, so that only a blocking effect in one direction can be expected. In the above publication, this phenomenon is positively used to secure a path in the opposite direction to the direction in which two field effect transistors are connected in series in the opposite direction in the opposite direction, and the overcharge protection and the overcharge protection of the secondary battery are ensured. It realized discharge protection.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上述し
た従来の技術では、本来の構造上その使用目的ではない
スイッチ素子内部の寄生ダイオードを活用してそれぞれ
の充放電経路を確保しているために、素子自体の劣化が
生じ易くなり、スイッチとしての機能低下や素子の破壊
が生じ易くなるという欠点があった。このため、スイッ
チ機能が低下すると、所望の時点での充放電経路の遮断
ができなくなり、これを知らずに使用すると、上述のよ
うな二次電池の過充電または過放電による不具合が生じ
易くなる問題があった。
However, in the above-mentioned prior art, since the parasitic diodes inside the switch element, which are not originally intended to be used due to their original structure, are utilized to secure the respective charge / discharge paths, There is a drawback that the element itself is likely to be deteriorated, the function as a switch is deteriorated, and the element is easily broken. Therefore, when the switch function is deteriorated, the charging / discharging path cannot be cut off at a desired point in time, and if it is used without knowing it, a problem due to overcharge or overdischarge of the secondary battery as described above is likely to occur. was there.

【0007】本発明は上記課題を解決して、過充電およ
び過放電の保護動作を維持しつつ素子劣化および素子破
壊を防止してより確実な二次電池の充放電保護装置を提
供することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to solve the above problems and provide a more reliable charge / discharge protection device for a secondary battery by preventing deterioration and destruction of elements while maintaining protection operations against overcharge and overdischarge. To aim.

【0008】[0008]

【課題を解決するための手段】本発明による二次電池の
充放電保護装置は、上記課題を解決するために、充電可
能な二次電池の過充電および過放電を防止する二次電池
の充放電保護装置において、二次電池の充電経路に直列
に接続され通常オンとなって充電方向に電流を導通させ
てオフ時に充電方向の経路を遮断する第1のスイッチ手
段であって、オフ時に放電方向に導通する寄生ダイオー
ドを内部に含む第1のスイッチ手段と、二次電池の放電
経路に直列に接続され通常オンとなって放電方向に電流
を導通させてオフ時に放電方向の経路を遮断する第2の
スイッチ手段であって、オフ時に充電方向に導通する寄
生ダイオードを内部に含む第2のスイッチ手段と、二次
電池の電池電圧を検出して電池電圧が第1の設定電圧以
上になった場合に第1のスイッチ手段をオフにして、電
池電圧が第2の設定電圧以下になった場合に第2のスイ
ッチ手段をオフとする制御手段とを有し、充電経路と放
電経路とは二次電池と一方の入出力端子との間に並列に
接続されて、充電経路には第1のスイッチ手段にその寄
生ダイオードの導通方向と逆向きの第1のダイオードが
直列に接続され、放電経路には第2のスイッチ手段にそ
の寄生ダイオードの導通方向と逆向きの第2のダイオー
ドが直列に接続されていることを特徴とする。
SUMMARY OF THE INVENTION In order to solve the above problems, a secondary battery charge / discharge protection device according to the present invention includes a secondary battery charging / discharging device which prevents overcharge and overdischarge of a rechargeable secondary battery. In the discharge protection device, the first switch means is connected in series to the charging path of the secondary battery and is normally turned on to conduct current in the charging direction and to cut off the path in the charging direction when turned off. First switching means including therein a parasitic diode that conducts in the direction and a discharge path of the secondary battery, which is connected in series and is normally turned on to conduct current in the discharge direction and cut off the path in the discharge direction when turned off. The second switch means is a second switch means that internally includes a parasitic diode that conducts in the charging direction when turned off, and the battery voltage of the secondary battery is detected to make the battery voltage equal to or higher than the first set voltage. If Control means for turning off the first switch means and turning off the second switch means when the battery voltage becomes equal to or lower than the second set voltage, and the charging path and the discharging path are secondary batteries. A first diode, which is connected in parallel with one of the input / output terminals, is connected in series to the charging path with a first switch device in a direction opposite to the conduction direction of the parasitic diode of the first switch means, and has a discharge path with a first diode. The second switch means is connected in series with a second diode in a direction opposite to the conduction direction of the parasitic diode.

【0009】この場合、二次電池は複数の電池が直列に
接続され、制御手段はそれぞれの二次電池の電池電圧を
監視して、いずれか一つの電圧値が第1の設定電圧以上
になったときに第1のスイッチ手段をオフにし、いずれ
か一つの電圧値が第2の設定電圧以下になったときに第
2のスイッチ手段をオフにするとよい。また、二次電池
は複数の電池が直列に接続されて、制御手段は直列に接
続された電池の両端部間の電圧を監視して、第1のスイ
ッチ手段および第2のスイッチ手段を制御してもよい。
一方、二次電池は単独にて用いられて、制御回路は単独
の二次電池の両端電圧を検出して第1のスイッチ手段お
よび第2のスイッチ手段を制御するようにしてもよい。
In this case, a plurality of secondary batteries are connected in series, and the control means monitors the battery voltage of each secondary battery, and any one of the voltage values becomes equal to or higher than the first set voltage. It is preferable to turn off the first switch means at the time of, and turn off the second switch means when any one of the voltage values becomes equal to or lower than the second set voltage. Further, the secondary battery has a plurality of batteries connected in series, and the control means monitors the voltage between both ends of the batteries connected in series to control the first switch means and the second switch means. May be.
On the other hand, the secondary battery may be used alone, and the control circuit may detect the voltage across the single secondary battery to control the first switch means and the second switch means.

【0010】また、第1のスイッチ手段と第1のダイオ
ードとが配置された充電経路および第2のスイッチ手段
と第2のダイオードが配置された放電経路は、双方とも
に二次電池に対してプラスまたはマイナスの経路のいず
れか一方に並列に配置されているとよい。
Further, both the charging path in which the first switch means and the first diode are arranged and the discharging path in which the second switch means and the second diode are arranged are both positive with respect to the secondary battery. Alternatively, it may be arranged in parallel on either one of the negative paths.

【0011】[0011]

【作用】本発明における二次電池の充放電保護装置によ
れば、充電の際には、二次電池の電圧が第1の設定電圧
に達していなければ、通常オンとなっている第1のスイ
ッチ手段および第1のダイオードを介して二次電池に充
電器などからの充電電流が供給される。充電が進み、二
次電池の電池電圧が第1の設定電圧以上になったことを
制御手段にて検出すると、第1のスイッチ手段をオフと
して充電経路を遮断し、二次電池での過充電を防止す
る。この際に、二次電池からの放電方向の電流は、オフ
となっている第1のスイッチ手段の寄生ダイオードを通
ることなく、オンとなっている第2のスイッチ手段およ
びこれに直列に接続された第2のダイオードを迂回して
外部に流れる。また、放電時には、二次電池の電圧が第
2の設定電圧に達していなければ、通常オンとなってい
る第2のスイッチ手段および第2のダイオードを介して
負荷に供給される。放電が進み、二次電池の電池電圧が
第2の設定電圧以下になったことを制御手段にて検出す
ると、第2のスイッチ手段をオフとして放電経路を遮断
して二次電池での過放電を防止する。この際に、二次電
池への充電方向の電流は、第2のスイッチ手段の寄生ダ
イオードを通ることなく、オンとなっている第1のスイ
ッチ手段およびこれに直列に接続された第1のダイオー
ドを迂回して電池に供給される。
According to the secondary battery charge / discharge protection device of the present invention, when the secondary battery voltage does not reach the first set voltage during charging, the first normally-on A charging current from a charger or the like is supplied to the secondary battery via the switch means and the first diode. When the control means detects that the battery voltage of the secondary battery has become equal to or higher than the first set voltage as the charging progresses, the first switch means is turned off to cut off the charging path and overcharge the secondary battery. Prevent. At this time, the current in the discharging direction from the secondary battery is connected in series to the second switch means which is turned on and this without passing through the parasitic diode of the first switch means which is turned off. It bypasses the second diode and flows to the outside. Further, at the time of discharging, if the voltage of the secondary battery has not reached the second set voltage, the secondary battery is supplied to the load via the second switch means and the second diode which are normally turned on. When the control means detects that the battery voltage of the secondary battery has become equal to or lower than the second set voltage due to the progress of discharge, the second switch means is turned off to interrupt the discharge path to over-discharge the secondary battery. Prevent. At this time, the current in the charging direction to the secondary battery does not pass through the parasitic diode of the second switch means, and the first switch means turned on and the first diode connected in series to the first switch means. Is bypassed and supplied to the battery.

【0012】[0012]

【実施例】次に、添付図面を参照して本発明による二次
電池の充放電保護装置の一実施例を詳細に説明する。図
1には、本発明による充放電保護装置を二次電池電源装
置30に適用した場合の一実施例が示されている。本実施
例における二次電池電源装置30は、2個の二次電池10,1
2 が直列に接続されて、これに過充電および過放電を防
止する充放電保護装置20を介してプラス端子32およびマ
イナス端子34が外部に向けて設けられたいわゆる電池パ
ック30として形成された電源装置であり、たとえば、携
帯型のビデオカメラ一体型VTR に着脱自在に搭載される
電源装置である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a secondary battery charge / discharge protection device according to the present invention will now be described in detail with reference to the accompanying drawings. FIG. 1 shows an embodiment in which the charge / discharge protection device according to the present invention is applied to a secondary battery power supply device 30. The secondary battery power supply device 30 in the present embodiment includes two secondary batteries 10,1.
A power source formed as a so-called battery pack 30 in which the positive terminal 32 and the negative terminal 34 are provided to the outside by connecting the two in series and via the charge / discharge protection device 20 that prevents overcharging and overdischarging. The device is, for example, a power supply device that is detachably mounted in a portable video camera integrated VTR.

【0013】詳細には、本実施例における二次電池10,1
2 は、たとえば、ニッケル−カドミウム(Ni-Cd) 電池、
ニッケル水素(Ni-H)電池、有利にはリチウムイオン(L
i+) 二次電池などの充電可能な電池がそれぞれ用いられ
る。たとえば、リチウムイオンニ次電池は、1セルあた
りの動作電圧範囲が2.5 〜4.2Vであり、充電により端子
電圧が約4.3Vを越えると、通常のサイクル劣化より大き
な性能の低下を引き起こす。また、放電により電池の端
子電圧が約2.4V以下になると、通常のサイクル劣化より
大きな性能の低下を引き起こす。特に、それぞれの電池
の特性に、ばらつきがある場合には、先に満充電または
空になった電池が他方の電池より先に過充電または過放
電となり易い。したがって、本実施例の充放電保護装置
20は、二次電池10,12 がたとえば、リチウムイオン電池
の場合、それぞれの電池10,12 の端子電圧を検出して、
いずれか一方の電池10,12 の電圧が4.3V以上にならない
ように、かつ2.4V以下とならないように充電経路および
放電経路をそれぞれ遮断し、それぞれの電池10,12 の過
充電および過放電を防止するものである。
Specifically, the secondary battery 10, 1 in this embodiment is
2 is, for example, a nickel-cadmium (Ni-Cd) battery,
Nickel-metal hydride (Ni-H) batteries, preferably lithium-ion (L
i + ) Rechargeable batteries such as secondary batteries are used. For example, a lithium-ion secondary battery has an operating voltage range of 2.5 to 4.2 V per cell, and when the terminal voltage exceeds about 4.3 V due to charging, it causes a larger deterioration in performance than normal cycle deterioration. Further, when the terminal voltage of the battery becomes about 2.4 V or less due to discharge, it causes a larger deterioration in performance than normal cycle deterioration. In particular, when the characteristics of the batteries vary, a battery that is fully charged or emptied first is likely to be overcharged or over-discharged before the other battery. Therefore, the charge / discharge protection device of the present embodiment
When the secondary batteries 10 and 12 are lithium-ion batteries, for example, 20 detects the terminal voltage of each battery 10 and 12,
To prevent the voltage of either one of the batteries 10 and 12 from exceeding 4.3V and below 2.4V, shut off the charge and discharge paths respectively and prevent overcharging and overdischarging of the respective batteries 10 and 12. To prevent.

【0014】具体的には、本実施例の充放電保護装置20
は、制御回路210 と、充電経路遮断用スイッチ素子220
と、放電経路遮断用スイッチ素子230 と、充電経路ダイ
オード240 と、放電経路ダイオード250 とを含む。制御
回路210 は、それぞれの二次電池10,12 の端子電圧を検
出し、その検出結果に基づいてスイッチ素子220,230を
それぞれ制御するスイッチ制御回路である。この制御回
路210 は、たとえば、図2に示すように第1の電池電圧
検出回路300 と、第2の電池電圧検出回路302と、第1
の比較回路304 と、第2の比較回路306 と、第1のOR回
路308 と、第2のOR回路310 と、第1のスイッチ駆動回
路312 と、第2のスイッチ駆動回路314とを有してい
る。第1の電池電圧検出回路300 は、第1の二次電池10
のプラス端子およびマイナス端子にそれぞれ接続され
て、その電位差に応じた検出電圧を第1の比較回路304
に供給する検出回路である。同様に、第2の電池電圧検
出回路302 は、第2の二次電池12のプラス端子とマイナ
ス端子とに接続されて、その電位差に応じた検出電圧を
第2の比較回路306 に供給する。有利には、図1に示す
ように、第1の二次電池10のマイナス端子からの電位と
第2の二次電池12のプラス端子からの電位は、共通に第
1の電圧検出回路300 および第2の電圧検出回路302 に
供給されて、これを基準にそれぞれの検出回路300,302
は他方の端子電圧との電位差を検出する。
Specifically, the charge / discharge protection device 20 of this embodiment
Is a control circuit 210 and a switching device 220 for blocking the charging path.
A discharge path cutoff switching element 230, a charge path diode 240, and a discharge path diode 250. The control circuit 210 is a switch control circuit that detects the terminal voltages of the secondary batteries 10 and 12 and controls the switch elements 220 and 230 based on the detection results. The control circuit 210 includes, for example, a first battery voltage detection circuit 300, a second battery voltage detection circuit 302, a
Of the comparison circuit 304, the second comparison circuit 306, the first OR circuit 308, the second OR circuit 310, the first switch drive circuit 312, and the second switch drive circuit 314. ing. The first battery voltage detection circuit 300 includes a first secondary battery 10
Of the first comparison circuit 304 connected to the positive terminal and the negative terminal of
Is a detection circuit to be supplied to. Similarly, the second battery voltage detection circuit 302 is connected to the positive terminal and the negative terminal of the second secondary battery 12 and supplies the detected voltage corresponding to the potential difference to the second comparison circuit 306. Advantageously, as shown in FIG. 1, the potential from the negative terminal of the first secondary battery 10 and the potential from the positive terminal of the second secondary battery 12 are common to the first voltage detection circuit 300 and The voltage is supplied to the second voltage detection circuit 302, and the detection circuits 300 and 302 are respectively referenced with reference to this.
Detects the potential difference from the other terminal voltage.

【0015】第1の比較回路304 は、第1の電圧検出回
路300 からの電圧値が第1の設定電圧以上または第2の
設定電圧以下になったか否かを検出する一入力二出力の
コンパレータなどにて形成された比較回路である。第1
の設定電圧は、それぞれの二次電池10,12 の動作電圧上
限近傍の、たとえば、上述したリチウムイオン電池では
4.3Vを下回る4.2 〜4.3V程度の電圧値に設定されてい
る。第2の設定電圧は、たとえばイチウムイオン電池で
は、動作電圧下限近傍における2.4Vを越える2.4〜2.5V
の電圧に設定されている。同様に、第2の比較回路306
は、第2の電圧検出回路302 からの電圧値が第1の設定
電圧以上または第2の設定電圧以下になったか否かを検
出する一入力二出力のコンパレータなどにて形成された
比較回路である。それぞれの比較回路304,306 の出力
は、第1の設定電圧以上か否かの検出結果を第1のOR回
路308 に供給し、第2の設定電圧以下か否かの検出結果
を第2のOR回路310 に供給する。
The first comparison circuit 304 is a one-input / two-output comparator for detecting whether or not the voltage value from the first voltage detection circuit 300 is equal to or higher than the first set voltage or lower than the second set voltage. It is a comparison circuit formed by. First
The set voltage of is near the upper limit of the operating voltage of each secondary battery 10, 12, for example, in the above-mentioned lithium ion battery.
It is set to a voltage value of 4.2 to 4.3V below 4.3V. The second set voltage is 2.4 to 2.5V, which exceeds 2.4V in the vicinity of the lower limit of the operating voltage, for example, in the case of the lithium ion battery.
Is set to the voltage of. Similarly, the second comparison circuit 306
Is a comparison circuit formed by a one-input / two-output comparator that detects whether or not the voltage value from the second voltage detection circuit 302 is equal to or higher than the first set voltage or equal to or lower than the second set voltage. is there. The outputs of the comparison circuits 304 and 306 are supplied to the first OR circuit 308 with the detection result as to whether or not the voltage is equal to or higher than the first set voltage, and the detection result as to whether or not the voltage is equal to or lower than the second set voltage is output to the second OR circuit. Supply to 310.

【0016】第1のOR回路308 は、第1の比較回路304
および第2の比較回路306 からの検出結果の論理和をと
る論理回路であり、いずれかの検出出力が第1の設定電
圧以上の電圧値を検出している場合に有効出力を第1の
スイッチ駆動回路312 に供給する。同様に、第2のOR回
路310 は、第1の比較回路304 および第1の比較回路30
6 にて第2の設定電圧以下の電圧値を検出した結果の出
力の論理和をとり、いずれかの出力が有効となった場合
に第2のスイッチ駆動回路314 に有効出力を供給する論
理回路である。
The first OR circuit 308 includes a first comparison circuit 304.
And a detection result from the second comparison circuit 306, which is a logical circuit, and outputs an effective output to the first switch when one of the detection outputs detects a voltage value equal to or higher than the first set voltage. Supply to the drive circuit 312. Similarly, the second OR circuit 310 includes a first comparison circuit 304 and a first comparison circuit 30.
A logical circuit that takes the logical sum of the outputs of the results of detecting the voltage value equal to or lower than the second set voltage at 6 and supplies the valid output to the second switch drive circuit 314 when any of the outputs becomes valid. Is.

【0017】第1のスイッチ駆動回路312 は、充電経路
遮断用スイッチ素子220 をオフ制御する信号を発生する
電圧発生回路であり、第1のOR回路308 からの論理出力
に応動して所定の出力を第1のスイッチ素子220 に供給
する。同様に、第2のスイッチ駆動回路314 は、放電経
路遮断用スイッチ素子230 をオフ制御する電圧発生回路
であり、第2のOR回路310 からの論理出力に応動して制
御信号を出力する。
The first switch drive circuit 312 is a voltage generation circuit that generates a signal for controlling the charge path cutoff switch element 220 to turn off, and responds to the logic output from the first OR circuit 308 to generate a predetermined output. Is supplied to the first switch element 220. Similarly, the second switch drive circuit 314 is a voltage generation circuit that controls the discharge path blocking switch element 230 to be off, and outputs a control signal in response to the logic output from the second OR circuit 310.

【0018】図1に戻って、充電経路遮断用スイッチ素
子220 は、C-MOS などの低電圧にて動作する電界効果ト
ランジスタ(FET) にて形成された半導体スイッチであ
り、充電経路ダイオード240 とともに充電経路を形成す
る第1のスイッチ素子である。この充電経路遮断用スイ
ッチ素子220 は、有利には、負電圧にてオンとなってい
る、たとえばノーマリオフ形のPチャネル・エンハンス
メント型電界効果トランジスタなどが用いられ、通常オ
ンとなって充電方向(図の矢印X方向)の電流を導通さ
せ、制御回路210 からの正の制御電圧にてオフとなって
充電方向の電流を遮断するスイッチ素子である。具体的
には、図1に示すようにそのドレインDが二次電池10の
プラス端子側に接続され、ソースSが充電経路ダイオー
ド240 を介して入出力端子32側に接続され、ゲートGに
制御回路210 からの制御電圧が印加される。さらに、こ
の電界効果トランジスタ220 は、その構造上、オフ状態
にてソースSとドレインD間に遮断方向と反対向き、つ
まり放電方向に通電する寄生ダイオード222 を内部に有
している。
Returning to FIG. 1, the charge path cutoff switch element 220 is a semiconductor switch formed of a field effect transistor (FET) that operates at a low voltage such as C-MOS, and together with the charge path diode 240. It is a first switch element that forms a charging path. This charge path blocking switch element 220 is preferably a normally-off type P-channel enhancement type field effect transistor which is turned on at a negative voltage, and is normally turned on and charged in the charging direction (see FIG. Is a switch element that conducts a current in the direction of arrow X) and is turned off by a positive control voltage from the control circuit 210 to cut off the current in the charging direction. Specifically, as shown in FIG. 1, the drain D is connected to the positive terminal side of the secondary battery 10, the source S is connected to the input / output terminal 32 side via the charge path diode 240, and the gate G is controlled. A control voltage from circuit 210 is applied. Further, the field-effect transistor 220 has a parasitic diode 222 inside the source S and the drain D in the OFF state in the direction opposite to the blocking direction, that is, in the discharge direction due to its structure.

【0019】放電経路遮断用スイッチ素子230 は、充電
経路遮断用スイッチ素子220 と同様に、たとえばノーマ
リオフ形のPチャネル・エンハンスメント型電界効果ト
ランジスタにて形成された半導体スイッチであり、放電
経路ダイオード250 とともに放電経路を形成する第2の
スイッチ素子である。この放電経路遮断用スイッチ素子
230 は、第1のスイッチ素子220 および第1のダイオー
ド240 を含む充電経路に並列に、かつ第1のスイッチ素
子220 とは逆向きに配置されて、通常オンとなって放電
方向(図の矢印Y方向)の電流を通過させ、オフとなっ
た場合に放電方向の電流を遮断する第2のスイッチであ
る。具体的には、放電経路にてソースSが電池10のプラ
ス端子側に接続され、ドレインDが入出力端子32側に接
続されてゲートGに制御回路210 からの制御信号が供給
される。この第2の電界効果トランジスタ230 は、第1
の電界効果トランジスタ220 と同様に、その構造上オフ
状態にてドレインD−ソースS方向、つまり、充電方向
に通電する寄生ダイオード232 を内部に含んでいる。
The discharge path cutoff switch element 230 is a semiconductor switch formed of, for example, a normally-off type P-channel enhancement type field effect transistor similarly to the charge path cutoff switch element 220, and together with the discharge path diode 250. It is a second switch element that forms a discharge path. This switch element for interrupting the discharge path
230 is arranged in parallel to the charging path including the first switching element 220 and the first diode 240 and in the opposite direction to the first switching element 220, and is normally turned on and in the discharging direction (arrow in the figure). It is a second switch that allows a current in the Y direction) to pass therethrough and shuts off the current in the discharge direction when it is turned off. Specifically, the source S is connected to the plus terminal side of the battery 10 and the drain D is connected to the input / output terminal 32 side in the discharge path, and the control signal from the control circuit 210 is supplied to the gate G. This second field effect transistor 230 is
Like the field effect transistor 220, the parasitic diode 232, which conducts in the drain D-source S direction, that is, the charging direction in the off state due to its structure, is included inside.

【0020】一方、充電経路用ダイオード240 は、充電
経路にて充電経路遮断用スイッチ素子220 に直列に接続
されて、そのオン時に充電方向に電流を導通させ、オフ
時に放電方向の電流を遮断する第1のダイオードであ
る。この第1のダイオード240は、たとえばショットキ
ーバリアダイオード、ゲルマニウムダイオードまたはシ
リコン系のダイオードなど各種のダイオードが有効に適
用されて、第1のスイッチ素子220 のオフ時にその寄生
ダイオード222 の導通を防止する。同様に、放電経路用
ダイオード250 は、放電経路にて放電経路遮断用スイッ
チ230 に直列に接続されて、そのオン時に放電方向に電
流を導通させ、オフ時に充電方向の電流を遮断して寄生
ダイオード232 の導通を防止する第2のダイオードであ
る。
On the other hand, the charge path diode 240 is connected in series to the charge path cutoff switch element 220 in the charge path, and conducts a current in the charge direction when the switch element 220 is on, and cuts off a current in the discharge direction when the switch element is off. This is the first diode. Various diodes such as a Schottky barrier diode, a germanium diode, or a silicon-based diode are effectively applied to the first diode 240 to prevent the parasitic diode 222 from conducting when the first switch element 220 is off. . Similarly, the discharge path diode 250 is connected in series to the discharge path cutoff switch 230 in the discharge path, conducts the current in the discharge direction when the switch is on, and interrupts the current in the charge direction when the switch is off and is a parasitic diode. It is a second diode that prevents the conduction of 232.

【0021】以上のような構成において本実施例の二次
電池の充放電保護装置の動作を説明する。まず、二次電
源装置として形成された電池パック30は、たとえば携帯
型の電子機器に装着されて、端子32,34 にて機器の内部
回路に接続される。次いで、二次電池10,12 を充電する
場合には、機器の電源コードなどを交流電源に接続する
と、機器内部の充電回路から端子32,34 を介して充電電
流が電源装置30に供給される。この際に制御回路210 に
てそれぞれ二次電池10,12 の電圧を検出しつつそれぞれ
の電圧値が所定の値以内であれば、制御回路210 からス
イッチ素子220,230 への制御電圧を負電圧として、スイ
ッチ素子220,230 をオンの状態としている。これによ
り、充電電流は端子32から充電経路ダイオード240 およ
び充電経路遮断用スイッチ素子220 を介して二次電池1
0,12 に供給され、さらに端子34を介して機器側に充電
方向に電流が流れて二次電池10,12 にそれぞれ充電が行
なわれる。
The operation of the secondary battery charge / discharge protection device of the present embodiment having the above-mentioned structure will be described. First, the battery pack 30 formed as a secondary power supply device is attached to, for example, a portable electronic device, and connected to the internal circuit of the device at terminals 32 and 34. Next, when charging the secondary batteries 10 and 12, when the power cord of the device is connected to an AC power source, the charging circuit inside the device supplies the charging current to the power supply device 30 via the terminals 32 and 34. . At this time, if the control circuit 210 detects the voltages of the secondary batteries 10 and 12 and the respective voltage values are within a predetermined value, the control voltage from the control circuit 210 to the switch elements 220 and 230 is set as a negative voltage, The switch elements 220 and 230 are turned on. As a result, the charging current flows from the terminal 32 to the secondary battery 1 via the charging path diode 240 and the charging path cutoff switch element 220.
0, 12 are supplied to the secondary battery 10, 12 through the terminal 34, and a current flows in the charging direction to the device side through the terminal 34 to charge the secondary battery 10, 12, respectively.

【0022】この状態にて、充電が進み、いずれかの二
次電池10,12 が満充電となり、さらに充電状態が続く
と、先に満充電となった電池が先に充電可能状態の上限
に達する。たとえば、第1の二次電池10が充電可能状態
の上限に達して第1の電池電圧検出回路300 からの検出
電圧が、たとえば4.2V〜4.3Vになると、これを第1の比
較回路304 にて検出して第1のOR回路308 に有効出力が
供給される。この際に第2の二次電池12の電圧がたとえ
ば4.2Vに達していないことを第2の電圧検出回路302 に
て検出して、第2の比較回路306 から第1のOR回路308
への出力は無効出力となっているとする。しかし、第1
のOR回路310 では第1の比較回路304 からの有効出力に
より、第1のスイッチ駆動回路314 に有効出力を供給す
る。これにより、第1のスイッチ駆動回路314 は、第1
の電界効果トランジスタ220 のゲートGに正の制御電圧
を供給する。
In this state, if the charging progresses and one of the secondary batteries 10 and 12 becomes fully charged and the charging state continues, the battery that has been fully charged first becomes the upper limit of the chargeable state. Reach For example, when the first secondary battery 10 reaches the upper limit of the chargeable state and the detected voltage from the first battery voltage detection circuit 300 becomes, for example, 4.2V to 4.3V, this is sent to the first comparison circuit 304. And the effective output is supplied to the first OR circuit 308. At this time, the second voltage detection circuit 302 detects that the voltage of the second secondary battery 12 has not reached 4.2V, and the second comparison circuit 306 to the first OR circuit 308.
Output to is invalid output. But first
In the OR circuit 310, the effective output from the first comparison circuit 304 is supplied to the first switch drive circuit 314. As a result, the first switch drive circuit 314
A positive control voltage is supplied to the gate G of the field effect transistor 220.

【0023】これにより、第1の電界効果トランジスタ
220 のドレイン−ソース間電流が遮断されて、端子32か
らの充電方向Xの電流が遮断される。この結果、第1の
二次電池10の過充電が防止される。この様な状態の電池
パック30を電子機器に取り付け使用した場合、その放電
電流は電池10のプラス端子から放電経路のオン状態の放
電遮断用スイッチ素子230 を通り、さらに放電経路ダイ
オード250 を通って、端子32から機器に向かって流れ
る。この際に、充電遮断用スイッチ素子220 の寄生ダイ
オード222 にも放電方向の電流が流れようとする。しか
し、充電遮断用スイッチ素子220 に直列に接続された充
電経路ダイオード240 が、寄生ダイオード222 と逆向き
となっているので、寄生ダイオード222 からの放電方向
の電流は遮断される。この結果、寄生ダイオード222 の
導通が防止される。
As a result, the first field effect transistor
The drain-source current of 220 is cut off, and the current in the charging direction X from the terminal 32 is cut off. As a result, overcharge of the first secondary battery 10 is prevented. When the battery pack 30 in such a state is attached to an electronic device and used, its discharge current passes from the positive terminal of the battery 10 through the discharge interruption switch element 230 in the on state of the discharge path and further through the discharge path diode 250. , From the terminal 32 toward the device. At this time, a current in the discharging direction tends to flow through the parasitic diode 222 of the charge cutoff switch element 220. However, since the charge path diode 240 connected in series to the charge cutoff switch element 220 is in the opposite direction to the parasitic diode 222, the current in the discharge direction from the parasitic diode 222 is cut off. As a result, the conduction of the parasitic diode 222 is prevented.

【0024】また、先に示した第1の二次電池10が充電
可能状態の上限に達した結果、第1の電界効果トランジ
スタ220 により充電電流が遮断された場合、第1の二次
電池10の内部インピーダンスまたは電池内部のイオン濃
度の平均化により第1の電池10の電圧が低下し、第1の
電池10の電圧が4.2Vを下回ると、制御回路210 はこれを
検出して充電遮断用スイッチ素子220 への制御電圧を負
電圧にする。これにより、充電遮断用スイッチ素子220
がオンとなり、充電経路ダイオード240 を介して再び二
次電池10,12 への充電が開始される。
When the charging current is interrupted by the first field effect transistor 220 as a result of the upper limit of the chargeable state of the first secondary battery 10 shown above, the first secondary battery 10 When the voltage of the first battery 10 drops below 4.2V due to the averaging of the internal impedance of the battery or the ion concentration inside the battery, the control circuit 210 detects this and shuts off the charge. The control voltage to the switch element 220 is set to a negative voltage. As a result, the charge cutoff switch element 220
Is turned on, and charging of the secondary batteries 10 and 12 is started again via the charge path diode 240.

【0025】一方、電子機器の使用状態では、機器の電
源スイッチがオンとなると二次電池10,12 が放電されて
機器に電力を供給する。この際に制御回路210 にてそれ
ぞれ二次電池10,12 の電圧を検出しつつそれぞれの電圧
値が所定の値以内であれば、制御回路210 からスイッチ
素子220,230 への制御電圧は負電圧状態であり、スイッ
チ素子220,230 はオンの状態となっている。これによ
り、放電電流は電池10のプラス端子から放電経路のスイ
ッチ素子230 およびダイオード250 を介して入出力端子
32に至り機器に流入する。さらに機器から端子34を介し
て電池12に放電方向に電流が流れて、二次電池10,12 の
放電が行なわれる。
On the other hand, when the electronic device is in use, when the power switch of the device is turned on, the secondary batteries 10 and 12 are discharged to supply power to the device. At this time, if the control circuit 210 detects the voltages of the secondary batteries 10 and 12 and the respective voltage values are within the predetermined values, the control voltage from the control circuit 210 to the switch elements 220 and 230 is in a negative voltage state. Yes, the switch elements 220 and 230 are in the ON state. As a result, the discharge current flows from the positive terminal of the battery 10 to the input / output terminal via the switch element 230 and the diode 250 in the discharge path.
It reaches 32 and flows into the equipment. Further, a current flows from the device to the battery 12 through the terminal 34 in the discharging direction, and the secondary batteries 10 and 12 are discharged.

【0026】この状態にて、たとえば、二次電池10,12
がリチウム電池として、カメラ一体型VTR の機器にて1
時間以上の連続撮影などが行なわれると、二次電池10,1
2 のそれぞれの電圧値が3.0Vを下回ってくる。さらに、
機器の操作を続けて、二次電池10,12 の放電が進むと、
いずれかの二次電池10,12 が動作電圧下限値に近づいて
くる。たとえば、第1の二次電池10が動作電圧下限値に
近づいて第1の電池電圧検出回路300 からの検出電圧
が、たとえば2.4V〜2.5Vになると、これを第1の比較回
路304 にて検出して第2のOR回路310 に有効出力が供給
される。この際に第2の二次電池12の電圧がたとえば2.
4Vに達していないことを第2の電圧検出回路302 にて検
出して、第2の比較回路306 から第2のOR回路310 への
出力は無効出力となっているとする。しかし、第2のOR
回路310 では第1の比較回路304 からの有効出力によ
り、第2のスイッチ駆動回路314 に有効出力を供給す
る。これにより、第2のスイッチ駆動回路314 は、第2
の電界効果トランジスタ230 のゲートGに正の制御電圧
を供給する。
In this state, for example, the secondary batteries 10 and 12
As a lithium battery in a camera-integrated VTR device
If continuous shooting for more than a time is performed, the secondary battery 10,1
Each voltage value of 2 falls below 3.0V. further,
If you continue to operate the equipment and the secondary batteries 10 and 12 are discharged,
Either of the secondary batteries 10 and 12 approaches the operating voltage lower limit value. For example, if the detected voltage from the first battery voltage detection circuit 300 becomes, for example, 2.4 V to 2.5 V when the first secondary battery 10 approaches the lower limit of the operating voltage, this is detected by the first comparison circuit 304. Upon detection, a valid output is supplied to the second OR circuit 310. At this time, the voltage of the second secondary battery 12 is, for example, 2.
It is assumed that the second voltage detection circuit 302 detects that the voltage has not reached 4V, and the output from the second comparison circuit 306 to the second OR circuit 310 is an invalid output. But the second OR
In the circuit 310, the effective output from the first comparison circuit 304 supplies the effective output to the second switch drive circuit 314. As a result, the second switch drive circuit 314 becomes the second switch drive circuit 314.
A positive control voltage is supplied to the gate G of the field effect transistor 230.

【0027】これにより、第2の電界効果トランジスタ
230 のドレイン−ソース間電流が遮断されて、電池10,1
2 から放電経路を通る放電方向Yの電流が遮断される。
この様な状態の電池パック30を充電しようとした場合、
充電方向の電流は、電池10のマイナス端子から電池12を
介して端子34へ流れて、さらに端子32を介して充電経路
ダイオード240 およびオン状態の充電経路遮断用スイッ
チ素子220 から電池10のプラス端子に流れる。この際に
放電遮断用スイッチ素子230 の寄生ダイオード232 にも
充電方向の電流が流れようとするが、これに直列に接続
された第2のダイオード250 の通電方向が寄生ダイオー
ド232 と逆方向であるので、これに流れる充電方向の電
流を遮断して寄生ダイオード232 の通電が防止される。
次いで、第1の電池10の電圧が2.4Vを上回ると、制御回
路210 は、これを検出して放電遮断用スイッチ230 への
制御電圧を負電圧にする。これにより、放電遮断スイッ
チ230 がオンとなり放電可能状態となり過放電が防止さ
れる。
As a result, the second field effect transistor
The drain-source current of 230 is cut off and the battery 10,1
The current in the discharge direction Y passing through the discharge path from 2 is cut off.
When trying to charge the battery pack 30 in such a state,
The current in the charging direction flows from the negative terminal of the battery 10 to the terminal 34 via the battery 12, and further via the terminal 32 to the charge path diode 240 and the charge path interruption switch element 220 in the ON state to the positive terminal of the battery 10. Flow to. At this time, a current in the charging direction also tries to flow in the parasitic diode 232 of the switch element 230 for discharging the discharge, but the energizing direction of the second diode 250 connected in series to this is the opposite direction to the parasitic diode 232. Therefore, the current flowing in the charging direction is cut off to prevent the parasitic diode 232 from being energized.
Next, when the voltage of the first battery 10 exceeds 2.4V, the control circuit 210 detects this and sets the control voltage to the discharge interruption switch 230 to a negative voltage. As a result, the discharge cutoff switch 230 is turned on to enable the discharge and prevent over-discharge.

【0028】次に本願発明の特徴点を明確にするため
に、図7に示す比較例と本実施例とを比較してその効果
をさらに明らかにすると、図7では図1の実施例から第
1および第2のダイオード240,250 が取り除かれて、ス
イッチ素子220,230 が直列に接続されている。これによ
ると充電時に制御回路210 にて電池10,12 のいずれかの
満充電を検出すると、第1のスイッチ素子220 をオフと
する。これにより、充電方向の電流は遮断されて、その
際の放電方向の電流は電池10,12 からオフとなっている
第1のスイッチ素子220 の寄生ダイオード222 を通り、
さらにオンとなっている第2のスイッチ素子230 を通じ
て端子32へ流れる。放電時には、いずれかの電池10,12
が放電限界に近づくと、第2のスイッチ素子230 がオフ
とされる。これにより、放電電流は遮断され、その際の
充電方向の電流が端子32からオフとなっている第2のス
イッチ素子230 の寄生ダイオード232 を通って、さらに
オンとなっている第1のスイッチ素子220 を通って電池
10,12 に流入する。したがって、それぞれのスイッチ素
子220,230 のオフ時には、寄生ダイオード222,232 に電
流が流れ、本来の構造上と異なる電流により素子の劣化
が生じてスイッチ特性の劣化および、しいては素子自体
の破壊が生じる。
Next, in order to clarify the characteristic point of the present invention, the effect is further clarified by comparing the comparative example shown in FIG. 7 with this embodiment. The first and second diodes 240,250 are removed and the switch elements 220,230 are connected in series. According to this, when the control circuit 210 detects that the batteries 10 and 12 are fully charged during charging, the first switch element 220 is turned off. As a result, the current in the charging direction is cut off, and the current in the discharging direction at that time passes through the parasitic diode 222 of the first switch element 220, which is off from the batteries 10 and 12.
Further, it flows to the terminal 32 through the second switch element 230 which is turned on. When discharged, either battery 10,12
Is approaching the discharge limit, the second switch element 230 is turned off. As a result, the discharge current is interrupted, and the current in the charging direction at that time passes through the parasitic diode 232 of the second switch element 230 that is off from the terminal 32, and is further turned on. Battery through 220
Inflow to 10,12. Therefore, when each of the switch elements 220 and 230 is turned off, a current flows through the parasitic diodes 222 and 232, and a current different from the original structure causes deterioration of the elements, resulting in deterioration of switch characteristics and eventually destruction of the elements themselves.

【0029】本実施例では、それぞれのスイッチ素子22
0,230 に一方向のみに通電するダイオード240,250 を直
列に接続して、これらを並列に配置しているので、スイ
ッチオフ時に生じるそれぞれのスイッチ220,230 での遮
断方向と異なる方向の電流が寄生ダイオード222,232 を
通電させることを防止して、スイッチ特性の劣化および
素子破壊を防止している。
In this embodiment, each switch element 22
The diodes 240 and 250 that conduct in only one direction are connected in series to 0 and 230, and they are arranged in parallel.Therefore, the current in the direction different from the breaking direction of each switch 220 and 230 that occurs when the switch is turned off conducts the parasitic diode 222 and 232. This prevents the switch characteristics from being deteriorated and the element from being destroyed.

【0030】なお、上記実施例では電池パック30を主に
カメラ一体型VTR に搭載した場合を例に挙げて説明した
が、本発明では他の電子機器に搭載することももちろん
可能である。また、上記実施例ではリチウムイオン電池
を用いた場合を主に説明したが、本発明では他の二次電
池を用いてもよく、その際の第1および第2の設定電圧
はそれぞれの電池の特性に応じてもちろん変えてよい。
さらに、上記実施例ではスイッチ素子として電界効果ト
ランジスタを用いた場合を例に挙げて説明したが、本発
明では他の電子スイッチ素子を用いてもよい。
In the above embodiment, the case where the battery pack 30 is mainly mounted in the camera-integrated VTR has been described as an example, but the present invention can of course be mounted in other electronic equipment. Further, in the above-mentioned embodiment, the case where the lithium ion battery is used has been mainly described, but other secondary batteries may be used in the present invention, and the first and second set voltages at that time are different from those of the respective batteries. Of course, you may change it depending on the characteristics.
Furthermore, in the above-described embodiment, the case where the field effect transistor is used as the switch element has been described as an example, but other electronic switch elements may be used in the present invention.

【0031】また、上記実施例では2つの二次電池10,1
2 を用いた場合を例に挙げて説明したが、本発明では図
3に示すように1つの電池を単独にて用いる場合にもも
ちろん適用することができる。さらに、上記実施例で
は、制御回路210 にてそれぞれの電池10,12 の端子電圧
を検出するように構成したが、本発明では図4に示すよ
うに直列に接続された複数の電池の両端電圧を検出する
ようにしてもよい。また本発明では図5に示すように3
個以上のN個の電池のそれぞれの電圧を検出していずれ
かの電圧値が所定の設定電圧以上または以下になったこ
とを検出してスイッチ220,230 を制御するようにしても
よい。さらに、上記実施例では、二次電池10,12 に対し
てスイッチ素子220,230 およびダイオード240,250 をプ
ラス端子32側にそれぞれ配置したが、本発明では、たと
えば図6に示すようにマイナス端子34側にそれぞれ配置
してもよい。
In the above embodiment, two secondary batteries 10,1 are used.
Although the case of using 2 has been described as an example, the present invention can of course be applied to the case where one battery is used alone as shown in FIG. Further, in the above embodiment, the control circuit 210 is configured to detect the terminal voltage of each of the batteries 10 and 12. However, in the present invention, the voltage across the plurality of batteries connected in series as shown in FIG. May be detected. Further, in the present invention, as shown in FIG.
The switches 220 and 230 may be controlled by detecting the voltage of each of the N or more batteries and detecting that any one of the voltages has become higher or lower than a predetermined set voltage. Furthermore, in the above embodiment, the switch elements 220 and 230 and the diodes 240 and 250 are arranged on the plus terminal 32 side with respect to the secondary batteries 10 and 12, respectively. However, in the present invention, for example, as shown in FIG. You may arrange.

【0032】このように本発明は上記各実施例に何ら限
定されることなく、特許請求の範囲のそれぞれの請求項
に挙げた事項を逸脱することなくなされた改良もしくは
応用をすべて含むものである。
As described above, the present invention is not limited to the above-described embodiments at all, and includes all the improvements or applications made without departing from the matters recited in each claim of the claims.

【0033】[0033]

【発明の効果】以上詳細に説明したように本発明による
二次電池の充放電保護装置によれば、スイッチ素子にそ
の寄生ダイオードと逆向きのダイオードを直列に接続し
た充電経路と放電経路とを並列に接続して電池の入出力
端子に配置したので、いずれか一方の経路のスイッチ素
子をオフとした場合にその寄生ダイオードに電流が流れ
る前に他の経路に電流が流れて、スイッチ素子への逆方
向電流が流れるのを阻止することができる。この結果、
素子の劣化を防止し、素子の性能劣化および素子の破壊
などによる装置の破壊を防止して、より安全な動作によ
る二次電池の充放電保護装置を得ることができる効果を
奏する。
As described above in detail, according to the charge / discharge protection device for a secondary battery according to the present invention, a charge path and a discharge path, in which a parasitic diode and a diode opposite to the parasitic diode are connected in series, are connected to a switch element. Since they are connected in parallel and placed at the input / output terminals of the battery, when the switch element on either path is turned off, the current will flow to the other path before the current flows to the parasitic diode, and to the switch element. The reverse current can be prevented from flowing. As a result,
It is possible to prevent the deterioration of the device, prevent the device from being damaged due to the deterioration of the device performance and the device, and to obtain the secondary battery charge / discharge protection device with safer operation.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による二次電池の充放電保護装置が適用
される二次電池電源装置の一実施例を示す回路構成図で
ある。
FIG. 1 is a circuit configuration diagram showing an embodiment of a secondary battery power supply device to which a secondary battery charge / discharge protection device according to the present invention is applied.

【図2】図1の実施例に適用される制御回路の内部構成
の一例を示す機能ブロック図である。
FIG. 2 is a functional block diagram showing an example of an internal configuration of a control circuit applied to the embodiment of FIG.

【図3】本発明による二次電池の充放電保護装置が適用
される二次電池電源装置の他の実施例を示す回路構成図
である。
FIG. 3 is a circuit configuration diagram showing another embodiment of a secondary battery power supply device to which a secondary battery charge / discharge protection device according to the present invention is applied.

【図4】本発明による二次電池の充放電保護装置が適用
される二次電池電源装置の他の実施例を示す回路構成図
である。
FIG. 4 is a circuit configuration diagram showing another embodiment of a secondary battery power supply device to which a secondary battery charge / discharge protection device according to the present invention is applied.

【図5】本発明による二次電池の充放電保護装置が適用
される二次電池電源装置の他の実施例を示す回路構成図
である。
FIG. 5 is a circuit configuration diagram showing another embodiment of a secondary battery power supply device to which a secondary battery charge / discharge protection device according to the present invention is applied.

【図6】本発明による二次電池の充放電保護装置が適用
される二次電池電源装置の他の実施例を示す回路構成図
である。
FIG. 6 is a circuit configuration diagram showing another embodiment of the secondary battery power supply device to which the secondary battery charge / discharge protection device according to the present invention is applied.

【図7】本発明による二次電池の充放電保護装置の効果
を明確にするための比較例を示す回路構成図である。
FIG. 7 is a circuit configuration diagram showing a comparative example for clarifying the effect of the secondary battery charge / discharge protection device according to the present invention.

【符号の説明】[Explanation of symbols]

10,12 二次電池 210 制御回路 220 充電遮断用スイッチ素子 230 放電遮断用スイッチ素子 222,232 寄生ダイオード 240 充電経路ダイオード 250 放電経路ダイオード 10,12 Secondary battery 210 Control circuit 220 Charge cutoff switch element 230 Discharge cutoff switch element 222,232 Parasitic diode 240 Charge path diode 250 Discharge path diode

【手続補正書】[Procedure amendment]

【提出日】平成7年12月8日[Submission date] December 8, 1995

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図6[Name of item to be corrected] Figure 6

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図6】 [Figure 6]

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図7[Name of item to be corrected] Figure 7

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図7】 [Figure 7]

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 充電可能な二次電池の過充電および過放
電を防止する二次電池の充放電保護装置において、該装
置は、 前記二次電池の充電経路に接続され、通常オンとなって
充電方向に電流を導通させてオフ時に充電方向の経路を
遮断する第1のスイッチ手段であって、オフ時に放電方
向に導通する寄生ダイオードを内部に含む第1のスイッ
チ手段と、 前記二次電池の放電経路に接続され、通常オンとなって
放電方向に電流を導通させてオフ時に放電方向の経路を
遮断する第2のスイッチ手段であって、オフ時に充電方
向に導通する寄生ダイオードを内部に含む第2のスイッ
チ手段と、 前記二次電池の電池電圧を検出して、電池電圧がその二
次電池の満充電近傍の第1の設定電圧以上になった場合
に前記第1のスイッチ手段をオフにして、電池電圧が放
電末期近傍の第2の設定電圧以下になった場合に前記第
2のスイッチ手段をオフとする制御手段とを有し、 前記充電経路と前記放電経路とは、前記二次電池とその
一方の入出力端子との間に並列に分岐して接続され、 前記充電経路には、前記第1のスイッチ手段にその寄生
ダイオードの導通方向と逆向きの第1のダイオードが直
列に接続され、 前記放電経路には、前記第2のスイッチ手段にその寄生
ダイオードの導通方向と逆向きの第2のダイオードが直
列に接続されていることを特徴とする二次電池の充放電
保護装置。
1. A secondary battery charge / discharge protection device for preventing overcharge and overdischarge of a rechargeable secondary battery, wherein the device is connected to a charging path of the secondary battery and is normally turned on. First switching means for conducting a current in the charging direction and interrupting a path in the charging direction when turned off, the first switching means including therein a parasitic diode that conducts in the discharging direction when turned off; Is a second switch means that is connected to the discharge path and normally turns on to conduct a current in the discharge direction and shuts off the path in the discharge direction when turned off. A second switch means including the first switch means for detecting a battery voltage of the secondary battery, and when the battery voltage is equal to or higher than a first set voltage in the vicinity of full charge of the secondary battery. Turn off and Control means for turning off the second switch means when the pond voltage becomes equal to or lower than a second preset voltage near the end of discharge, the charging path and the discharging path are the secondary battery and A first diode, which is connected in parallel to the one input / output terminal in a branched manner, is connected to the charging path in series with the first switch unit in a direction opposite to the conduction direction of the parasitic diode of the first switch unit. A charging / discharging protection device for a secondary battery, wherein a second diode in a direction opposite to a conduction direction of the parasitic diode is connected in series to the second switch means in the discharging path.
【請求項2】 請求項1に記載の二次電池の充放電保護
装置において、前記二次電池は複数の電池が直列に接続
されて、前記制御手段は、それぞれの二次電池の電池電
圧を監視して、いずれか一つの電池電圧が第1の設定電
圧以上になったとき前記第1のスイッチ手段をオフにし
て、いずれか一つの電池電圧が第1の設定電圧以下にな
ったとき前記第2のスイッチ手段をオフにすることを特
徴とする二次電池の充放電保護装置。
2. The charging / discharging protection device for a secondary battery according to claim 1, wherein a plurality of batteries are connected in series to the secondary battery, and the control means controls the battery voltage of each secondary battery. Monitoring, when any one of the battery voltages becomes equal to or higher than the first set voltage, the first switch means is turned off, and when any one of the battery voltages becomes equal to or less than the first set voltage, A secondary battery charging / discharging protection device, characterized in that the second switch means is turned off.
【請求項3】 請求項1に記載の二次電池の充放電保護
装置において、前記二次電池は複数の電池が直列に接続
され、前記制御手段は直列に接続された電池の両端部間
の電圧を監視して該電圧値が第1の設定電圧以上となっ
たときに前記第1のスイッチ手段をオフにし、同電圧値
が第2の設定電圧以下となったときに前記第2のスイッ
チ手段をオフにすることを特徴とする二次電池の充放電
保護装置。
3. The charging / discharging protection device for a secondary battery according to claim 1, wherein a plurality of batteries are connected in series to the secondary battery, and the control means is provided between both ends of the batteries connected in series. When the voltage is monitored and the voltage value becomes equal to or higher than the first set voltage, the first switch means is turned off, and when the voltage value becomes equal to or lower than the second set voltage, the second switch A charging / discharging protection device for a secondary battery, characterized in that the means is turned off.
【請求項4】 請求項1に記載の二次電池の充放電保護
装置において、前記二次電池は単独にて用いられ、前記
制御回路は単独の二次電池の両端電圧を検出して該電圧
値が第1の設定電圧以上となったときに第1のスイッチ
手段をオフにし、同電圧値が第2の設定電圧以下となっ
たときに前記第2のスイッチ手段をオフにすることを特
徴とする二次電池の充放電保護装置。
4. The charging / discharging protection device for a secondary battery according to claim 1, wherein the secondary battery is used alone, and the control circuit detects the voltage across both ends of the secondary battery. When the value becomes equal to or higher than the first set voltage, the first switch means is turned off, and when the voltage value becomes equal to or lower than the second set voltage, the second switch means is turned off. Secondary battery charge and discharge protection device.
【請求項5】 請求項1に記載の二次電池の充放電保護
装置において、前記第1のスイッチ手段と第1のダイオ
ードが配置された充電経路および第2のスイッチ手段と
第2のダイオードが配置された放電経路は、双方ともに
二次電池に対してそのプラスまたはマイナスの経路のい
ずれか一方に並列に配置されていることを特徴とする二
次電池の充放電保護装置。
5. The charging / discharging protection device for a secondary battery according to claim 1, wherein the charging path in which the first switch means and the first diode are arranged, and the second switch means and the second diode are provided. A charging / discharging protection device for a secondary battery, wherein both of the arranged discharge paths are arranged in parallel to either the positive or negative path of the secondary battery.
JP353595A 1994-12-05 1995-01-12 Charging and discharging protection unit for secondary battery Pending JPH08196042A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP353595A JPH08196042A (en) 1995-01-12 1995-01-12 Charging and discharging protection unit for secondary battery
US08/565,818 US5789900A (en) 1994-12-05 1995-12-01 Device for protecting a secondary battery from overcharge and overdischarge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP353595A JPH08196042A (en) 1995-01-12 1995-01-12 Charging and discharging protection unit for secondary battery

Publications (1)

Publication Number Publication Date
JPH08196042A true JPH08196042A (en) 1996-07-30

Family

ID=11560100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP353595A Pending JPH08196042A (en) 1994-12-05 1995-01-12 Charging and discharging protection unit for secondary battery

Country Status (1)

Country Link
JP (1) JPH08196042A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10243567A (en) * 1997-02-26 1998-09-11 Fuji Photo Film Co Ltd Device and method for charging secondary battery
JP2000116011A (en) * 1998-10-01 2000-04-21 Mitsumi Electric Co Ltd Secondary battery protection circuit
GB2396755B (en) * 2002-11-22 2006-07-12 Milwaukee Electric Tool Corp Method and system for battery charging
US7157882B2 (en) 2002-11-22 2007-01-02 Milwaukee Electric Tool Corporation Method and system for battery protection employing a selectively-actuated switch
US7176654B2 (en) 2002-11-22 2007-02-13 Milwaukee Electric Tool Corporation Method and system of charging multi-cell lithium-based batteries
US7253585B2 (en) 2002-11-22 2007-08-07 Milwaukee Electric Tool Corporation Battery pack
JP2007228724A (en) * 2006-02-23 2007-09-06 Seiko Instruments Inc Charge/discharge protection circuit, and power supply device
US7425816B2 (en) 2002-11-22 2008-09-16 Milwaukee Electric Tool Corporation Method and system for pulse charging of a lithium-based battery
US7589500B2 (en) 2002-11-22 2009-09-15 Milwaukee Electric Tool Corporation Method and system for battery protection
US7714538B2 (en) 2002-11-22 2010-05-11 Milwaukee Electric Tool Corporation Battery pack
JP2010233358A (en) * 2009-03-27 2010-10-14 Tdk-Lambda Corp Battery protection circuit, battery protection method, power supply unit, and program
JP2011101586A (en) * 2009-11-03 2011-05-19 Samsung Sdi Co Ltd Battery pack
JP2012186935A (en) * 2011-03-07 2012-09-27 Sharp Corp Electrical instrument
CN103051020A (en) * 2012-12-12 2013-04-17 创新科存储技术(深圳)有限公司 Discharge loop and discharge loop protection method
DE102013109348A1 (en) * 2013-08-29 2015-03-05 C. & E. Fein Gmbh Accumulator with monitoring device
CN106655392A (en) * 2017-01-05 2017-05-10 宇龙计算机通信科技(深圳)有限公司 Charging control circuit and terminal
US9680325B2 (en) 2002-11-22 2017-06-13 Milwaukee Electric Tool Corporation Lithium-based battery pack for a hand held power tool
CN108390434A (en) * 2018-03-19 2018-08-10 深圳市新威尔电子有限公司 Protection circuit based on battery charging and discharging
CN112771752A (en) * 2018-09-26 2021-05-07 Fdk株式会社 Battery cell, electricity storage system, and method for charging and discharging battery cell
CN113937374A (en) * 2021-09-30 2022-01-14 无锡职业技术学院 Parallel battery pack and control method

Cited By (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10243567A (en) * 1997-02-26 1998-09-11 Fuji Photo Film Co Ltd Device and method for charging secondary battery
JP2000116011A (en) * 1998-10-01 2000-04-21 Mitsumi Electric Co Ltd Secondary battery protection circuit
US9048515B2 (en) 2002-11-22 2015-06-02 Milwaukee Electric Tool Corporation Battery pack
US10224566B2 (en) 2002-11-22 2019-03-05 Milwaukee Electric Tool Corporation Method and system for battery protection
US7157883B2 (en) 2002-11-22 2007-01-02 Milwaukee Electric Tool Corporation Method and system for battery protection employing averaging of measurements
US7164257B2 (en) 2002-11-22 2007-01-16 Milwaukee Electric Tool Corporation Method and system for protection of a lithium-based multicell battery pack including a heat sink
US7176654B2 (en) 2002-11-22 2007-02-13 Milwaukee Electric Tool Corporation Method and system of charging multi-cell lithium-based batteries
US7253585B2 (en) 2002-11-22 2007-08-07 Milwaukee Electric Tool Corporation Battery pack
GB2396755B (en) * 2002-11-22 2006-07-12 Milwaukee Electric Tool Corp Method and system for battery charging
US11837694B2 (en) 2002-11-22 2023-12-05 Milwaukee Electric Tool Corporation Lithium-based battery pack
US7321219B2 (en) 2002-11-22 2008-01-22 Milwaukee Electric Tool Corporation Method and system for battery charging employing a semiconductor switch
US7323847B2 (en) 2002-11-22 2008-01-29 Milwaukee Electric Tool Corporation Method and system of charging multi-cell lithium-based batteries
US7425816B2 (en) 2002-11-22 2008-09-16 Milwaukee Electric Tool Corporation Method and system for pulse charging of a lithium-based battery
US7508167B2 (en) 2002-11-22 2009-03-24 Milwaukee Electric Tool Corporation Method and system for charging multi-cell lithium-based batteries
US7554290B2 (en) 2002-11-22 2009-06-30 Milwaukee Electric Tool Corporation Lithium-based battery pack for a hand-held power tool
US7557535B2 (en) 2002-11-22 2009-07-07 Milwaukee Electric Tool Corporation Lithium-based battery for a hand held power tool
US7589500B2 (en) 2002-11-22 2009-09-15 Milwaukee Electric Tool Corporation Method and system for battery protection
US7714538B2 (en) 2002-11-22 2010-05-11 Milwaukee Electric Tool Corporation Battery pack
US11469608B2 (en) 2002-11-22 2022-10-11 Milwaukee Electric Tool Corporation Lithium-based battery pack for a hand held power tool
US11196080B2 (en) 2002-11-22 2021-12-07 Milwaukee Electric Tool Corporation Method and system for battery protection
US7944173B2 (en) 2002-11-22 2011-05-17 Milwaukee Electric Tool Corporation Lithium-based battery pack for a high current draw, hand held power tool
US10998586B2 (en) 2002-11-22 2021-05-04 Milwaukee Electric Tool Corporation Lithium-based battery pack including a balancing circuit
US7999510B2 (en) 2002-11-22 2011-08-16 Milwaukee Electric Tool Corporation Lithium-based battery pack for a high current draw, hand held power tool
US8018198B2 (en) 2002-11-22 2011-09-13 Milwaukee Electric Tool Corporation Method and system for charging multi-cell lithium-based batteries
US8154249B2 (en) 2002-11-22 2012-04-10 Milwaukee Electric Tool Corporation Battery pack
US8207702B2 (en) 2002-11-22 2012-06-26 Milwaukee Electric Tool Corporation Lithium-based battery pack for a hand held power tool
US8269459B2 (en) 2002-11-22 2012-09-18 Milwaukee Electric Tool Corporation Lithium-based battery pack for a high current draw, hand held power tool
US9368842B2 (en) 2002-11-22 2016-06-14 Milwaukee Electric Tool Corporation Battery pack
US10886762B2 (en) 2002-11-22 2021-01-05 Milwaukee Electric Tool Corporation Lithium-based battery pack for a hand held power tool
US8487585B2 (en) 2002-11-22 2013-07-16 Milwaukee Electric Tool Corporation Battery pack
US10862327B2 (en) 2002-11-22 2020-12-08 Milwaukee Electric Tool Corporation Lithium-based battery pack for a hand held power tool
US7262580B2 (en) 2002-11-22 2007-08-28 Milwaukee Electric Tool Corporation Method and system for charging multi-cell lithium-based batteries
US10714948B2 (en) 2002-11-22 2020-07-14 Milwaukee Electric Tool Corporation Method and system for charging multi-cell lithium-based battery packs
US10593991B2 (en) 2002-11-22 2020-03-17 Milwaukee Electric Tool Corporation Method and system for battery protection
US9660293B2 (en) 2002-11-22 2017-05-23 Milwaukee Electric Tool Corporation Method and system for battery protection
US9673648B2 (en) 2002-11-22 2017-06-06 Milwaukee Electric Tool Corporation Lithium-based battery pack for a hand held power tool
US9680325B2 (en) 2002-11-22 2017-06-13 Milwaukee Electric Tool Corporation Lithium-based battery pack for a hand held power tool
US9793583B2 (en) 2002-11-22 2017-10-17 Milwaukee Electric Tool Corporation Lithium-based battery pack
US9819051B2 (en) 2002-11-22 2017-11-14 Milwaukee Electric Tool Corporation Method and system for battery protection
US9941718B2 (en) 2002-11-22 2018-04-10 Milwaukee Electric Tool Corporation Lithium-based battery pack for a hand held power tool
US10008864B2 (en) 2002-11-22 2018-06-26 Milwaukee Electric Tool Corporation Method and system for charging multi-cell lithium-based battery packs
US10566810B2 (en) 2002-11-22 2020-02-18 Milwaukee Electric Tool Corporation Lithium-based battery pack for a hand held power tool
US10097026B2 (en) 2002-11-22 2018-10-09 Milwaukee Electric Tool Corporation Lithium-based battery pack for a hand held power tool
US10141614B2 (en) 2002-11-22 2018-11-27 Milwaukee Electric Tool Corporation Battery pack
US10218194B2 (en) 2002-11-22 2019-02-26 Milwaukee Electric Tool Corporation Lithium-based battery pack for a hand held power tool
US7157882B2 (en) 2002-11-22 2007-01-02 Milwaukee Electric Tool Corporation Method and system for battery protection employing a selectively-actuated switch
US10374443B2 (en) 2002-11-22 2019-08-06 Milwaukee Electric Tool Corporation Method and system for charging multi-cell lithium-based battery packs
US10431857B2 (en) 2002-11-22 2019-10-01 Milwaukee Electric Tool Corporation Lithium-based battery pack
US10536022B2 (en) 2002-11-22 2020-01-14 Milwaukee Electric Tool Corporation Lithium-based battery pack for a hand held power tool
US7719235B2 (en) 2006-02-23 2010-05-18 Seiko Instruments Inc. Charge/discharge protection circuit and power-supply unit
JP2007228724A (en) * 2006-02-23 2007-09-06 Seiko Instruments Inc Charge/discharge protection circuit, and power supply device
JP2010233358A (en) * 2009-03-27 2010-10-14 Tdk-Lambda Corp Battery protection circuit, battery protection method, power supply unit, and program
JP2011101586A (en) * 2009-11-03 2011-05-19 Samsung Sdi Co Ltd Battery pack
JP2012186935A (en) * 2011-03-07 2012-09-27 Sharp Corp Electrical instrument
CN103051020A (en) * 2012-12-12 2013-04-17 创新科存储技术(深圳)有限公司 Discharge loop and discharge loop protection method
DE102013109348A1 (en) * 2013-08-29 2015-03-05 C. & E. Fein Gmbh Accumulator with monitoring device
CN106655392A (en) * 2017-01-05 2017-05-10 宇龙计算机通信科技(深圳)有限公司 Charging control circuit and terminal
CN108390434A (en) * 2018-03-19 2018-08-10 深圳市新威尔电子有限公司 Protection circuit based on battery charging and discharging
CN112771752A (en) * 2018-09-26 2021-05-07 Fdk株式会社 Battery cell, electricity storage system, and method for charging and discharging battery cell
CN113937374A (en) * 2021-09-30 2022-01-14 无锡职业技术学院 Parallel battery pack and control method
CN113937374B (en) * 2021-09-30 2023-10-27 无锡职业技术学院 Parallel battery pack and control method

Similar Documents

Publication Publication Date Title
US5789900A (en) Device for protecting a secondary battery from overcharge and overdischarge
US5959436A (en) Charge and discharge control circuit having low voltage detecting means for preventing charging of an abnormal cell
JPH08196042A (en) Charging and discharging protection unit for secondary battery
US6624614B2 (en) Charge and discharge controller
JP2872365B2 (en) Rechargeable power supply
KR100943576B1 (en) Battery pack
US5705911A (en) Charging circuit
US6222346B1 (en) Battery protection device
JPH09140065A (en) Secondary battery for parallel use
US5883495A (en) Bidirectional current control circuit suitable for controlling the charging and discharging of rechargeable battery cells
JPH06245406A (en) Charging/discharging circuit
JP3219524B2 (en) Overdischarge protection circuit for secondary battery
JP2002238173A (en) Charging/discharging control circuit and chargeable power supply
JP3622243B2 (en) Charge / discharge protection device for secondary battery
JP3426778B2 (en) Battery charge / discharge control method
JP2000102185A (en) Secondary battery pack
JP2003230228A (en) Method and circuit for protecting secondary battery
JPH08237872A (en) Charge or discharge protective apparatus for secondary cell
JP3524675B2 (en) Battery charge / discharge control device
JPH07163060A (en) Over-discharge prevention circuit for series-connected battery, over-charge prevention circuit and charge/ discharge control circuit
JPH10117443A (en) Overcharge and over-discharge preventive device for secondary battery
JPH07105986A (en) Battery pack
JP4130605B2 (en) Secondary battery overcharge protection device, power supply device, and secondary battery charge control method
JP2000069689A (en) Battery pack device
JP2799261B2 (en) Battery charge control device

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20031212

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20031224

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040220

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040406