JPH08193435A - Snow melting board and snow melting method - Google Patents

Snow melting board and snow melting method

Info

Publication number
JPH08193435A
JPH08193435A JP2090395A JP2090395A JPH08193435A JP H08193435 A JPH08193435 A JP H08193435A JP 2090395 A JP2090395 A JP 2090395A JP 2090395 A JP2090395 A JP 2090395A JP H08193435 A JPH08193435 A JP H08193435A
Authority
JP
Japan
Prior art keywords
heating element
far
snow melting
high thermal
snow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2090395A
Other languages
Japanese (ja)
Inventor
Toshio Saburi
外志雄 佐分利
Akihiro Mizuno
昭洋 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOYO FOODS SYST KK
Original Assignee
TOYO FOODS SYST KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOYO FOODS SYST KK filed Critical TOYO FOODS SYST KK
Priority to JP2090395A priority Critical patent/JPH08193435A/en
Publication of JPH08193435A publication Critical patent/JPH08193435A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To suppress production cost and re-utilize waste by providing a snow melting board and snow melting method which have snow melting effect or freezing prevention effect efficiently and safely and also providing component materials used for the snow melting board and snow melting method using industrial waste. CONSTITUTION: A far infrared radiating heat insulation body 1, a surface heating body 2, a far infrared radiating sheet 4, and a high heat conductive far infrared radiation body 3 are laminated in that order, and a power is supplied to the surface heating body 2. Also the high heat conductive far infrared radiation body 3, which is excellent in heat conductivity, receives heat emitted from the surface heating body 2, and radiates far infrared radiation in such a wave length area as including a wave length of 10. 6μm which is the wave length of molecule of ice at a temperature of 0 deg.C. Thus snow falling on roads and roofs and freezing of road surfaces can be prevented efficiently and safely with low power consumption.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、建築物や道路や鉄道な
どの屋外施設における積雪防止技術(融雪技術)或は凍
結防止技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for preventing snow accumulation (snow melting technique) or an anti-freezing technique for outdoor facilities such as buildings, roads and railways.

【0002】[0002]

【従来の技術】従来、寒冷地域(零下温度領域)におけ
る融雪方法、或は凍結防止方法として、建築物の屋根の
内側や道路の内部やその他の積雪または凍結の可能性の
ある屋外施設の内部に電熱線を埋め込み、その電熱線に
電力を供給して発熱させ、その熱により建築物の屋根上
や道路上やその他の屋外施設上に積もる雪をとかした
り、凍結を防止するようにしたものが知られている。ま
た、従来の融雪方法として地下水を汲み上げ、その地下
水の散水によって融雪する方法も知られている。
2. Description of the Related Art Conventionally, as a snow melting method in a cold area (subzero temperature area) or a method for preventing freezing, the inside of a roof of a building, the inside of a road, or the inside of an outdoor facility having a possibility of snow accumulation or freezing. A heating wire is embedded in the heating wire to generate heat by supplying electric power to the heating wire, and the heat is used to melt snow accumulated on roofs of buildings, roads and other outdoor facilities and prevent freezing. It has been known. Further, as a conventional snow melting method, a method is known in which ground water is pumped up and the snow is melted by sprinkling the ground water.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、電熱線
を用いた上記従来技術では、電熱線の発する熱により屋
根葺き材や、道路のアスファルト或はコンクリートなど
を直接加熱する方法であるため、電力消費量が多大であ
るにもかかわらず融雪効果或は凍結防止効果が小さいと
いう問題点があった。これは、屋根葺き材(瓦や彩色石
綿板など)や道路の表面材(アスファルトやコンクリー
トなど)が一般的に使用されているものである、すなわ
ち熱伝導性に優れるように配慮されたものではないこと
も一因である。また、木造家屋などでは、電熱線の過熱
による火災の発生という問題点もあった。一方、地下水
を汲み上げて散水する上記従来方法では、地盤沈下の弊
害をもたらし、積雪地方の重大な社会問題となってい
る。
However, in the above-mentioned conventional technique using a heating wire, the method of directly heating the roofing material, the asphalt or the concrete of the road, etc. by the heat generated by the heating wire, consumes no electric power. Although the amount is large, there is a problem that the snow melting effect or the antifreezing effect is small. This is generally used for roofing materials (such as roof tiles and colored asbestos boards) and road surface materials (such as asphalt and concrete), that is, those that are considered to have excellent thermal conductivity. The lack of it is also a factor. In addition, there is a problem that a fire may occur due to overheating of a heating wire in a wooden house or the like. On the other hand, the above-mentioned conventional method of pumping up groundwater and sprinkling it causes an adverse effect of ground subsidence, which is a serious social problem in the snowy region.

【0004】本発明は、上記問題点を解決するためにな
されたもので、効率良く、安全に、しかも環境に調和す
る融雪効果或は凍結防止効果が得られる融雪板及び融雪
方法を提供するとともに、産業廃棄物等を利用して融雪
板や融雪方法に用いる構成材料を得ることによって、生
産コストを抑え、かつ、廃棄物の再利用を図ることも目
的としている。
The present invention has been made in order to solve the above problems, and provides a snow melting plate and a snow melting method that can efficiently and safely obtain a snow melting effect or an anti-freezing effect in harmony with the environment. The purpose of the present invention is to reduce the production cost and reuse the waste by obtaining the constituent materials used for the snow melting plate and the snow melting method by using the industrial waste.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本発明者は、屋根葺き材や道路の表面材として高熱
伝導性を有し、かつ遠赤外線を放射可能な高熱伝導遠赤
外線放射体を用い、その高熱伝導遠赤外線放射体の遠赤
外線の放射により氷の分子を励起し、さらにその励起状
態から基底状態に戻る際に氷の分子から放出される熱で
もって雪や氷をとかすことを考えた。また、安全性の観
点から、熱源として従来の電熱線に代えて自己温度調節
機能を有する面状発熱体を用いることを考えた。
In order to achieve the above object, the present inventor has as a roofing material and a road surface material a high thermal conductivity far infrared radiation having high thermal conductivity and capable of emitting far infrared rays. The body uses its body to excite ice molecules by the far-infrared radiation of its high-heat-conducting far-infrared radiator, and then to melt snow and ice with the heat released from the ice molecules when returning from its excited state to the ground state. I thought about that. Also, from the viewpoint of safety, it was considered to use a sheet heating element having a self-temperature control function as a heat source instead of the conventional heating wire.

【0006】本発明は上記着想に基づきなされたもの
で、請求項1に記載した融雪板は、面状発熱体の上に、
高熱伝導性を有し、かつ3〜25μmを含む波長域の遠
赤外線を放射可能な高熱伝導遠赤外線放射体を積層した
ことを特徴とする。
The present invention has been made on the basis of the above idea, and the snow melting plate according to claim 1 is characterized in that:
It is characterized in that high thermal conductive far infrared radiators having high thermal conductivity and capable of emitting far infrared rays in a wavelength range including 3 to 25 μm are laminated.

【0007】請求項2に記載した融雪板は、請求項1記
載の発明において、前記面状発熱体と前記高熱伝導遠赤
外線放射体との間に、遠赤外線を放射可能で、かつその
遠赤外線放射により前記面状発熱体の発する熱を対流や
反射や放散させることなく前記高熱伝導遠赤外線放射体
に伝え得る遠赤外線放射シートを介装させたことを特徴
とする。
According to a second aspect of the present invention, in the snow melting plate according to the first aspect, far infrared rays can be radiated between the sheet heating element and the high thermal conductive far infrared radiator, and the far infrared rays can be emitted. It is characterized in that a far-infrared radiating sheet capable of transmitting the heat generated by the planar heating element by radiation to the high-heat-conducting far-infrared radiating body without convection, reflection or radiation is interposed.

【0008】請求項3に記載した融雪板は、請求項1ま
たは2記載の発明において、前記面状発熱体の下に、断
熱体を設けたことを特徴とする。
According to a third aspect of the present invention, in the snow melting plate according to the first or second aspect, a heat insulator is provided below the planar heating element.

【0009】請求項4に記載した融雪板は、請求項1、
2または3記載の発明において、前記高熱伝導遠赤外線
放射体は、火力発電所で生じるフライアッシュでできた
セラミック組成材、またはフライアッシュに金属酸化物
及び炭化物の少なくとも1種を混合したセラミック組成
材でできていることを特徴とする。
The snow melting plate described in claim 4 is the same as in claim 1,
In the invention described in 2 or 3, the high thermal conductive far-infrared radiator is a ceramic composition material made of fly ash generated in a thermal power plant, or a ceramic composition material obtained by mixing fly ash with at least one kind of metal oxide and carbide. It is characterized by being made of.

【0010】請求項5に記載した融雪板は、請求項1、
2または3記載の発明において、前記高熱伝導遠赤外線
放射体は、合成樹脂に火力発電所で生じるフライアッシ
ュを混合した組成材でできていることを特徴とする。
The snow melting plate described in claim 5 is the same as in claim 1,
The invention according to 2 or 3 is characterized in that the high thermal conductive far-infrared radiator is made of a synthetic resin mixed with fly ash generated in a thermal power plant.

【0011】請求項6に記載した融雪板は、請求項5記
載の発明において、前記合成樹脂はウレタン、アクリ
ル、塩化ビニール、ポリエチレン等の熱可塑性樹脂であ
ることを特徴とする。
According to a sixth aspect of the present invention, there is provided the snow melting plate according to the fifth aspect, wherein the synthetic resin is a thermoplastic resin such as urethane, acryl, vinyl chloride or polyethylene.

【0012】請求項7に記載した融雪板は、請求項1、
2、3、4、5または6記載の発明において、前記面状
発熱体は、自己の抵抗値が所定温度以上で増大すること
によりそれ以上の昇温を防止可能な自己温度調節機能を
有することを特徴とする。
The snow melting plate according to claim 7 is the snow melting plate according to claim 1,
In the invention described in 2, 3, 4, 5 or 6, the planar heating element has a self-temperature control function capable of preventing further temperature rise by increasing the resistance value of the sheet heating element at a predetermined temperature or higher. Is characterized by.

【0013】また、請求項8に記載した融雪方法は、建
築物の屋根面、道路の最表面、またはその他の積雪また
は凍結の可能性のある屋外露出部分に面状発熱体を敷設
し、該面状発熱体上に高熱伝導性を有し、かつ3〜25
μmを含む波長域の遠赤外線を放射可能な高熱伝導遠赤
外線放射体を積層し、前記面状発熱体を電源に接続して
同面状発熱体に電力を供給する。
According to the snow melting method of the present invention, a sheet heating element is laid on the roof surface of a building, the outermost surface of a road, or other exposed portion where there is a possibility of snow accumulation or freezing. It has a high thermal conductivity on the sheet heating element and is 3 to 25.
A highly heat-conducting far-infrared radiator capable of radiating far-infrared rays in a wavelength range including μm is stacked, and the planar heating element is connected to a power source to supply power to the planar heating element.

【0014】請求項9に記載した融雪方法は、請求項8
に記載の発明において、前記面状発熱体と前記高熱伝導
遠赤外線放射体との間に、遠赤外線を放射可能で、かつ
その遠赤外線放射により前記面状発熱体の発する熱を対
流や反射や放散させることなく前記高熱伝導遠赤外線放
射体に伝え得る遠赤外線放射シートを介装させたことを
特徴とする。
The snow melting method described in claim 9 is the method of claim 8.
In the invention described in, between the planar heating element and the high thermal conductive far infrared radiator, it is possible to radiate far infrared rays, and convection or reflection of heat generated by the planar heating element by the far infrared radiation. It is characterized in that a far-infrared radiation sheet which can be transmitted to the high-heat-conduction far-infrared radiation body without being dissipated is interposed.

【0015】[0015]

【作用】請求項1記載の発明によれば、融雪板が、面状
発熱体の上に、高熱伝導性を有し、かつ3〜25μmの
波長域の遠赤外線を放射可能な高熱伝導遠赤外線放射体
を積層した構造であるため、面状発熱体の発する熱が効
率良く高熱伝導遠赤外線放射体に伝わるとともに、高熱
伝導遠赤外線放射体から遠赤外線が発せられる。その発
せられた遠赤外線の波長が、0℃における氷の分子の波
長である10.6μmを含むため、雪や氷の分子が共鳴
振動して活性化し(励起状態)、その励起状態から基底
状態に戻る際に雪や氷の分子から放出される熱エネルギ
ーにより雪や氷がとける。
According to the invention of claim 1, the snow melting plate has a high thermal conductivity on the sheet heating element and is capable of emitting far infrared rays in the wavelength range of 3 to 25 μm. Since the radiator has a laminated structure, the heat generated by the planar heating element is efficiently transmitted to the high thermal conductive far infrared radiator, and the high thermal conductive far infrared radiator emits far infrared rays. Since the emitted far-infrared wavelength includes 10.6 μm, which is the wavelength of ice molecules at 0 ° C., the snow and ice molecules are resonantly vibrated and activated (excited state), and the excited state changes to the ground state. The thermal energy released from the snow and ice molecules when returning to melts the snow and ice.

【0016】請求項2記載の発明によれば、面状発熱体
と高熱伝導遠赤外線放射体との間に、遠赤外線を放射可
能で、かつその遠赤外線放射により前記面状発熱体の発
する熱を対流や反射や放散させることなく高熱伝導遠赤
外線放射体に伝え得る遠赤外線放射シートを介装させた
ため、面状発熱体の発する熱が対流や反射や放散するこ
となく効率良く高熱伝導遠赤外線放射体に吸収されると
ともに、遠赤外線放射シートからも遠赤外線が発せられ
る。
According to the second aspect of the present invention, far infrared rays can be radiated between the planar heating element and the high thermal conductive far infrared radiator, and the heat generated by the planar heating element due to the far infrared radiation. Since a far-infrared radiation sheet that can transfer heat to the far-infrared radiator with high heat conduction without being convected, reflected, or dissipated, the heat generated by the planar heating element can be efficiently transmitted by far-infrared radiation without convection, reflection, or dissipation. Far-infrared rays are emitted from the far-infrared radiation sheet while being absorbed by the radiator.

【0017】請求項3記載の発明によれば、面状発熱体
の下に断熱体を設けたたため、面状発熱体の発する熱が
効率良く上方に伝わって高熱伝導遠赤外線放射体に吸収
される。
According to the third aspect of the present invention, since the heat insulator is provided below the planar heating element, the heat generated by the planar heating element is efficiently transmitted upward and absorbed by the high thermal conductive far infrared radiator. It

【0018】請求項4記載の発明によれば、高熱伝導遠
赤外線放射体が、フライアッシュでできたセラミック組
成材、またはフライアッシュに金属酸化物及び炭化物の
少なくとも1種を混合したセラミック組成材でできてい
るため、それらセラミック組成材から放射される遠赤外
線の波長域は3〜25μmであり、0℃における氷の分
子の波長である10.6μmを含むため、雪や氷をとか
すことができる。また、フライアッシュは産業廃棄物で
あるから、低コストで、かつ、資源の有効利用にも役立
つ。
According to the fourth aspect of the present invention, the high thermal conductive far-infrared radiator is a ceramic composition material made of fly ash or a ceramic composition material obtained by mixing fly ash with at least one kind of metal oxide and carbide. Therefore, the wavelength range of far infrared rays radiated from these ceramic composition materials is 3 to 25 μm and includes 10.6 μm, which is the wavelength of ice molecules at 0 ° C., so that snow and ice can be melted. . Further, since fly ash is an industrial waste, it is low in cost and useful for effective use of resources.

【0019】請求項5または6記載の発明によれば、高
熱伝導遠赤外線放射体が、ウレタン、アクリル、塩化ビ
ニール、ポリエチレン等の熱可塑性樹脂からなる合成樹
脂にフライアッシュを混合した組成材でできているた
め、その組成材から放射される遠赤外線の波長域は3〜
25μmであり、0℃における氷の分子の波長である1
0.6μmを含むため、雪や氷をとかすことができる。
また、低コストで、かつ、資源の有効利用にも役立つ。
According to the fifth or sixth aspect of the present invention, the high thermal conductive far-infrared radiator is made of a composition material in which fly ash is mixed with a synthetic resin made of a thermoplastic resin such as urethane, acrylic, vinyl chloride and polyethylene. Therefore, the wavelength range of far infrared rays emitted from the composition material is 3 to
25 μm, which is the wavelength of ice molecules at 0 ° C 1
Since it contains 0.6 μm, snow and ice can be melted.
In addition, it is useful at low cost and effective use of resources.

【0020】請求項7記載の発明によれば、面状発熱体
が、自己の抵抗値が所定温度以上で増大することにより
それ以上の昇温を防止可能な自己温度調節機能を有する
ため、例えば面状発熱体が、55℃以上の温度で抵抗値
が増大するようになっていれば、融雪板の温度が55℃
以上に上がることがないので、過熱による火災の発生が
防止される。
According to the seventh aspect of the invention, since the sheet heating element has a self-temperature adjusting function capable of preventing further temperature rise due to an increase in the resistance value of the sheet heating element above a predetermined temperature, for example, If the resistance of the sheet heating element increases at a temperature of 55 ° C or higher, the temperature of the snow melting plate will be 55 ° C.
Since it does not rise above the above level, a fire due to overheating is prevented.

【0021】請求項8記載の発明によれば、建築物の屋
根面、道路の最表面、またはその他の積雪または凍結の
可能性のある屋外露出部分に面状発熱体を敷設し、その
面状発熱体上に高熱伝導性を有し、かつ3〜25μmの
波長域の遠赤外線を放射可能な高熱伝導遠赤外線放射体
を積層し、面状発熱体を電源に接続して面状発熱体に電
力を供給することにより、道路や屋根やポーチなどの屋
外施設の要所上の積雪や、鉄道などの交通機関の要所の
積雪及び凍結や、路面の凍結などを低電力消費量で効率
良く防止することができる。
According to the eighth aspect of the present invention, the sheet heating element is laid on the roof surface of the building, the outermost surface of the road, or any other exposed portion where there is a possibility of snow or freezing. A heat-generating far-infrared radiator having high heat conductivity and capable of radiating far-infrared rays in the wavelength range of 3 to 25 μm is laminated on the heat-generating body, and the plane heat-generating body is connected to a power source to form a plane heat-generating body. By supplying electric power, it is possible to efficiently cover snow on important points of outdoor facilities such as roads, roofs and porch, snow and freeze on important points of transportation such as railways, and freezing of road surface with low power consumption. Can be prevented.

【0022】請求項9記載の発明によれば、前記面状発
熱体と前記高熱伝導遠赤外線放射体との間に、遠赤外線
を放射可能で、かつその遠赤外線放射により前記面状発
熱体の発する熱を対流や反射や放散させることなく前記
高熱伝導遠赤外線放射体に伝え得る遠赤外線放射シート
を介装させたので、面状発熱体の発する熱が対流や反射
や放散することなく効率良く高熱伝導遠赤外線放射体に
吸収されるとともに、遠赤外線放射シートからも遠赤外
線が発せられ、積雪や凍結などを低電力消費量で効率良
く防止することができる。
According to a ninth aspect of the present invention, far infrared rays can be radiated between the planar heating element and the high thermal conductive far infrared radiation element, and the far infrared radiation radiates far infrared rays from the planar heating element. Since a far-infrared radiation sheet that can convey the heat generated to the far-infrared radiation body with high heat conduction without convection, reflection, or radiation is interposed, the heat generated by the planar heating element can be efficiently generated without convection, reflection, or radiation. Far-infrared rays are emitted from the far-infrared radiation sheet while being absorbed by the high-thermal-conductivity far-infrared radiator, and snow and freezing can be efficiently prevented with low power consumption.

【0023】[0023]

【実施例】本発明に係る融雪板の実施例を図1及び図2
に基づいて以下に説明する。図1は、本発明に係る融雪
板の一例の縦断面図であるが、同図に示すように、この
融雪板10は、断熱体1上に面状発熱体2が直接積層さ
れ、さらに面状発熱体2上に高熱伝導遠赤外線放射体3
が直接積層されてできている。
EXAMPLE An example of a snow melting plate according to the present invention is shown in FIGS.
It will be described below based on. FIG. 1 is a vertical cross-sectional view of an example of the snow melting plate according to the present invention. As shown in FIG. 1, the snow melting plate 10 has a planar heating element 2 directly laminated on a heat insulator 1 Heat-conducting far-infrared radiator 3 on the heating element 2
Are directly laminated.

【0024】高熱伝導遠赤外線放射体3は、熱伝導性に
優れ、面状発熱体2の発する熱エネルギーを効率良く伝
導し、さらに面状発熱体2から伝導した熱エネルギーに
より遠赤外線を放射するという特性を有している。しか
も、表面の温度分布も均一である。このような特性を有
する材質の一例として、例えば、火力発電所から産業廃
棄物として生じるフライアッシュの粉体を固め、その圧
粉体を焼成して得られるセラミック組成材が挙げられ
る。また、高熱伝導遠赤外線放射体3として、フライア
ッシュと金属酸化物または炭化物などを混合した粉体を
用いて得られるセラミック組成材や、ウレタン、塩化ビ
ニール、ナイロン、アクリル、ポリエチレンなどの熱可
塑性樹脂からなる合成樹脂にフライアッシュを混合した
組成材などを用いることもできる。ここで、金属酸化物
としては、2酸化モリブデン、チタン酸アルミニウム、
酸化鉛などが挙げられる。また、炭化物としては、炭化
ケイ素、炭化アルミニウム、炭化カルシウム、黒色カー
ボンなどが挙げられる。
The high thermal conductive far-infrared radiator 3 is excellent in thermal conductivity, efficiently conducts the thermal energy generated by the planar heating element 2, and further radiates far infrared rays by the thermal energy conducted from the planar heating element 2. It has the characteristic that Moreover, the temperature distribution on the surface is uniform. An example of a material having such characteristics is a ceramic composition material obtained by solidifying powder of fly ash generated as industrial waste from a thermal power plant and firing the green compact. Further, as the high thermal conductive far-infrared radiator 3, a ceramic composition material obtained by using a powder obtained by mixing fly ash and a metal oxide, a carbide or the like, or a thermoplastic resin such as urethane, vinyl chloride, nylon, acryl or polyethylene. It is also possible to use a composition material in which fly ash is mixed with a synthetic resin composed of Here, as the metal oxide, molybdenum dioxide, aluminum titanate,
Examples thereof include lead oxide. Examples of the carbide include silicon carbide, aluminum carbide, calcium carbide, black carbon and the like.

【0025】上述した各材質よりなる高熱伝導遠赤外線
放射体3は、3〜25μmの波長域の遠赤外線を放射す
る。ここで、0℃における氷の分子の波長は10.6μ
mである。従って、氷の分子は、高熱伝導遠赤外線放射
体3の放射する遠赤外線のエネルギーを吸収すると、励
起して活発に共鳴振動する。その励起状態から元の状態
に戻る時に氷の分子は熱エネルギーを放出する。その熱
エネルギーにより、氷がとける。この遠赤外線放射によ
る効果と、高熱伝導遠赤外線放射体3自体の高熱伝導性
との相乗効果により、高熱伝導遠赤外線放射体3上の雪
や氷を効率良くとかすことができる。
The high thermal conductive far infrared radiator 3 made of the above-mentioned materials radiates far infrared rays in the wavelength range of 3 to 25 μm. Here, the wavelength of ice molecules at 0 ° C is 10.6μ.
m. Therefore, when the ice molecules absorb the energy of far infrared rays emitted from the high thermal conductive far infrared ray radiator 3, they are excited and actively vibrate in resonance. When returning from its excited state to its original state, ice molecules give off thermal energy. The heat energy melts the ice. Due to the synergistic effect of this far infrared radiation and the high thermal conductivity of the high thermal conductive far infrared radiator 3, the snow and ice on the high thermal conductive far infrared radiator 3 can be efficiently removed.

【0026】面状発熱体2には、一般に流通している周
知のものを用いることができる。好ましくは、所定のし
きい値温度(例えば、55℃)以上で面状発熱体1自体
の抵抗値が増大し、それによって面状発熱体2がそれ以
上熱くならないような自己温度調節機能を有していると
よい。なお、面状発熱体2に自己温度調節機能が備わっ
ていないか、或はしきい値温度が高過ぎる場合には、サ
ーモスタットや温度検出センサーなどを設けて、熱くな
り過ぎた場合に面状発熱体2ヘの給電量を減らす、或は
給電を遮断するように制御すればよい。
As the sheet heating element 2, a well-known one which is generally distributed can be used. It is preferable that the sheet heating element 1 has a self-temperature adjusting function so that the resistance value of the sheet heating element 1 itself increases at a predetermined threshold temperature (for example, 55 ° C.) or higher, and thereby the sheet heating element 2 does not heat up further. I hope you are doing it. If the sheet heating element 2 does not have a self-temperature control function or if the threshold temperature is too high, a sheet heating is provided when a thermostat or a temperature detection sensor is provided. The amount of electric power supplied to the body 2 may be reduced or the electric power may be cut off.

【0027】面状発熱体2の一例として、朋の会理化学
研究所製のマレール面状発熱体を用いることができる。
このマレール面状発熱体は、グラファイト等の炭素細片
とポリマーとからなる主剤をフィルム間に溶解圧延封入
し、電極アルミ均熱板及び保護フィルムでパッケージし
たもので、厚さが1mm程度であり、防水処理が施されて
いる。マレール面状発熱体は、所定のしきい値温度以上
で自己の抵抗値が増大して過熱を防止する自己温度調節
機能を有している。また、マレール面状発熱体は初期の
通電開始時に発熱温度を素早く上昇させ、一旦温度が上
昇してしまうと、消費電力を大幅に減少させ、以後、放
熱ロスに見合った最低の電気流入により一定の温度を維
持するという特性を備えており、電気消費量を節減する
ことができるので経済性にも優れている。本発明の実施
にあたっては、しきい値温度が55℃程度のものを用い
るのが適当である。また、しきい値温度が55℃程度の
マレール面状発熱体では、その温度域での安定消費電力
が約60W/(80m/m×1000m/m)であり、低電
力での融雪システムの可動が可能である。
As an example of the sheet heating element 2, a Mareret sheet heating element manufactured by Tohno Institute of Physical and Chemical Research can be used.
This Malleer sheet heating element is made by melting and encapsulating a base material consisting of carbon particles such as graphite and a polymer between films, packaged with an electrode aluminum soaking plate and a protective film, and has a thickness of about 1 mm. , Is waterproofed. The Murray sheet heating element has a self-temperature adjusting function of preventing its overheat by increasing its own resistance value at a predetermined threshold temperature or higher. In addition, the Murray sheet heating element quickly raises the heat generation temperature at the start of the initial energization, and once the temperature rises, the power consumption is greatly reduced, and thereafter, it is kept constant by the lowest electricity inflow commensurate with the heat radiation loss. It has the characteristic of maintaining the temperature of, and it is economical because it can reduce the electricity consumption. In carrying out the present invention, it is appropriate to use a material having a threshold temperature of about 55 ° C. In the case of the Murray sheet heating element with a threshold temperature of about 55 ° C, the stable power consumption in that temperature range is about 60 W / (80 m / m x 1000 m / m), and the snow melting system can be operated with low power. Is possible.

【0028】断熱体1としては、例えばグラスウール、
ポリウレタン、合成樹脂板や合成樹脂のシート、コンク
リート、石膏ボード、ALC板、セラミック等を用いる
ことができる。
As the heat insulator 1, for example, glass wool,
Polyurethane, a synthetic resin plate or a synthetic resin sheet, concrete, gypsum board, ALC plate, ceramic or the like can be used.

【0029】図2は、本発明に係る融雪板の他の例の縦
断面図であるが、同図に示すように、この融雪板11
は、断熱体1上に面状発熱体2が直接積層され、面状発
熱体2上に遠赤外線放射シート4が直接積層され、さら
に遠赤外線放射シート4上に高熱伝導遠赤外線放射体3
が直接積層されてできている。なお、断熱材1、面状発
熱体2及び高熱伝導遠赤外線放射体3は上記融雪板10
におけるものと同じであるので、その説明を省略する。
FIG. 2 is a longitudinal sectional view of another example of the snow melting plate according to the present invention. As shown in FIG.
The sheet heating element 2 is directly laminated on the heat insulator 1, the far-infrared radiation sheet 4 is directly laminated on the sheet heating element 2, and the far-infrared radiation sheet 3 with high thermal conductivity is further stacked on the far-infrared radiation sheet 4.
Are directly laminated. The heat insulating material 1, the sheet heating element 2 and the high thermal conductive far infrared radiator 3 are the snow melting plate 10 described above.
The description is omitted because it is the same as that in.

【0030】遠赤外線放射シート4は、面状発熱体2の
発する熱を受けて遠赤外線を放射し、その遠赤外線放射
により面状発熱体2の熱を熱対流や熱反射や熱放散させ
ることなく高熱伝導遠赤外線放射体3に効率良く伝える
という特性を有している。具体的には、遠赤外線放射シ
ート4は、例えばビニールハウス等の廃農業用のポリ塩
化ビニルシート等の熱可塑性樹脂をベースにしたもの
で、その塩ビを洗浄してチップ化し、遠赤効果の高い金
属酸化物や炭化物と混合し、攪拌後、加熱して押出成形
によりシート状に形成したものである。このように遠赤
外線放射シート4は廃農業用のポリ塩化ビニルシートを
利用しているので、廃棄物の再利用を図ることができ、
低コストでもある。
The far-infrared radiation sheet 4 receives the heat generated by the planar heating element 2 and radiates far-infrared rays, and the far infrared radiation radiates the heat of the planar heating element 2 into heat convection, heat reflection, or heat dissipation. Instead, it has the property of efficiently transmitting to the high thermal conductive far-infrared radiator 3. Specifically, the far-infrared radiation sheet 4 is based on a thermoplastic resin such as a polyvinyl chloride sheet for waste agriculture such as a vinyl house. It is formed into a sheet by mixing with high metal oxides and carbides, stirring, heating and extruding. In this way, the far-infrared radiation sheet 4 uses a polyvinyl chloride sheet for waste agriculture, so that the waste can be reused,
It is also low cost.

【0031】本発明に係る融雪方法の第1の方法は、特
に図示しないが、上述した融雪板10,11を建築物の
屋根面、道路の最表面、またはその他の積雪や凍結の可
能性のある屋外露出部分に敷き並べ、面状発熱体2を電
源に接続し、面状発熱体2に電力を供給して発熱させ、
その熱と融雪板10,11の遠赤外線放射との相乗効果
により雪や氷を融かすものである。
Although the first method of the snow melting method according to the present invention is not particularly shown, the above-mentioned snow melting plates 10 and 11 are used for roof surfaces of buildings, outermost surfaces of roads, or other possibility of snow accumulation or freezing. Laying them on an outdoor exposed part, connecting the sheet heating element 2 to a power source, and supplying power to the sheet heating element 2 to generate heat.
The heat and the far-infrared radiation of the snow melting plates 10 and 11 synergize to melt snow and ice.

【0032】また、本発明に係る融雪方法の第2の方法
は、特に図示しないが、建築物の屋根面、道路の最表
面、またはその他の積雪や凍結の可能性のある屋外露出
部分に面状発熱体2を敷設し、その上に高熱伝導遠赤外
線放射体3を積層し、面状発熱体2に電力を供給して発
熱させ、その熱と高熱伝導遠赤外線放射体3の遠赤外線
放射との相乗効果により雪や氷を融かすものである。こ
の場合、断熱材1を敷いてから面状発熱体2を敷いても
よいし、また面状発熱体2の上に遠赤外線放射シート4
を敷き、その上に高熱伝導遠赤外線放射体3を敷いても
よい。このような本発明に係る融雪方法や融雪板によれ
ば、従来のように地下水を汲み上げ、その地下水の散水
によって融雪する方法とは異なり、積雪地方の環境にも
調和するものとなっている。
The second method of the snow melting method according to the present invention is not particularly shown, but the surface of the roof of the building, the outermost surface of the road, or other exposed portion where there is a possibility of snow or freezing is exposed. The heat generating element 2 is laid, the high heat conducting far infrared ray radiator 3 is laminated on the heat generating element 2, and electric power is supplied to the planar heat generating element 2 to generate heat, and the heat and the far infrared ray radiation of the high heat conducting far infrared ray radiator 3 are generated. It will melt snow and ice by synergistic effect with. In this case, the sheet heating element 2 may be placed after the heat insulating material 1 is laid, or the far-infrared radiation sheet 4 is placed on the sheet heating element 2.
The high thermal conductive far infrared radiator 3 may be laid thereon. According to such a snow melting method and a snow melting plate according to the present invention, unlike the conventional method of pumping groundwater and melting snow by sprinkling the groundwater, it is harmonized with the environment of the snowy region.

【0033】以下に、本発明者らの行なった実験につい
て説明し、本発明の特徴とするところをより明らかとす
る。なお、本発明は、以下の各実験により何等制限され
るものではないのはいうまでもない。
The experiments conducted by the present inventors will be described below to further clarify the characteristics of the present invention. Needless to say, the present invention is not limited by the following experiments.

【0034】(実験1)上記断熱材1、朋の会理化学研
究所製のしきい値温度が55℃のマレール面状発熱体2
(他の実験においても同様のマレール面状発熱体を用い
た。)及びウレタンゴムとフライアッシュを50%ずつ
混合した上記高熱伝導遠赤外線放射体3を順次積層した
融雪板(図1参照)を用い、昇温実験を行なった。図3
に示すように、200m/m×250m/mの長方形の中央
部を細くしたような略H字状をなし、厚さが22m/mの
高熱伝導遠赤外線放射体3を用いた。その中央部の寸法
は135m/m×130m/m(=250m/m−60m/m×
2)であった。また、図3に示すように、95m/m×2
20m/mの長方形で、厚さが1.5m/mの面状発熱体2
を高熱伝導遠赤外線放射体3の中央に配置した。そし
て、面状発熱体2に電力(100V)を供給し、高熱伝
導遠赤外線放射体3の表面の温度を10分おきに計測し
た。温度の計測点は、高熱伝導遠赤外線放射体3の中央
部(丸印で囲んだ“1”の位置)と四隅部(丸印で囲ん
だ“2”、“3”、“4”及び“5”の位置)とした
(実験2〜4においても同じ)。結果を表1に示す。な
お、この時の室温は20.9℃、湿度は39.9%であ
った。
(Experiment 1) The above-mentioned heat insulating material 1 and Mareille's planar heating element 2 manufactured by Tonokai Rikagaku Kenkyusho and having a threshold temperature of 55 ° C.
(A similar Malerian sheet heating element was also used in other experiments.) And a snow melting plate (see FIG. 1) in which the above-mentioned high thermal conductive far-infrared radiator 3 in which urethane rubber and fly ash were mixed by 50% respectively was sequentially laminated. A temperature rising experiment was performed. FIG.
As shown in FIG. 3, a high heat conduction far infrared radiator 3 having a substantially H-shape having a central part of a rectangle of 200 m / m × 250 m / m narrowed and a thickness of 22 m / m was used. The size of the central part is 135 m / m x 130 m / m (= 250 m / m-60 m / m x
It was 2). Also, as shown in FIG. 3, 95 m / m × 2
20m / m rectangular sheet heating element with a thickness of 1.5m / m 2
Was placed in the center of the high thermal conductive far-infrared radiator 3. Then, electric power (100 V) was supplied to the planar heating element 2, and the temperature of the surface of the high thermal conductive far-infrared radiator 3 was measured every 10 minutes. The temperature measurement points are the center of the high-heat-conducting far-infrared radiator 3 (the position of "1" circled) and the four corners ("2", "3", "4" and "circle circled". 5 "position) (same for experiments 2 to 4). The results are shown in Table 1. At this time, the room temperature was 20.9 ° C. and the humidity was 39.9%.

【表1】 [Table 1]

【0035】(実験2)上記断熱材1、上記面状発熱体
2、上記遠赤外線放射シート4及びウレタンゴムとフラ
イアッシュを50%ずつ混合した上記高熱伝導遠赤外線
放射体3を順次積層した融雪板(図2参照)を用い、昇
温実験を行なった。高熱伝導遠赤外線放射体3及び面状
発熱体2の形状や大きさや厚さ、及びその他の条件等は
上記実施例1と同じであった。但し、この時の室温は2
0℃であり、湿度については計測しなかった。また、実
験開始後、680分経過した時の室温は19.5℃であ
った。結果を表2に示す。
(Experiment 2) Snow melting in which the heat insulating material 1, the planar heating element 2, the far-infrared radiation sheet 4, and the high-heat-conducting far-infrared radiation body 3 in which urethane rubber and fly ash are mixed at 50% each are sequentially laminated. A temperature rising experiment was conducted using a plate (see FIG. 2). The shape, size, thickness, and other conditions of the high thermal conductive far-infrared radiator 3 and the planar heating element 2 were the same as in Example 1 above. However, the room temperature at this time is 2
It was 0 ° C., and humidity was not measured. The room temperature at the time of 680 minutes after the start of the experiment was 19.5 ° C. Table 2 shows the results.

【表2】 [Table 2]

【0036】(実験3)上記断熱材1、上記面状発熱体
2及びフライアッシュのみからなる上記高熱伝導遠赤外
線放射体3を順次積層した融雪板(図1参照)を用い、
昇温実験を行なった。図4に示すように、105m/m×
105m/mの正方形で、厚さが9m/mの高熱伝導遠赤外
線放射体3を用いた。その高熱伝導遠赤外線放射体3
を、図4に示すように、95m/m×220m/mの長方形
で、厚さが1.5m/mの面状発熱体2の中央に配置し
た。そして、面状発熱体2に電力を供給し、高熱伝導遠
赤外線放射体3の表面の温度を10分おきに計測した。
結果を表3に示す。なお、この時の室温は23.3℃、
湿度は37.2%であった。
(Experiment 3) Using a snow melting plate (see FIG. 1) in which the heat insulating material 1, the sheet heating element 2 and the high thermal conductive far infrared radiator 3 consisting only of fly ash are sequentially laminated,
A heating experiment was performed. As shown in Fig. 4, 105 m / m x
A high thermal conductive far-infrared radiator 3 having a square shape of 105 m / m and a thickness of 9 m / m was used. Its high thermal conductivity far infrared radiator 3
As shown in FIG. 4, it was placed in the center of a planar heating element 2 having a rectangular shape of 95 m / m × 220 m / m and a thickness of 1.5 m / m. Then, electric power was supplied to the sheet heating element 2, and the temperature of the surface of the high thermal conductive far infrared radiator 3 was measured every 10 minutes.
The results are shown in Table 3. The room temperature at this time was 23.3 ° C,
Humidity was 37.2%.

【表3】 また、実験開始後、約2分経過した時点で、面状発熱体
2の表面温度を測定したところ44.3℃程度で、その
後、60分、70分、80分の時に面状発熱体2の表面
温度を測定したところ、何れも44.3〜44.8℃程
度であった。
[Table 3] When the surface temperature of the sheet heating element 2 was measured at about 2 minutes after the start of the experiment, it was about 44.3 ° C., and then at 60 minutes, 70 minutes, and 80 minutes, the sheet heating element 2 was heated. When the surface temperature of each was measured, it was about 44.3-44.8 degreeC in all cases.

【0037】(実験4)上記断熱材1、上記面状発熱体
2、上記遠赤外線放射シート4及びフライアッシュのみ
からなる上記高熱伝導遠赤外線放射体3を順次積層した
融雪板(図2参照)を用い、昇温実験を行なった。高熱
伝導遠赤外線放射体3及び面状発熱体2の形状や大きさ
や厚さ、及びその他の条件等は上記実施例3と同じであ
った。但しこの時の室温は22.4℃、湿度は34.6
%であった。結果を表4に示す。
(Experiment 4) A snow melting plate in which the heat insulating material 1, the planar heating element 2, the far-infrared radiation sheet 4, and the high-heat-conducting far-infrared radiation element 3 consisting only of fly ash are sequentially laminated (see FIG. 2). Was used to conduct a temperature rise experiment. The shape, size, thickness, and other conditions of the high thermal conductive far-infrared radiator 3 and the planar heating element 2 were the same as those in Example 3 above. However, the room temperature at this time was 22.4 ° C, and the humidity was 34.6.
%Met. The results are shown in Table 4.

【表4】 また、実験開始後、約2分経過した時点で、面状発熱体
2の表面温度を測定したところ41.5℃程度で、その
後、70分、80分、90分の時に面状発熱体2の表面
温度を測定したところ、何れも41.5〜43.9℃程
度であった。
[Table 4] When the surface temperature of the sheet heating element 2 was measured about 2 minutes after the start of the experiment, it was about 41.5 ° C., and then at 70 minutes, 80 minutes, and 90 minutes, the sheet heating element 2 was heated. When the surface temperature of was measured, it was about 41.5-43.9 degreeC in all cases.

【0038】上記実験1〜4より、融雪板上の雪を十分
にとかすことができる程度に高熱伝導遠赤外線放射体3
が加熱され、また火災等の発生の危険性も皆無であるこ
とがわかった。
From the above Experiments 1 to 4, the far-infrared radiator 3 having a high thermal conductivity to the extent that the snow on the snow melting plate can be sufficiently melted.
It was found that there was no danger of fire and the like being heated.

【0039】(実験5)次に、本発明に係る融雪板の氷
結実験を行なった。使用した高熱伝導遠赤外線放射体3
の大きさは250m/m×190m/mで、厚さが10m/m
(容積:475cc)であり、面状発熱体2のPTC容量
は12V×126℃(電源:100V)であった。温度
の計測は、高熱伝導遠赤外線放射体3の表面の中心点に
おいて行なった。但し、高熱伝導遠赤外線放射体3上に
氷を載せた場合には、高熱伝導遠赤外線放射体3の側面
の一点において温度を計測した。実験時の室温は18℃
であった。
(Experiment 5) Next, a freezing experiment of the snow melting plate according to the present invention was conducted. High thermal conductivity far infrared radiator used 3
Size is 250m / m × 190m / m, thickness is 10m / m
(Volume: 475 cc), and the PTC capacity of the planar heating element 2 was 12V × 126 ° C. (power supply: 100V). The temperature was measured at the center point of the surface of the high thermal conductive far infrared radiator 3. However, when ice was placed on the high thermal conductive far infrared radiator 3, the temperature was measured at one point on the side surface of the high thermal conductive far infrared radiator 3. Room temperature at the time of experiment is 18 ℃
Met.

【0040】先ず、高熱伝導遠赤外線放射体3を冷蔵庫
の冷凍室内に放置した。この時の高熱伝導遠赤外線放射
体3の温度は−6℃であった。5分経過後の高熱伝導遠
赤外線放射体3の温度は1.5℃、7分経過した時の温
度は3〜4℃であり、いずれの氷(サイズ 25mm×2
5mm×25mm)も解凍した。その後高熱伝導遠赤外線放
射体3の下面に面状発熱体2を取り付け(以下、この状
態を融雪板と呼ぶ。)、5分経過した時点で温度を計測
したところ、高熱伝導遠赤外線放射体3の温度は15.
3℃、面状発熱体2の温度は35.6℃であった。この
状態で、高熱伝導遠赤外線放射体3上にその板面一杯に
氷を載せたところ、高熱伝導遠赤外線放射体3の温度は
3.8〜6.7℃、面状発熱体2の温度は32.2℃で
あった。その5分後、再び温度を測定したら、高熱伝導
遠赤外線放射体3の温度は2.5〜4.0℃、面状発熱
体2の温度は26.5℃であった。氷を載せた状態のま
ま面状発熱体2に通電し、融雪板を冷凍室(室内温度:
−15〜−13.5℃)内に入れた。そのまま20分経
過した時点での高熱伝導遠赤外線放射体3の温度は−
2.5℃、面状発熱体2の温度は11.0℃であった。
30分経過した時の高熱伝導遠赤外線放射体3の温度は
−7.0〜−3.0℃であり、高熱伝導遠赤外線放射体
3上の氷は氷結したままであった。続いて、冷凍室から
融雪板を取り出し、そのまま4分間放置したところ、高
熱伝導遠赤外線放射体3の温度は2.6〜3.3℃であ
り、高熱伝導遠赤外線放射体3上の氷はとけていた。放
置時間が6分の時には、高熱伝導遠赤外線放射体3の温
度は4.0〜6.0℃、面状発熱体2の温度は22.0
℃であった。
First, the high thermal conductive far infrared radiator 3 was left in the freezer compartment of the refrigerator. At this time, the temperature of the high thermal conductive far infrared radiator 3 was -6 ° C. The temperature of the high thermal conductive far-infrared radiator 3 after 5 minutes was 1.5 ° C., the temperature after 7 minutes was 3 to 4 ° C., and any ice (size 25 mm × 2
5mm x 25mm) was also thawed. After that, the sheet heating element 2 was attached to the lower surface of the high thermal conductive far infrared radiator 3 (hereinafter, this state is referred to as a snow melting plate). When the temperature was measured after 5 minutes, the high thermal conductive far infrared radiator 3 was obtained. The temperature of 15.
The temperature of the sheet heating element 2 was 35.6 ° C. In this state, when the plate surface was placed on the high thermal conductive far-infrared radiator 3, the temperature of the high thermal conductive far-infrared radiator 3 was 3.8 to 6.7 ° C., and the temperature of the sheet heating element 2 was high. Was 32.2 ° C. Five minutes later, when the temperature was measured again, the temperature of the high thermal conductive far-infrared radiator 3 was 2.5 to 4.0 ° C, and the temperature of the sheet heating element 2 was 26.5 ° C. The sheet heating element 2 is energized with the ice on it, and the snow melting plate is frozen (room temperature:
-15 to -13.5 ° C). The temperature of the high thermal conductive far-infrared radiator 3 after 20 minutes has passed-
The temperature of the sheet heating element 2 was 2.5 ° C and 11.0 ° C.
The temperature of the high thermal conductive far infrared radiator 3 after 30 minutes was −7.0 to −3.0 ° C., and the ice on the high thermal conductive far infrared radiator 3 remained frozen. Subsequently, when the snow melting plate was taken out from the freezing room and left as it was for 4 minutes, the temperature of the high thermal conductive far infrared radiator 3 was 2.6 to 3.3 ° C., and the ice on the high thermal conductive far infrared radiator 3 was It was melting. When the standing time is 6 minutes, the temperature of the high thermal conductive far-infrared radiator 3 is 4.0 to 6.0 ° C., and the temperature of the sheet heating element 2 is 22.0.
° C.

【0041】この実験5より本発明に係る融雪方法を適
用すれば寒冷地域での気温が−5℃程度までであれば路
面等の凍結を防止することができることがわかった。ま
た、深夜の冷寒時が過ぎ、朝方の気温上昇に伴い、一旦
凍結した路面等を解凍させることができることもわかっ
た。なお、好ましくは、高熱伝導遠赤外線放射体3の厚
さを10m/mよりも厚くし、高熱伝導遠赤外線放射体3
の熱の蓄積量を大きくするとよい。さらに、面状発熱体
2の熱容量効率を上げるとよい。そうすれば、深夜の冷
寒時などのように−5℃よりも温度が低くても、路面等
の凍結を防止することができる。
From Experiment 5, it was found that by applying the snow melting method according to the present invention, freezing of the road surface or the like can be prevented if the temperature in the cold region is up to about -5 ° C. It was also found that the frozen road surface can be thawed as the cold weather at midnight passes and the temperature rises in the morning. In addition, preferably, the thickness of the high thermal conductive far infrared radiator 3 is made thicker than 10 m / m, and the high thermal conductive far infrared radiator 3 is formed.
It is better to increase the amount of accumulated heat. Furthermore, it is preferable to increase the heat capacity efficiency of the sheet heating element 2. By doing so, even if the temperature is lower than -5 ° C, such as when the night is cold, it is possible to prevent the road surface from freezing.

【0042】(実験6)次に、実験1で用いた融雪板
(図1参照)により図5に示した実験装置100を作
り、ビルディングの屋上に設置して、A,B,C,Dの
各計測点の表面温度を測定した。前記実験装置100
は、40cm×50cmの融雪板ユニット101を7行5列
に配列し、周囲に18cm×50cmの融雪板ユニット10
2を配列したものである。このような実験装置100の
面状発熱体2に電力(100V)を供給し、各計測点の
表面温度を放射温度計により測定したところ、表5に示
す結果を得た。なお、この実験場所は新潟県の六日町、
実験日時は1994年12月29日、天候は雪であっ
た。またこの実験で消費された電力量は362.5KW
であった。
(Experiment 6) Next, the snow melting plate used in Experiment 1 (see FIG. 1) was used to prepare the experimental apparatus 100 shown in FIG. 5, and the experimental apparatus 100 was installed on the roof of the building to remove A, B, C, and D. The surface temperature at each measurement point was measured. The experimental device 100
Is a 40 cm x 50 cm snow melting plate unit 101 arranged in 7 rows and 5 columns, and a 18 cm x 50 cm snow melting plate unit 10 is arranged around it.
It is an array of two. Electric power (100 V) was supplied to the planar heating element 2 of the experimental apparatus 100, and the surface temperature at each measurement point was measured by the radiation thermometer, and the results shown in Table 5 were obtained. The test site was Muikamachi, Niigata Prefecture,
The test date was December 29, 1994, and the weather was snow. The amount of electricity consumed in this experiment is 362.5 kW
Met.

【表5】 この実験装置100内に降った雪は融けてしまい、本発
明に係る融雪板が実際に十分な融雪機能を発揮できるこ
とを実証することができた。
[Table 5] It was possible to demonstrate that the snow falling in the experimental apparatus 100 melted and the snow melting plate according to the present invention could actually exhibit a sufficient snow melting function.

【0043】(実験7)次に、実験道路を図6及び図7
に示すように作り、面状発熱体2の融雪効果を確認し
た。実験道路は、路盤200上にコンクリート201を
打ち、その上に面状発熱体2を敷設し、その上にセメン
トモルタル202を打ち、更にそのセメントモルタル2
02の上にアスファルト203をひいた道路R1(図7
参照)と、路盤200上にコンクリート201を打ち、
その上に面状発熱体2、その上にセメントモルタル20
2を打った道路R2(図7参照)と、前記道路R2の面
状発熱体2上に遠赤外線放射シート4を敷設し、その上
にセメントモルタル202を打った道路R3を作った。
そして、道路R1に計測点A,Bを設け、道路R2に計
測点C,Dを設け、道路R3に計測点E,Fを設けた。
このような各道路R1,R2,R3の面状発熱体2に電
力(100V)を供給し、各計測点の表面温度を放射温
度計により測定したところ、表6に示す結果を得た。な
お、この実験場所、実験日時、天候は前記実験6と同様
である。また、この実験で消費された電力量は、道路R
1が64.8KW,道路R2,R3が67.4KWであ
った。
(Experiment 7) Next, the experimental road is shown in FIGS.
And the snow melting effect of the planar heating element 2 was confirmed. In the experimental road, concrete 201 is laid on the roadbed 200, the sheet heating element 2 is laid on the concrete 201, cement mortar 202 is laid on it, and the cement mortar 2
Road R1 with Asphalt 203 on 02 (Fig. 7
), Hit concrete 201 on the roadbed 200,
On top of that, the sheet heating element 2, and on top of that cement mortar 20
The far-infrared radiation sheet 4 was laid on the road R2 hit by No. 2 (see FIG. 7) and the planar heating element 2 of the road R2, and the road R3 hit by cement mortar 202 was formed on the far-infrared radiation sheet 4.
Then, measurement points A and B are provided on the road R1, measurement points C and D are provided on the road R2, and measurement points E and F are provided on the road R3.
Electric power (100 V) was supplied to the sheet heating element 2 on each of the roads R1, R2, and R3, and the surface temperature at each measurement point was measured by a radiation thermometer, and the results shown in Table 6 were obtained. The experimental location, the experimental date and time, and the weather are the same as in Experiment 6. Also, the amount of electricity consumed in this experiment is
1 was 64.8 kW and roads R2 and R3 were 67.4 kW.

【表6】 この実験道路に降った雪はセメントモルタル202とア
スファルト203との境界部分B上の雪も含めて融けて
しまい、本発明に係る面状発熱体2が実際に十分な融雪
機能を発揮できることを実証することができた。
[Table 6] The snow that fell on this experimental road melted including the snow on the boundary B between the cement mortar 202 and the asphalt 203, and it was verified that the planar heating element 2 according to the present invention can actually exhibit a sufficient snow melting function. We were able to.

【0044】上記各実験に基づいて、本発明者が試算し
たところでは、従来の電熱線を用いた融雪方法(凍結防
止方法)と比較して、本発明に係る融雪方法は電力消費
量を20〜30%削減することができる。
Based on the above experiments, the present inventor calculated that the snow melting method according to the present invention consumes 20% of electric power as compared with the conventional snow melting method using a heating wire (freezing prevention method). It can be reduced by ~ 30%.

【0045】なお、融雪板10は、断熱材1、面状発熱
体2及び高熱伝導遠赤外線放射体3が一体化されていて
もよいし、分離可能になっていてもよい。また、融雪板
11も、断熱材1、面状発熱体2、遠赤外線放射シート
4及び高熱伝導遠赤外線放射体3が一体化されていても
よいし、分離可能になっていてもよい。
The snow-melting plate 10 may have the heat insulating material 1, the sheet heating element 2 and the high thermal conductive far-infrared radiator 3 integrated with each other, or may be separable. In addition, the snow melting plate 11, the heat insulating material 1, the planar heating element 2, the far infrared radiation sheet 4, and the high thermal conductive far infrared radiation element 3 may be integrated, or may be separable.

【0046】[0046]

【発明の効果】請求項1記載の発明によれば、面状発熱
体の発する熱が効率良く高熱伝導遠赤外線放射体に伝わ
るとともに、高熱伝導遠赤外線放射体から0℃における
氷の分子の波長である10.6μmを含む波長域の遠赤
外線が発せられるため、雪や氷の分子が励起し、その励
起状態から基底状態に戻る際に雪や氷の分子から放出さ
れる熱エネルギーにより雪や氷がとける。従って、低電
力消費量で効率良く雪や氷をとかすことができる。また
路面などが凍結するのを防止することができる。
According to the invention described in claim 1, the heat generated by the planar heating element is efficiently transmitted to the high thermal conductive far infrared radiator, and the wavelength of the ice molecule at 0 ° C. from the high thermal conductive far infrared radiator. Since far infrared rays in the wavelength range including 10.6 μm are emitted, the snow and ice molecules are excited, and the thermal energy released from the snow and ice molecules when returning from the excited state to the ground state The ice melts. Therefore, it is possible to efficiently remove snow and ice with low power consumption. It is also possible to prevent the road surface and the like from freezing.

【0047】請求項2記載の発明によれば、面状発熱体
の発する熱が対流や反射や放散することなく効率良く高
熱伝導遠赤外線放射体に吸収されるとともに、遠赤外線
放射シートからも遠赤外線が発せられるので、さらに効
率良く雪や氷をとかすことができる。
According to the second aspect of the present invention, the heat generated by the sheet heating element is efficiently absorbed by the high thermal conductive far infrared radiator without convection, reflection or dissipation, and far from the far infrared radiation sheet. Since infrared rays are emitted, snow and ice can be melted more efficiently.

【0048】請求項3記載の発明によれば、面状発熱体
の発する熱が対流や反射や放散することなく効率良く上
方に伝わって高熱伝導遠赤外線放射体に吸収されるとと
もに、断熱材からも遠赤外線が発せられるので、さらに
効率良く雪や氷をとかすことができる。
According to the third aspect of the invention, the heat generated by the planar heating element is efficiently transmitted upward without being convected, reflected or dissipated, and is absorbed by the high thermal conductive far-infrared radiator. Since far infrared rays are emitted, snow and ice can be melted more efficiently.

【0049】請求項4、5または6記載の発明によれ
ば、高熱伝導遠赤外線放射体が、火力発電所で生じるフ
ライアッシュでできたセラミック組成材、フライアッシ
ュに金属酸化物及び炭化物の少なくとも1種を混合した
セラミック組成材、またはウレタン、アクリル、塩化ビ
ニール、ポリエチレン等の熱可塑性樹脂からなる合成樹
脂にフライアッシュを混合した組成材でできているた
め、それら組成材から放射される遠赤外線の波長域は3
〜25μmであり、0℃における氷の分子の波長である
10.6μmを含むため、雪や氷をとかすことができ
る。また、フライアッシュは産業廃棄物であるから、資
源の有効利用にも役立つ。
According to the invention of claim 4, 5 or 6, the high thermal conductive far-infrared radiator is a ceramic composition made of fly ash produced in a thermal power plant, and at least one of a metal oxide and a carbide is contained in the fly ash. Since it is made of a ceramic composition material mixed with seeds or a composition material in which fly ash is mixed with a synthetic resin composed of a thermoplastic resin such as urethane, acrylic, vinyl chloride, or polyethylene, far infrared rays emitted from these composition materials Wavelength range is 3
Since it is ˜25 μm and includes 10.6 μm, which is the wavelength of ice molecules at 0 ° C., snow and ice can be melted. Further, since fly ash is an industrial waste, it is useful for effective use of resources.

【0050】請求項7記載の発明によれば、面状発熱体
の自己温度調節機能により、面状発熱体が過熱すること
がないので、火災の発生が防止される。
According to the seventh aspect of the invention, since the sheet heating element does not overheat due to the self-temperature adjusting function of the sheet heating element, the occurrence of fire is prevented.

【0051】請求項8、又は9に記載の発明によれば、
道路や屋根やポーチなどの屋外施設の要所上の積雪や、
鉄道などの交通機関の要所の積雪及び凍結や、路面の凍
結などを低電力消費量で効率良く防止することができ
る。
According to the invention described in claim 8 or 9,
Snow on important points of outdoor facilities such as roads, roofs and porch,
It is possible to efficiently prevent snow accumulation and freezing of a key part of transportation such as a railroad, and freezing of a road surface with low power consumption.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る融雪板の一例の断面図である。FIG. 1 is a cross-sectional view of an example of a snow melting plate according to the present invention.

【図2】本発明に係る融雪板の他の例の断面図である。FIG. 2 is a cross-sectional view of another example of the snow melting plate according to the present invention.

【図3】本発明に係る融雪板の実験1及び実験2の融雪
板を説明する図である。
FIG. 3 is a diagram illustrating a snow melting plate of Experiments 1 and 2 of the snow melting plate according to the present invention.

【図4】本発明に係る融雪板の実験3及び実験4の融雪
板を説明する図である。
FIG. 4 is a diagram illustrating a snow melting plate of Experiments 3 and 4 of the snow melting plate according to the present invention.

【図5】本発明に係る融雪板の実験6の実験装置の平面
図である。
FIG. 5 is a plan view of an experiment device of Experiment 6 for a snow melting plate according to the present invention.

【図6】本発明に係る面状発熱体の実験7の実験道路の
平面図である。
FIG. 6 is a plan view of an experimental road of Experiment 7 of the planar heating element according to the present invention.

【図7】本発明に係る面状発熱体の実験7の実験道路の
要部断面図である。
FIG. 7 is a cross-sectional view of main parts of an experimental road of Experiment 7 of the planar heating element according to the present invention.

【符号の説明】[Explanation of symbols]

1 断熱材 2 面状発熱体 3 高熱伝導遠赤外線放射体 4 遠赤外線放射シート 10 11 融雪板 100 実験装置 101 102 融雪板ユニット 200 路盤 201 コンクリート 202 セメントモルタル 203 アスファルト DESCRIPTION OF SYMBOLS 1 Heat insulating material 2 Planar heating element 3 High thermal conduction far-infrared radiator 4 Far-infrared radiation sheet 10 11 Snow-melting board 100 Experimental equipment 101 102 Snow-melting board unit 200 Roadbed 201 Concrete 202 Cement mortar 203 Asphalt

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 面状発熱体の上に、高熱伝導性を有し、
かつ3〜25μmの波長域の遠赤外線を放射可能な高熱
伝導遠赤外線放射体を積層したことを特徴とする融雪
板。
1. A sheet heating element having high thermal conductivity,
A snow melting plate characterized by stacking high thermal conductive far infrared radiators capable of radiating far infrared rays in a wavelength range of 3 to 25 μm.
【請求項2】 前記面状発熱体と前記高熱伝導遠赤外線
放射体との間に、遠赤外線を放射可能で、かつその遠赤
外線放射により前記面状発熱体の発する熱を対流や反射
や放散させることなく前記高熱伝導遠赤外線放射体に伝
え得る遠赤外線放射シートを介装させたことを特徴とす
る請求項1記載の融雪板。
2. A far infrared ray can be radiated between the planar heating element and the high thermal conductive far infrared radiator, and the far infrared radiation radiates the heat generated by the planar heating element by convection, reflection or radiation. The snow melting plate according to claim 1, wherein a far-infrared radiation sheet that can be transmitted to the high-heat-conducting far-infrared radiation body is interposed without being performed.
【請求項3】 前記面状発熱体の下に、断熱体を設けた
ことを特徴とする請求項1または2記載の融雪板。
3. The snow melting plate according to claim 1, further comprising a heat insulator provided below the planar heating element.
【請求項4】 前記高熱伝導遠赤外線放射体は、火力発
電所で生じるフライアッシュでできたセラミック組成
材、またはフライアッシュに金属酸化物及び炭化物の少
なくとも1種を混合したセラミック組成材でできている
ことを特徴とする請求項1、2または3記載の融雪板。
4. The high thermal conductive far-infrared radiator is made of a ceramic composition material made of fly ash generated in a thermal power plant, or a ceramic composition material made by mixing fly ash with at least one kind of metal oxide and carbide. The snowmelt board according to claim 1, 2 or 3, wherein
【請求項5】 前記高熱伝導遠赤外線放射体は、合成樹
脂に火力発電所で生じるフライアッシュを混合した組成
材でできていることを特徴とする請求項1、2または3
記載の融雪板。
5. The far-infrared radiator having high thermal conductivity is made of a synthetic resin mixed with fly ash produced in a thermal power plant.
The snow melting plate described.
【請求項6】 前記合成樹脂はウレタン、アクリル、塩
化ビニール、ポリエチレン等の熱可塑性樹脂であること
を特徴とする請求項5記載の融雪板。
6. The snowmelt board according to claim 5, wherein the synthetic resin is a thermoplastic resin such as urethane, acrylic, vinyl chloride, or polyethylene.
【請求項7】 前記面状発熱体は、自己の抵抗値が所定
温度以上で増大することによりそれ以上の昇温を防止可
能な自己温度調節機能を有することを特徴とする請求項
1、2、3、4、5または6記載の融雪板。
7. The sheet heating element has a self-temperature adjusting function capable of preventing further temperature rise by increasing the resistance value of the sheet heating element above a predetermined temperature. The snow melting plate according to 3, 4, 5 or 6.
【請求項8】 建築物の屋根面、道路の最表面、または
その他の積雪または凍結の可能性のある屋外露出部分に
面状発熱体を敷設し、該面状発熱体上に高熱伝導性を有
し、かつ3〜25μmの波長域の遠赤外線を放射可能な
高熱伝導遠赤外線放射体を積層し、前記面状発熱体を電
源に接続して同面状発熱体に電力を供給することにより
雪をとかす融雪方法。
8. A sheet heating element is laid on a roof surface of a building, an outermost surface of a road, or other exposed portion where there is a possibility of snow or freezing, and high thermal conductivity is provided on the sheet heating element. By stacking high-heat-conducting far-infrared radiators that have and can emit far-infrared rays in the wavelength range of 3 to 25 μm, and connect the planar heating element to a power source to supply power to the planar heating element. How to melt snow that melts snow.
【請求項9】 前記面状発熱体と前記高熱伝導遠赤外線
放射体との間に、遠赤外線を放射可能で、かつその遠赤
外線放射により前記面状発熱体の発する熱を対流や反射
や放散させることなく前記高熱伝導遠赤外線放射体に伝
え得る遠赤外線放射シートを介装させたことを特徴とす
る請求項8記載の融雪方法。
9. A far infrared ray can be radiated between the planar heating element and the high thermal conductive far infrared radiator, and the far infrared radiation radiates the heat generated by the planar heating element by convection, reflection or dissipation. 9. The snow melting method according to claim 8, wherein a far-infrared radiation sheet that can be transmitted to the high-heat-conducting far-infrared radiation body is interposed without being performed.
JP2090395A 1995-01-17 1995-01-17 Snow melting board and snow melting method Pending JPH08193435A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2090395A JPH08193435A (en) 1995-01-17 1995-01-17 Snow melting board and snow melting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2090395A JPH08193435A (en) 1995-01-17 1995-01-17 Snow melting board and snow melting method

Publications (1)

Publication Number Publication Date
JPH08193435A true JPH08193435A (en) 1996-07-30

Family

ID=12040198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2090395A Pending JPH08193435A (en) 1995-01-17 1995-01-17 Snow melting board and snow melting method

Country Status (1)

Country Link
JP (1) JPH08193435A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000303407A (en) * 1999-04-23 2000-10-31 Ishikawajima Harima Heavy Ind Co Ltd Snow-melting system for road
JP2012092529A (en) * 2010-10-26 2012-05-17 National Research Institute For Earth Science & Disaster Provention Snow melting system and method for controlling the same
US8505273B2 (en) 2009-11-03 2013-08-13 General Electric Company System for ice and/or frost prevention using guided wave energy

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01250569A (en) * 1988-03-31 1989-10-05 Yasuro Kuratomi Snow removing by far infrared radiation
JPH04305078A (en) * 1991-04-02 1992-10-28 Sanin Kensetsu Kogyo Kk Far-infrared radiator essentially consisting of fly ash
JPH04353176A (en) * 1991-05-30 1992-12-08 Yazaki Corp Surface type heating unit
JP4101421B2 (en) * 1999-12-27 2008-06-18 富士フイルム株式会社 INPUT UNIT, INFORMATION RECORDING DEVICE USING INPUT UNIT, AND DIGITAL CAMERA

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01250569A (en) * 1988-03-31 1989-10-05 Yasuro Kuratomi Snow removing by far infrared radiation
JPH04305078A (en) * 1991-04-02 1992-10-28 Sanin Kensetsu Kogyo Kk Far-infrared radiator essentially consisting of fly ash
JPH04353176A (en) * 1991-05-30 1992-12-08 Yazaki Corp Surface type heating unit
JP4101421B2 (en) * 1999-12-27 2008-06-18 富士フイルム株式会社 INPUT UNIT, INFORMATION RECORDING DEVICE USING INPUT UNIT, AND DIGITAL CAMERA

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000303407A (en) * 1999-04-23 2000-10-31 Ishikawajima Harima Heavy Ind Co Ltd Snow-melting system for road
US8505273B2 (en) 2009-11-03 2013-08-13 General Electric Company System for ice and/or frost prevention using guided wave energy
JP2012092529A (en) * 2010-10-26 2012-05-17 National Research Institute For Earth Science & Disaster Provention Snow melting system and method for controlling the same

Similar Documents

Publication Publication Date Title
US6054692A (en) Heating device, heat storing type heat generating body and protective sheet for the heating device
JPH08193435A (en) Snow melting board and snow melting method
JP2932171B2 (en) Regenerative heating device and heating device
JP2006225954A (en) Snow-melting passage and fluid heating method
JP4784891B2 (en) Microwave structure heating system, microwave oscillation waveguide device, and microwave oscillator cooling method
EP2186941B1 (en) Structure heating system by microwave, microwave oscillation waveguide apparatus and microwave oscillator cooling method
JPH10168433A (en) Snow-thawing antifreeze material and snow-thawing antifreeze coating material, sheet, tile, panel, exterior material, roofing material, road and defroster containing the same
JPH08277504A (en) Snow-melting antifreezing device of ground surface
JP2001107307A (en) Snow melting antifreezer
JPH09272860A (en) Melted snow freeze-proofing material
JP2003064874A (en) Cold weather concrete curing sheet and curing method
JP2014085025A (en) Automatic operation control system of radiation cooling/heating apparatus
JPS63277353A (en) Radiator plate
JPH09195220A (en) Snow melting and freezing preventing structure for ground, and its constructing method
KR950013659B1 (en) Under-floor heating system
JPH09268511A (en) Snowmelt freeze prevention structure
JP2005042341A (en) Road heating block
US20100116821A1 (en) Structure heating system by microwave, microwave oscillation waveguide apparatus and microwave oscillator cooling method
JPH09143916A (en) Snow-melting device
JP4052630B2 (en) Snow melting roof structure
JPH09184105A (en) Snow melting device
JP2001081710A (en) Antifreeze and snow melting structure of road
JPH10306404A (en) Protection sheet for snow-melting or heating equipment
JPH11307232A (en) Heating chaff cement block
JPH093847A (en) Heat-accumulating device and installation thereof