JPH08191834A - Ultrasonic measuring device - Google Patents

Ultrasonic measuring device

Info

Publication number
JPH08191834A
JPH08191834A JP474395A JP474395A JPH08191834A JP H08191834 A JPH08191834 A JP H08191834A JP 474395 A JP474395 A JP 474395A JP 474395 A JP474395 A JP 474395A JP H08191834 A JPH08191834 A JP H08191834A
Authority
JP
Japan
Prior art keywords
specific
subject
vibration
ultrasonic
propagation time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP474395A
Other languages
Japanese (ja)
Inventor
Yutaka Masuzawa
裕 鱒沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP474395A priority Critical patent/JPH08191834A/en
Publication of JPH08191834A publication Critical patent/JPH08191834A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

PURPOSE: To measure the propagation speed of vibration propagating through a blood vessel or internal organs in a human body while noninvasively and efficiently calculating the hardening degree of a blood vessel or internal organs. CONSTITUTION: An ultrasonic measuring device emits ultrasonic waves 16, 17 to a subject 13 and detects the motion of blood in a blood vessel 18 on the basis of Doppler effect of reflected sonic waves to display the same. An electroacoustic conversion part 11 emitting sonic waves vibrating the specific region (blood vessel 18) in the subject 13 and a propagation time obtaining part calculating the propagation time of vibvration (sonic waves 15) between specific regions on the basis of the change of the measuring result of Doppler effect by vibration are provided and, from the calculated propagation time of vibration and the distance between specific regions, the propagation speed of the sonic waves 15 in the blood vessel 18 is calculated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、医療用超音波計測装置
や超音波非破壊検査装置など、超音波によるドプラ効果
を応用して、人体内の血流など、被検体内部の情報を得
る超音波計測装置に係り、特に、人体内の血管や臓器の
硬化度等を、非侵襲的に効率良く計測するのに好適な超
音波計測装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention obtains information on the inside of a subject such as blood flow in the human body by applying the Doppler effect by ultrasonic waves in a medical ultrasonic measuring device, an ultrasonic non-destructive inspection device and the like. The present invention relates to an ultrasonic measuring device, and more particularly to an ultrasonic measuring device suitable for noninvasively and efficiently measuring the degree of hardening of blood vessels and organs in the human body.

【0002】[0002]

【従来の技術】従来、医療用超音波診断装置等におい
て、ドプラ効果を利用して人体内の血流を可視化する技
術が、例えば、“BLOOD FLOW IMAGING USING A DISCRET
E-TIME FREQUENCY METER” (IEEE 1978 ULTRASONIC SYM
POSIUM PROCEEDINGS)のpp.348〜352等に開示
されている。このような技術は、被検体内に存在する自
発的な運動(心臓からの血流速の時間変化、心臓璧の運
動など)を計測するものである。この技術の具体例とし
ては、Bモード像と断層像とを合わせ、血流速をカラー
表示するカラーフローマッピング(CFM)技術や、被
検体の特定部位に超音波ビームを偏向、固定して、連続
(CW)波モードでドプラ効果を計測する技術がある。
2. Description of the Related Art Conventionally, a technique for visualizing the blood flow in the human body by utilizing the Doppler effect in a medical ultrasonic diagnostic apparatus, for example, is known as "BLOOD FLOW IMAGING USING A DISCRET".
E-TIME FREQUENCY METER ”(IEEE 1978 ULTRASONIC SYM
POSIUM PROCEEDINGS) pp. 348-352 and the like. Such a technique measures a spontaneous movement (temporal change of blood flow velocity from the heart, movement of the heart wall, etc.) existing in the subject. Specific examples of this technique include a color flow mapping (CFM) technique for displaying a blood flow velocity in color by combining a B-mode image and a tomographic image, or deflecting and fixing an ultrasonic beam to a specific portion of a subject, There is a technique for measuring the Doppler effect in the continuous (CW) wave mode.

【0003】医学的見地からは、人体内の血管の硬化度
などを、被検者に対して非侵襲的に求める技術が予防医
学の観点から要求されている。この血管の硬化の進行は
局所的に進行する場合もあることから,血管各部の音速
を推定する意義は大きい。しかし、従来のドプラ技術
は、被検体内の特定点に存在する自発的な運動の速度を
直接計測するものであり、血管の径方向の復元力を介し
て伝播する脈波のような、目的の構造部位に特有の運動
姿態を弁別して検出するものではなかった。
From a medical point of view, a technique for noninvasively asking a subject for the degree of hardening of blood vessels in the human body is required from the viewpoint of preventive medicine. Since the progress of hardening of the blood vessel may progress locally, it is significant to estimate the sound velocity of each part of the blood vessel. However, the conventional Doppler technique directly measures the velocity of the spontaneous motion existing at a specific point in the subject, and the purpose of such a pulse wave propagating through the radial restoring force of the blood vessel is Was not detected by discriminating the motor form peculiar to the structural part of.

【0004】[0004]

【発明が解決しようとする課題】解決しようとする問題
点は、従来の技術では、人体内の血管や臓器等、自発的
な運動を行なわない構造体の運動姿態を検出することが
できない点である。本発明の目的は、これら従来技術の
課題を解決し、人体内の血管や臓器等、被検体内の運動
体を被っている構造体を伝播する振動の伝播速度を測定
し、人体内の血管や臓器などの硬化度等を非侵襲的に効
率良く求めることを可能とする超音波計測装置を提供す
ることである。
The problem to be solved is that the conventional technique cannot detect the motion mode of a structure such as a blood vessel or an organ in the human body that does not voluntarily move. is there. The object of the present invention is to solve the problems of these conventional techniques, to measure the propagation velocity of vibration propagating through a structure covering a moving body in a subject such as blood vessels and organs in the human body, It is an object of the present invention to provide an ultrasonic measuring device capable of non-invasively and efficiently obtaining the degree of hardening of an organ or the like.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するた
め、本発明の超音波計測装置は、(1)被検体13内の
運動体の移動経路(血管18)を構成する特定部位を振
動させる音波14を放射する電気音響変換部11と、被
検体13内の自発的運動と外部からの音波14による振
動とによるドプラ効果の計測結果信号に基づき、音波1
4による振動(波15)が特定部位間を伝播する時間を
求める伝播時間取得部とを設け、この伝播時間取得部で
求めた音波14による振動(波15)の伝播時間と、特
定部位間の距離から、音波14による振動(波15)の
特定部位での伝播速度を推定することを特徴とする。ま
た、(2)被検体13内の運動体の移動経路(血管1
8)を構成する特定部位に、この特定部位に固有な周波
数の振動を励起、共振させる音波を放射する電気音響変
換部11と、この電気音響変換部により励振された振動
を含むドプラ効果の計測結果信号に基づき、励起した振
動(波15)が特定部位間を伝播する時間を求める伝播
時間取得部とを設け、この伝播時間取得部で求めた励起
した振動(波15)の伝播時間と、特定部位間の距離か
ら、励起した振動(波15)の特定部位での伝播速度を
求めることを特徴とする。また、(3)上記(1)に記
載の超音波計測装置において、伝播時間取得部は、電気
音響変換部11から放射されたパルス状の音波14が、
移動経路(血管18)上の音響インピーダンス変化に原
因する反射点間を往復反射する場合に、反射点間の任意
の1観測点で計測されるドプラ効果の計測結果信号の自
己相関関数を求めて、上述のパルスが特定区間を往復す
る時間を求める相関演算器27からなることを特徴とす
る。また、(4)上記(1)に記載の超音波計測装置に
おいて、ドプラ効果をもとに運動を検出する被検体13
内の特定部位を少なくとも2点以上設け、伝播時間取得
部(相関演算器27)により、電気音響変換部11が出
力する音波14による波動(波15)が被検体13内部
の血管18を伝播する時間を、各ドプラ信号間の相互相
関演算処理から推定することを特徴とする。また、
(5)被検体13内の運動体の移動経路(血管18)を
構成する特定部位に、音波14を放射する電気音響変換
部11と、この電気音響変換部11の出力する音波14
を周波数掃引して、被検体13内の特定部位の固有振動
数に一致する音波を放射させる送波回路21と、この送
波回路21で掃引される周波数毎の特定部位でのドプラ
効果の計測結果信号の増減に基づき、最も強く共振する
周波数を特定部位の固有周波数として求める固有周波数
取得部とを設け、この固有周波数取得部で求めた特定部
位の固有周波数と、特定部位間の距離から、固有周波数
の振動(波15)の特定部位での伝播速度を求めること
を特徴とする。
In order to achieve the above object, the ultrasonic measuring apparatus of the present invention (1) vibrates a specific portion constituting a moving path (blood vessel 18) of a moving body in a subject 13. Based on the measurement result signal of the Doppler effect by the electroacoustic conversion unit 11 that emits the sound wave 14, the spontaneous movement in the subject 13 and the vibration by the sound wave 14 from the outside, the sound wave 1
4 is provided, and a propagation time acquisition unit that determines the time for the vibration (wave 15) to propagate between specific parts is provided, and the propagation time of the vibration (wave 15) by the sound wave 14 that is calculated by this propagation time acquisition unit and the specific part It is characterized in that the propagation velocity of the vibration (wave 15) due to the sound wave 14 at a specific portion is estimated from the distance. Further, (2) the movement path of the moving body in the subject 13 (the blood vessel 1
8) An electroacoustic conversion unit 11 that radiates a sound wave that excites and resonates a vibration having a frequency unique to the specific region, and a Doppler effect measurement including the vibration excited by the electroacoustic conversion unit. A propagation time acquisition unit that determines the time for the excited vibration (wave 15) to propagate between specific parts based on the result signal is provided, and the propagation time of the excited vibration (wave 15) that is calculated by this propagation time acquisition unit, It is characterized in that the propagation velocity of the excited vibration (wave 15) at the specific site is obtained from the distance between the specific sites. (3) In the ultrasonic measurement device described in (1) above, the propagation time acquisition unit is configured such that the pulsed sound waves 14 emitted from the electroacoustic conversion unit 11 are:
Obtaining the autocorrelation function of the measurement result signal of the Doppler effect measured at any one observation point between the reflection points when reciprocating between the reflection points caused by the change in the acoustic impedance on the moving path (blood vessel 18) , And the correlation calculator 27 for obtaining the time required for the pulse to make a round trip in a specific section. (4) In the ultrasonic measurement device according to (1), the subject 13 that detects motion based on the Doppler effect
At least two or more specific sites are provided, and the propagation time acquisition unit (correlation calculator 27) propagates the wave (wave 15) by the sound wave 14 output from the electroacoustic conversion unit 11 through the blood vessel 18 inside the subject 13. It is characterized in that the time is estimated from the cross-correlation calculation processing between each Doppler signal. Also,
(5) An electroacoustic conversion unit 11 that emits a sound wave 14 and a sound wave 14 that is output by the electroacoustic conversion unit 11 to a specific portion that configures the moving path (blood vessel 18) of the moving body in the subject 13.
Of the Doppler effect at a specific portion of each frequency swept by the transmitting circuit 21 and a frequency sweeping to radiate a sound wave matching the natural frequency of the specific portion in the subject 13. Based on the increase or decrease of the result signal, a natural frequency acquisition unit that finds the most strongly resonating frequency as the natural frequency of the specific region is provided, and the natural frequency of the specific region obtained by this natural frequency acquisition unit and the distance between the specific regions, It is characterized in that the propagation velocity of vibration (wave 15) having a natural frequency at a specific portion is obtained.

【0006】[0006]

【作用】一般に、音響インピーダンスの異なる境界面が
存在すると、それに沿った特徴的な波が発生することは
良く知られており、表面弾性波等はその典型である。人
体内でも血管のように、特定の方向に特徴的に音響イン
ピーダンスの異なる構造体が存在する場合には、系外か
らの加振により様々な姿態の波の伝播が引き起こされ
る。例えば、心臓が血液を拍出する際に、血管の径方向
の復元力から生じる脈波等もその一例と考えることがで
きる。系外からの加振は人為的に体表から振動子等を用
いて与えることができる。さらに、境界を有する領域の
大きさは必ず有限であるから、周囲からの音の放射を受
けて特定の固有周波数で共振することも考えられる。そ
の場合の固有周波数は、血管の平均径や、血管枝の分岐
点間にあるほぼ線状と見做せる部位の長さ、および血管
枝固有の音速等を関数として決定されると考えられる。
In general, it is well known that when a boundary surface having different acoustic impedance exists, a characteristic wave is generated along the boundary surface, and surface acoustic waves are typical. In the human body, when there are structures such as blood vessels, which have characteristically different acoustic impedances in a specific direction, vibration from outside the system causes waves in various forms to propagate. For example, a pulse wave generated by the restoring force of the blood vessel in the radial direction when the heart pumps blood can be considered as an example. Excitation from outside the system can be artificially applied from the body surface using a vibrator or the like. Furthermore, since the size of the region having the boundary is always finite, it is possible that the region resonates at a specific natural frequency by receiving sound radiation from the surroundings. In that case, it is considered that the natural frequency is determined as a function of the average diameter of the blood vessel, the length of a portion between the branch points of the blood vessel branch, which can be regarded as a substantially linear shape, and the sound velocity unique to the blood vessel branch.

【0007】そこで、本発明においては、血管等の被検
体内の運動体の移動経路を構成する特定部位をパルス状
の波で振動させ、被検体内の自発的運動と外部からの加
振によるドプラ効果の計測結果信号を得ることができ、
この計測結果信号に基づき、振動が特定部位間を伝播す
る時間を求める。そして、このようにして求めた伝播時
間と、適切な技術、例えば従来のBモード像やX線画像
装置等で推定した特定部位間の距離から、振動の特定部
位間での伝播速度を推定することができる。また、特定
部位に固有な周波数の振動(定在波)を励起、共振させ
る十分な時間長の連続波を放射することにより、被検体
内の自発的運動以外の励振された振動を含むドプラ効果
を計測することにより、振動が特定部位間を伝播する時
間を求めることができる。
In view of the above, in the present invention, a specific portion of the moving path of the moving body in the subject such as a blood vessel is vibrated by a pulsed wave to generate a spontaneous movement in the subject and an external vibration. The measurement result signal of the Doppler effect can be obtained,
Based on this measurement result signal, the time during which the vibration propagates between the specific parts is obtained. Then, the propagation velocity of the vibration between the specific parts is estimated from the propagation time thus obtained and the distance between the specific parts estimated by an appropriate technique such as a conventional B-mode image or an X-ray imaging device. be able to. In addition, the Doppler effect including excited vibrations other than spontaneous movements in the subject is generated by radiating continuous waves of sufficient time length to excite and resonate vibrations (standing waves) of a specific frequency in a specific part. By measuring, it is possible to obtain the time during which the vibration propagates between the specific parts.

【0008】電気音響変換部から放射されたパルス状の
音波が、移動経路上の音響インピーダンス変化に原因す
る反射点間を往復反射する場合には、反射点間の任意の
1観測点でドプラ効果の観測を行うと、パルスが往復反
射する毎に信号の変化が観測される。これらは、反射点
間の音速を平均一定と見做せば、信号の変化が観測され
る周期に対応する。この周期は、計測結果信号の自己相
関関数を求めることにより、周期的に現われるピークの
間隔をもって推定することができる。この周期と、例え
ば従来のBモード像やX線画像装置等で推定した特定部
位間の距離から、振動の伝播速度を推定することができ
る。また、ドプラ効果をもとに運動を検出する被検体内
の特定部位を少なくとも2点以上設ける場合には、同じ
パルスに基づくと思われるそれぞれの特定部位でのドプ
ラ信号の変化部分の時間差を、それぞれのドプラ信号の
相互相関演算処理により求め、検体内部の構造部を波動
が伝播する時間を推定する。
When the pulsed sound wave radiated from the electroacoustic transducer is reflected back and forth between the reflection points due to the change in the acoustic impedance on the moving path, the Doppler effect is obtained at any one observation point between the reflection points. When the observation is performed, the change of the signal is observed every time the pulse is reflected back and forth. These correspond to the period in which a signal change is observed, assuming that the sound velocity between reflection points is constant on average. This cycle can be estimated by the interval of peaks that appear periodically by obtaining the autocorrelation function of the measurement result signal. The propagation velocity of vibration can be estimated from this cycle and the distance between specific parts estimated by, for example, a conventional B-mode image or an X-ray image device. Further, when at least two specific parts in the subject for detecting motion based on the Doppler effect are provided, the time difference of the changing parts of the Doppler signal at each specific part, which is considered to be based on the same pulse, is calculated as follows. The time required for the wave to propagate through the structure inside the sample is estimated by the cross-correlation calculation processing of each Doppler signal.

【0009】また、被検体内の特定部位を連続波で励振
すると、これらの固有振動はドプラ信号観測部位が振動
の節でなく腹にあるとき、周波数掃引に対して振幅の増
減及び極大値を与える周波数の検出が可能になる。極大
を与える周波数の値、あるいは極大値を与える複数の周
波数値の周波数差から固有周波数が推定できる。その場
合の固有周波数と、例えば従来のBモード像やX線画像
装置等で推定される血管の平均径や血管枝の分岐点間に
あるほぼ線状と見做せる部位の長さとにより、血管枝固
有の音速を推定できる。
Further, when a specific part in the subject is excited by a continuous wave, these natural vibrations cause an increase / decrease in amplitude and a maximum value with respect to the frequency sweep when the Doppler signal observation part is not in the vibration node but in the antinode. It becomes possible to detect the applied frequency. The natural frequency can be estimated from the frequency value that gives the maximum value or the frequency difference between a plurality of frequency values that give the maximum value. Based on the natural frequency in that case and the average diameter of the blood vessel estimated by a conventional B-mode image, an X-ray imaging apparatus, or the like, or the length of a portion between the branch points of the blood vessel branch, which can be regarded as a linear blood vessel, The sound velocity peculiar to a branch can be estimated.

【0010】[0010]

【実施例】以下、本発明の実施例を、図面により詳細に
説明する。図1は、本発明の超音波計測装置の本発明に
係る構成の第1の実施例を示すブロック図であり、図2
は、図1における超音波計測装置による一動作例を示す
説明図である。図2においては、被検体13を人体と
し、血管18を伝播する波15を検出する場合の動作例
を示している。探触子10は、被検体13内の血管18
に沿って伝播する波15を励起するための音波14を放
射する電気音響変換部11と、Bモード撮像やドプラ計
測を行うための電気音響変換器配列12を有する。
Embodiments of the present invention will now be described in detail with reference to the drawings. 1 is a block diagram showing a first embodiment of the configuration of the ultrasonic measuring device of the present invention according to the present invention.
FIG. 3 is an explanatory diagram showing an operation example of the ultrasonic measurement device in FIG. 1. FIG. 2 shows an operation example when the subject 13 is a human body and the wave 15 propagating through the blood vessel 18 is detected. The probe 10 includes a blood vessel 18 in the subject 13.
It has an electroacoustic transducer 11 that emits a sound wave 14 for exciting a wave 15 that propagates along, and an electroacoustic transducer array 12 that performs B-mode imaging and Doppler measurement.

【0011】本実施例では、電気音響変換部11は、圧
電振動子で構成するものとするが、電磁式のスピーカ等
で構成しても良い。ただし、電気音響変換部11の電気
音響変換効率が最も高くなる周波数は、被検体13内の
特定の構造体、ここでは、血管18の共振周波数に合わ
せて、数100KHz以下に設定する。尚、この電気音
響変換部11は、図1においては、送波回路21に接続
される。電気音響変換器配列12は、3.5MHzの圧
電振動子で形成され、図1においては、送受分離回路群
20に接続される。この電気音響変換器配列12内の一
部の配列を用いて、通常のパルスドプラ計測を行う。す
なわち、超音波ビーム送受信16、17を、同時あるい
は交互に行って、血管18上の異なる点でドプラ計測を
行う。
In this embodiment, the electroacoustic transducer 11 is composed of a piezoelectric vibrator, but it may be composed of an electromagnetic speaker or the like. However, the frequency at which the electroacoustic conversion efficiency of the electroacoustic conversion unit 11 is highest is set to several 100 KHz or less in accordance with the resonance frequency of a specific structure in the subject 13, here, the blood vessel 18. The electroacoustic conversion unit 11 is connected to the wave transmission circuit 21 in FIG. The electroacoustic transducer array 12 is formed of a 3.5 MHz piezoelectric vibrator and is connected to the transmission / reception separation circuit group 20 in FIG. 1. Normal pulse Doppler measurement is performed using a part of the array in the electroacoustic transducer array 12. That is, ultrasonic beam transmission / reception 16 and 17 are performed simultaneously or alternately, and Doppler measurement is performed at different points on the blood vessel 18.

【0012】このようにして得られるドプラ信号の相互
相関により、波15の血管18上での伝播時間を求める
ことができる。すなわち、図4において示すように、図
2の超音波ビーム送受信16、17に対応する二つのド
プラ信号の計測結果の典型例として、信号波形41と4
2が得られる。本図4においては、心拍による波形44
0、441に重ねて、図2における加振用の電気音響変
換部11によるパルス450〜452が、その打ち出し
周期を保って検出される。これらの加振によるパルス4
50〜452は、本例においては、心拍との弁別性を改
善するために心拍波形と非同期としているが、心電検出
器を備え、心拍波形の間隙部に相当するよう同期しても
良い。
The propagation time of the wave 15 on the blood vessel 18 can be obtained by the cross-correlation of the Doppler signals thus obtained. That is, as shown in FIG. 4, as typical examples of the measurement results of the two Doppler signals corresponding to the ultrasonic beam transceivers 16 and 17 of FIG.
2 is obtained. In FIG. 4, the waveform 44 based on the heartbeat
0 and 441, the pulses 450 to 452 by the electroacoustic transducer 11 for vibration in FIG. 2 are detected while maintaining the launch period. Pulse 4 due to these vibrations
In the present example, 50 to 452 are asynchronous with the heartbeat waveform in order to improve the discriminability from the heartbeat, but they may be equipped with an electrocardiographic detector and may be synchronized so as to correspond to the gap portion of the heartbeat waveform.

【0013】図2における血管18に沿って伝わる同じ
パルス波動が、信号波形41と信号波形42とで異なる
位置、異なる時刻に観測されているとすると、両者の計
測点間の距離が著しく離れていなければ、その相関は非
常に高いものとなる。そこで、信号波形41と信号波形
42の相互相関演算を行い、その極大を与える時間差か
ら伝搬時間τが推定できる。このような伝搬時間τの推
定は、心拍波形のみでも可能であるが、心拍に比べて加
振を行った方がパルス波形の反復周期および振幅の安定
性が高くなり、かつ、心拍よりも高い反復周波数を実現
する点で有利である。
If the same pulse wave propagated along the blood vessel 18 in FIG. 2 is observed at different positions and at different times in the signal waveform 41 and the signal waveform 42, the distance between the two measurement points is significantly different. If not, the correlation will be very high. Therefore, the cross-correlation calculation of the signal waveform 41 and the signal waveform 42 is performed, and the propagation time τ can be estimated from the time difference that gives the maximum. Although it is possible to estimate the propagation time τ using only the heartbeat waveform, it is more stable than the heartbeat in the repetition period and amplitude of the pulse waveform, and higher than the heartbeat. It is advantageous in achieving a repetition frequency.

【0014】以下、図1を用いて、本実施例の超音波計
測装置の構成および動作の詳細を説明する。図1に示す
ように、本実施例の超音波計測装置の全体の構成は、従
来から知られるBモード断層像撮像・ドプラ血流計測機
構200に、被検体内の構造体(図2における血管18
等)を励振するための本発明に係る電気音響変換部(図
中、SWRと記載)11、送波回路(図中、TRと記
載)21、トリガ回路(図中、TRGと記載)23、お
よび、相関演算器(図中、CORと記載)27を備えた
構成となっている。
The configuration and operation of the ultrasonic measuring device according to this embodiment will be described in detail below with reference to FIG. As shown in FIG. 1, the overall configuration of the ultrasonic measurement apparatus according to the present embodiment is similar to that of a conventionally known B-mode tomographic image capturing / Doppler blood flow measurement mechanism 200 in which a structure (a blood vessel in FIG. 18
Etc.) for exciting the electro-acoustic conversion unit (denoted by SWR in the figure) 11, a wave transmission circuit (denoted by TR in the figure) 21, a trigger circuit (denoted by TRG in the figure) 23, Also, the configuration is provided with a correlation calculator (described as COR in the figure) 27.

【0015】Bモード断層像撮像・ドプラ血流計測機構
200において、電気音響変換器配列12には、送受分
離回路群20が個々に接続され、この送受分離回路群2
0の個々には、送波回路群(図中、TR’と記載)22
と受波回路群(図中、RCと記載)24の個々が接続さ
れる。受波回路群24の出力は、整相回路(図中、BF
と記載)25の入力となり、整相回路25の出力は、デ
ィジタルスキャンコンバータ(図中、DSCと記載)2
8、および、ドプラ計測回路(図中、DOPと記載)2
6の入力となる。ドプラ計測回路26の出力は、相関演
算器27、および、ディジタルスキャンコンバータ28
の入力となる。相関演算器27の出力は、ドプラ計測回
路26の直接出力と共にディジタルスキャンコンバータ
28への入力となり、画像が表示装置(図中、MONと
記載)29に輝度表示される。
In the B-mode tomographic image capturing / Doppler blood flow measuring mechanism 200, the electroacoustic transducer array 12 is individually connected with the transmission / reception separation circuit group 20.
Each of the 0s is a transmission circuit group (indicated as TR 'in the figure) 22
And a receiving circuit group (indicated as RC in the figure) 24 are connected to each other. The output of the wave receiving circuit group 24 is a phasing circuit (BF in the figure).
25) and the output of the phasing circuit 25 is the digital scan converter (described as DSC in the figure) 2
8 and Doppler measurement circuit (indicated as DOP in the figure) 2
It becomes 6 inputs. The output of the Doppler measurement circuit 26 is the correlation calculator 27 and the digital scan converter 28.
Will be input. The output of the correlation calculator 27 becomes an input to the digital scan converter 28 together with the direct output of the Doppler measurement circuit 26, and an image is displayed on the display device (described as MON in the figure) 29 in luminance.

【0016】被検体内の構造体に沿って伝播する音波を
励起するための電気音響変換部11は送波回路21によ
り駆動され、駆動のタイミングはトリガ回路23の出力
に従う。このトリガ回路23は、送波回路群22の駆動
のタイミングをも決定する。また、トリガ回路23は、
ディジタルスキャンコンバータ28の出力に従う。電気
音響変換器配列12は、圧電振動子が送受信する超音波
パルスの中心周波数(3.5MHz)の波長の半分程度
のピッチで分割する。この分割数をnとすると、n個の
各々に、送受波分離回路20を介して送波回路22が設
けられている。n個の各々の送波回路22は、トリガ回
路23の出力に従い、かつ、被検体内の特定の送波焦点
に収束するように、電気音響変換器配列12の各素子の
空間的配置に合わせて遅延時間を与えたパルス信号を出
力する。
The electroacoustic converter 11 for exciting the sound waves propagating along the structure in the subject is driven by the wave sending circuit 21, and the driving timing follows the output of the trigger circuit 23. The trigger circuit 23 also determines the drive timing of the wave transmission circuit group 22. In addition, the trigger circuit 23,
According to the output of the digital scan converter 28. The electroacoustic transducer array 12 is divided at a pitch of about half the wavelength of the center frequency (3.5 MHz) of ultrasonic pulses transmitted and received by the piezoelectric vibrator. Assuming that the number of divisions is n, a wave transmission circuit 22 is provided via each of the wave transmission / reception separation circuits 20. Each of the n wave-transmitting circuits 22 is aligned with the spatial arrangement of each element of the electroacoustic transducer array 12 according to the output of the trigger circuit 23 and so as to be focused on a specific wave-forming focal point in the subject. Output a pulse signal with a delay time.

【0017】送受分離回路群20は、ダイオード対等を
用いた回路で、受信回路24の入力を、送波パルス信号
の高電圧から保護する。被検体内から反射してきた受信
信号は微弱なため、送受波分離回路20により、受波回
路群24の個々の入力となり増幅される。受波回路群2
4の増幅出力は整相回路25の入力となる。整相回路2
5は、受信信号をアナログ/ディジタル変換したのち、
被検体内に順次想定した受信焦点からの波面を想定し
て、受信信号を足し合わせることにより、単一あるいは
複数の整相加算信号を出力する。Bモード断層像表示の
場合には、整相回路25からの整相加算信号出力は、図
示しない制御装置の制御により、輝度信号に変換されて
ディジタルスキャンコンバータ28内で記憶、保持さ
れ、想定した受信焦点群の断面内の位置に対応した座標
変換を行った後に、表示装置29に輝度表示される。
The transmission / reception separation circuit group 20 is a circuit using a diode pair or the like, and protects the input of the reception circuit 24 from the high voltage of the transmission pulse signal. Since the reception signal reflected from the inside of the subject is weak, it is individually input to the reception circuit group 24 and amplified by the transmission / reception separation circuit 20. Receiving circuit group 2
The amplified output of 4 becomes the input of the phasing circuit 25. Phaser 2
5 is, after analog / digital conversion of the received signal,
A single or a plurality of phasing addition signals are output by adding up the received signals assuming a wavefront from the expected receiving focus in the subject. In the case of the B-mode tomographic image display, the phasing addition signal output from the phasing circuit 25 is converted into a luminance signal and stored and held in the digital scan converter 28 under the control of a controller (not shown). After the coordinate conversion corresponding to the position within the cross section of the reception focal point group is performed, the brightness is displayed on the display device 29.

【0018】また、ドプラモードの場合には、整相回路
25からの整相加算信号出力は、上述の制御装置によ
り、ドプラ信号処理部26での処理を経た後に、速度を
表示する信号に変換されてディジタルスキャンコンバー
タ28に出力される。そして、パルスドプラ計測の場合
には、超音波ビームの偏向表示と共に運動速度の時間軸
表示を行い、カラーフローマッピング(CFM)の場合
には、Bモード断層像と合わせて速度をカラー表示する
ための座標変換が、ディジタルスキャンコンバータ28
により行われる。また、本発明に固有の信号処理を行う
場合には、整相回路25からの整相加算信号出力が、直
交検波処理や位相検出等のドプラ信号処理を経た後に、
相関演算器27の入力となる。このドプラ信号処理が、
相関演算処理を行う構成を含む場合には、別途設けてい
る相関演算器27の代わりに、ドプラ信号処理部26内
の相関演算器を用いても良い。さらに、図2のリニア走
査型の口径の大きなものを用いず、超音波の送受信を同
じ口径位置で行いながらビーム偏向を行うセクタ型の走
査でも実現できることは言うまでもない。
In the Doppler mode, the phasing addition signal output from the phasing circuit 25 is converted into a signal indicating the speed after the processing by the Doppler signal processing unit 26 by the control device described above. It is output to the digital scan converter 28. Then, in the case of pulse Doppler measurement, the time axis display of the motion velocity is displayed together with the deflection display of the ultrasonic beam, and in the case of color flow mapping (CFM), the velocity is displayed in color together with the B-mode tomographic image. The coordinate conversion is performed by the digital scan converter 28.
It is performed by When performing signal processing unique to the present invention, after the phasing addition signal output from the phasing circuit 25 undergoes Doppler signal processing such as quadrature detection processing and phase detection,
It is an input to the correlation calculator 27. This Doppler signal processing
In the case of including a configuration for performing the correlation calculation processing, the correlation calculation unit in the Doppler signal processing unit 26 may be used instead of the correlation calculation unit 27 provided separately. Further, it goes without saying that the linear scanning type of FIG. 2 having a large aperture may be used, and sector type scanning in which beam deflection is performed while transmitting and receiving ultrasonic waves at the same aperture position can be realized.

【0019】以下、本例での血管を対象とした具体的計
測手順を説明する。まず、本計測装置のBモード像やカ
ラーフローマッピング(CFM)像を観察することによ
り、断層像内で血管の長手方向の断面を捕捉するよう探
触子10の位置を決定する。図において、超音波ビーム
送受信16、17と血管18の交点に相当する2点に対
して設けた二つの固定焦点のドプラ信号の計測を同時に
開始する。これは、従来の1走査方向だけのドプラ計測
を複数化したものである。画像の上から2点間の距離を
計測しておき、これを後の時間差計測と合わせて局所速
度の推定値を求める。そして、電気音響変換部11によ
りパルス状の音波を被検体内に放射し、これにより、図
1における血管18上を伝播する振動を励起する。尚、
本実施例では、探触子10内に固定の単一振動子音源で
振動を励起するが、目的により励振の効率を向上するた
めに、焦点距離や偏向方向を変更できる構成としても良
い。
The specific measurement procedure for blood vessels in this example will be described below. First, by observing a B-mode image and a color flow mapping (CFM) image of the measurement device, the position of the probe 10 is determined so as to capture the cross section in the longitudinal direction of the blood vessel in the tomographic image. In the figure, measurement of Doppler signals at two fixed focal points provided at two points corresponding to the intersections of the ultrasonic beam transmitters / receivers 16 and 17 and the blood vessel 18 is started simultaneously. This is a plurality of conventional Doppler measurements in only one scanning direction. The distance between two points is measured from the top of the image, and this is combined with the later time difference measurement to obtain the estimated value of the local velocity. Then, the electroacoustic transducer 11 radiates a pulsed sound wave into the subject, thereby exciting the vibration propagating on the blood vessel 18 in FIG. still,
In the present embodiment, the vibration is excited by the fixed single-oscillator sound source in the probe 10, but the focal length and the deflection direction may be changed in order to improve the excitation efficiency depending on the purpose.

【0020】上述の2点でのドプラ計測を続けながら、
血管上の特定部を振動が伝搬するように、周期的なパル
ス状の加振を行うと、ドプラ計測信号の変動が観測され
る。上記周期を変更することにより、変動が加振による
ものであることが確認できる。また、加振パルスの先頭
時刻とドプラ計測信号のパルス状の変動における先頭時
刻から、加振パルスが血管を伝わらず直接にドプラ計測
点に到達しているものは区別される。弁別された血管に
沿った波動によるドプラ計測信号の変動部分の相互相関
演算から、このパルスが伝播する時間差を求めることが
できる。これを先の2点間距離を伝わる時間とすれば伝
播速度を推定することができる。
While continuing the Doppler measurement at the above two points,
When periodic pulse-like excitation is performed so that the vibration propagates through the specific portion on the blood vessel, the fluctuation of the Doppler measurement signal is observed. By changing the cycle, it can be confirmed that the variation is due to vibration. Further, from the start time of the excitation pulse and the start time in the pulse-like fluctuation of the Doppler measurement signal, the excitation pulse that reaches the Doppler measurement point directly without passing through the blood vessel is distinguished. From the cross-correlation calculation of the varying portion of the Doppler measurement signal due to the wave motion along the discriminated blood vessel, the time difference in which this pulse propagates can be obtained. The propagation velocity can be estimated by setting this as the time for traveling the distance between the two points.

【0021】次に、本発明に係る第2の実施例として、
血管を伝わる波動が血管枝の特定区間で反射する場合の
計測について、図3により説明する。図3に示すよう
に、特定の二つの血管分岐に挟まれた部分の血管につい
てドプラ計測と加振を行う場合を考える。電気音響変換
部11より放射された音がパルスである場合、血管18
に沿った波動は、図中の記号Lで示した長さの区間を往
復反射する。この波動の伝播経路上の一点でビーム31
によるドプラ計測を行うと、加振パルスに起因するパル
スが減衰しながらもBモード画像上のLの区間を往復反
射する。このものをドプラ信号の変化として観測した結
果の典型例を図4の波形43に示す。
Next, as a second embodiment according to the present invention,
The measurement when the wave propagating through the blood vessel is reflected at a specific section of the blood vessel branch will be described with reference to FIG. As shown in FIG. 3, consider a case where Doppler measurement and vibration are performed on a blood vessel in a portion sandwiched between two specific blood vessel branches. When the sound radiated from the electroacoustic transducer 11 is a pulse, the blood vessel 18
Waves along the path are reflected back and forth in a section having a length indicated by symbol L in the figure. At one point on the propagation path of this wave, the beam 31
When the Doppler measurement is performed by the method, the pulse caused by the excitation pulse is attenuated but is reflected back and forth in the section L on the B-mode image. A typical example of the result of observing this as a change in the Doppler signal is shown by the waveform 43 in FIG.

【0022】図4に示すように、波形43においては、
心拍に起因する波形442〜444に重なって、加振パ
ルスに起因する波形4530〜4534が得られる。但
し、ここで心拍に起因する波形444と加振パルスに起
因する波形波形4533は、実際には、波形が重畳して
区別できない。これらの一連の波形4530〜4534
が同じ反射端を往復しているならば、振幅が異なるもの
の同じ位相の波形4530、4532、4534の組、
および、波形4531、4533の組が、それぞれ互い
に等しい時間間隔で並ぶと考えられる。これら周期T
は、波形43の自己相関関数を計算することにより、そ
の極大値を与える時間差から推定することができる。画
像上から読み取ったLと時間周期Tから血管上の区間の
音速が推定できる。
As shown in FIG. 4, in the waveform 43,
Waveforms 4530 to 4534 caused by the excitation pulse are obtained by overlapping waveforms 442 to 444 caused by the heartbeat. However, in this case, the waveform 444 caused by the heartbeat and the waveform 4533 caused by the excitation pulse cannot be distinguished because the waveforms actually overlap each other. These series of waveforms 4530-4534
Are reciprocating at the same reflection end, a set of waveforms 4530, 4532, 4534 having different amplitudes but the same phase,
Further, it is considered that the sets of the waveforms 4531 and 4533 are arranged at equal time intervals to each other. These cycles T
Can be estimated from the time difference that gives the maximum value by calculating the autocorrelation function of the waveform 43. The sound velocity of the section on the blood vessel can be estimated from L read from the image and the time period T.

【0023】このような第2の実施例での計測を実現す
る構成は、図1に示す第1の実施例における構成と同様
であるが、異なる点として、ドプラ計測を行うビームあ
るいは血管とビームの交点が1点だけでも計測できる点
と、相関演算器27の演算対象が相互相関ではなく、同
じ波形による自己相関である点がある。尚、ドプラ計測
を行うビームの個数は、図3のように1本に限らず、複
数に渡っても良いことは言うまでもない。
The configuration for realizing the measurement in the second embodiment is the same as the configuration in the first embodiment shown in FIG. 1, except that the beam for performing the Doppler measurement or the blood vessel and beam is used. There is a point that can be measured even if there is only one intersection point, and that the calculation target of the correlation calculator 27 is not a mutual correlation but an autocorrelation with the same waveform. Needless to say, the number of beams for Doppler measurement is not limited to one as shown in FIG. 3 and may be plural.

【0024】次に、本発明に係る第3の実施例として、
特定の時間長だけ連続波に近い音波(トーンバースト
波)を電気音響変換部11により被検体内に放射し、こ
れにより、内部の特定の構造体上に定在波を励起する場
合の例を説明する。図5は、本発明の超音波計測装置の
本発明に係る構成の第3の実施例を示すブロック図であ
る。図5に示す第3の実施例では、図1で示す第1の実
施例の構成と比べ、電気音響変換部11から被検体内に
特定の時間長だけ連続波に近い音波(トーンバースト
波)を放射させるバースト制御部(図中、VCOと記
載)61を新たに設けると共に、図1の相関演算器27
を計算機(図中、PCと記載)62に置き換え、下記の
計測データの処理を全て計算機62上で対話的に行う。
Next, as a third embodiment according to the present invention,
An example of a case where a sound wave (tone burst wave) that is close to a continuous wave for a specific time length is radiated into the subject by the electroacoustic conversion unit 11, and thereby a standing wave is excited on a specific internal structure. explain. FIG. 5 is a block diagram showing a third embodiment of the configuration of the ultrasonic measuring device of the present invention according to the present invention. In the third embodiment shown in FIG. 5, compared to the configuration of the first embodiment shown in FIG. 1, a sound wave (tone burst wave) from the electroacoustic conversion unit 11 that is close to a continuous wave within the subject for a specific time length. 1 is newly provided, and the correlation calculator 27 of FIG.
Is replaced with a computer (indicated as PC in the figure) 62, and all the processing of the following measurement data is interactively performed on the computer 62.

【0025】被験体内の特定部分を連続波で励振すれ
ば、構造体の固有振動数と電気音響変換部11による送
波周波数が一致した場合に強い共振が得られる。図3で
示すように長さLの特定の区間に定在波を励振する場合
に設定したドプラ観測部位が振動の節でなく腹にあると
き、励振する波の周波数変化に対してドプラ信号の増減
を検出することができる。周波数を変化させると、振動
の節や腹の位置が移動するため、上記特定区間の中心付
近に固定した計測点を設けるか、区間上に伝搬する波の
波長の半分以下の空間的周期でドプラ信号の計測点を設
ける。これらの計測点のドプラ信号の増減から定在波の
振幅を算出し、それを励振する連続波の周波数毎に調べ
ることにより、最も強く共振する定在波周波数を推定す
ることができる。
When a specific portion in the subject is excited by a continuous wave, strong resonance can be obtained when the natural frequency of the structure and the transmission frequency of the electroacoustic transducer 11 match. As shown in FIG. 3, when the Doppler observation site set when a standing wave is excited in a specific section of length L is not a node of vibration but an antinode, the Doppler signal changes with respect to the frequency change of the excited wave. Increase or decrease can be detected. When the frequency is changed, the nodes of vibration or the positions of the antinodes move.Therefore, provide a fixed measurement point near the center of the specific section, or doppler with a spatial cycle of less than half the wavelength of the wave propagating on the section. Provide measurement points for signals. The amplitude of the standing wave is calculated from the increase / decrease of the Doppler signal at these measurement points, and the standing wave frequency that resonates most strongly can be estimated by investigating for each frequency of the continuous wave that excites it.

【0026】血管上の区間の中心付近にドプラ計測点を
設け、周波数の異なるトーンバースト波で加振した場合
の観測波形の典型例を図6に示す。本図6において、波
形51には、心拍による波形540、541と周波数の
異なるトーンバースト波による波形511、512が重
なっている。ドプラ信号の変化として計測されるそれぞ
れのトーンバースト波の振幅A1、A2の変化から最も
大きく変動を与える周波数から共振周波数を推定するこ
とができる。また、加振音源の波形を波形52のような
チャープ信号としてドプラ信号の変化を調べることもで
きる。このような場合には、波形53のように、心拍に
よる波形542、543に重なって、加振による信号変
化530が検出される。このとき、530の包絡線の最
大値を与える周波数が最も共振の大きい周波数であると
近似的に扱うことができる。このようにして求めた共振
周波数が、血管上の区間にmを自然数として(2m−
1)/2波長共振に相当するならば、mを適切に選択し
て波長と区間長Lから音速を計算することができる。
FIG. 6 shows a typical example of an observed waveform when a Doppler measurement point is provided near the center of a section on a blood vessel and is excited by tone burst waves having different frequencies. In FIG. 6, the waveform 51 is overlapped with the waveforms 540 and 541 due to the heartbeat and the waveforms 511 and 512 due to the tone burst waves having different frequencies. The resonance frequency can be estimated from the frequency that gives the largest fluctuation from the changes in the amplitudes A1 and A2 of the tone burst waves measured as the changes in the Doppler signal. It is also possible to investigate the change of the Doppler signal by using the waveform of the excitation sound source as a chirp signal like the waveform 52. In such a case, the signal change 530 due to the vibration is detected by overlapping the waveforms 542 and 543 due to the heartbeat like the waveform 53. At this time, it can be approximately treated that the frequency giving the maximum value of the envelope of 530 is the frequency having the largest resonance. The resonance frequency obtained in this way is (2m-
If it corresponds to 1) / 2 wavelength resonance, the sound velocity can be calculated from the wavelength and the section length L by appropriately selecting m.

【0027】以上、図1〜図6を用いて説明したよう
に、本実施例の超音波計測装置では、被検体内の特定構
造体、すなわち血管の振動を励起し、ドプラ計測でその
運動を検出することにより、この血管の音速度を求め
る。このことにより、人体内の血管の硬化度を、被検者
に対して非侵襲的に求めることができ、予防医学の観点
で新たな診断指標を提示することができる。
As described above with reference to FIGS. 1 to 6, in the ultrasonic measuring apparatus according to the present embodiment, the vibration of a specific structure in the subject, that is, the blood vessel is excited, and its motion is measured by Doppler measurement. By detecting the sound velocity of the blood vessel. As a result, the degree of hardening of blood vessels in the human body can be obtained non-invasively for a subject, and a new diagnostic index can be presented from the viewpoint of preventive medicine.

【0028】尚、本発明は、図1〜図6を用いて説明し
た各実施例に限定されるものではなく、その要旨を逸脱
しない範囲において種々変更可能である。例えば、本実
施例では、被検体を人体とした場合の血管の硬化度の測
定を例として説明しているが、人体の臓器の硬化度の測
定などにも適用可能である。また、上記3つの実施例に
おいて、加振源からの音波が血管や臓器境界などを伝わ
るのではなく、直接にドプラ観測点に到達する計測状況
においては、直接に到達する変動成分は本発明の計測の
妨害要因となる。これを避けるために、装置構成とし
て、図2、図3の電気音響変換部11は探触子10内に
設けずに独立させ、計測点より十分空間的距離を離して
加振位置を設定することも可能である。例えば、血管を
伝播する波動を計測するのであれば、大動脈、大静脈の
主幹部付近を体表から加振し、ドプラ計測点をその分岐
先の血管枝に設定することができる。
The present invention is not limited to the embodiments described with reference to FIGS. 1 to 6, and various modifications can be made without departing from the scope of the invention. For example, in the present embodiment, the measurement of the degree of hardening of blood vessels when the subject is a human body has been described as an example, but the present invention is also applicable to the measurement of the degree of hardening of organs of a human body. Further, in the above three embodiments, in a measurement situation in which the sound wave from the vibration source does not propagate through the blood vessel or the organ boundary, but directly reaches the Doppler observation point, the fluctuation component that directly arrives is the fluctuation component of the present invention. It becomes an obstacle to measurement. In order to avoid this, as the device configuration, the electroacoustic conversion unit 11 of FIGS. 2 and 3 is not provided in the probe 10 but is independent, and the vibration position is set with a sufficient spatial distance from the measurement point. It is also possible. For example, if the wave propagating through a blood vessel is measured, the vicinity of the main trunk of the aorta and vena cava can be excited from the body surface, and the Doppler measurement point can be set at the branching blood vessel branch.

【0029】[0029]

【発明の効果】本発明によれば、従来のドプラ効果を利
用した超音波計測装置において、人体内の血管や臓器
等、被検体内の特定部位を伝播する振動の伝播速度を測
定することができ、人体内の血管や臓器等、被検体内の
特定部位の硬化度等を、非侵襲的に効率良く求めること
が可能となる。
According to the present invention, in the conventional ultrasonic measuring apparatus utilizing the Doppler effect, it is possible to measure the propagation velocity of vibration propagating through a specific site in a subject such as a blood vessel or an organ in the human body. This makes it possible to efficiently and non-invasively obtain the degree of hardening of a specific site in the subject such as a blood vessel or an organ in the human body.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の超音波計測装置の本発明に係る構成の
第1の実施例を示すブロック図である。
FIG. 1 is a block diagram showing a first embodiment of the configuration of the ultrasonic measuring device of the present invention according to the present invention.

【図2】図1における超音波計測装置による動作例を示
す説明図である。
FIG. 2 is an explanatory diagram showing an operation example of the ultrasonic measurement device in FIG.

【図3】本発明の第2の実施例の超音波計測装置による
動作例を示す説明図である。
FIG. 3 is an explanatory diagram showing an operation example of the ultrasonic measurement device according to the second embodiment of the present invention.

【図4】図2および図3におけるドプラ信号の計測結果
の信号波形例を示す説明図である。
FIG. 4 is an explanatory diagram showing an example of a signal waveform of a measurement result of a Doppler signal in FIGS. 2 and 3.

【図5】本発明の超音波計測装置の本発明に係る構成の
第3の実施例を示すブロック図である。
FIG. 5 is a block diagram showing a third embodiment of the configuration of the ultrasonic measurement device of the present invention according to the present invention.

【図6】図5における超音波計測装置によるドプラ信号
の計測結果の信号波形例を示す説明図である。
6 is an explanatory diagram showing a signal waveform example of a measurement result of a Doppler signal by the ultrasonic measurement device in FIG.

【符号の説明】[Explanation of symbols]

10:探触子、11:電気音響変換部、12:電気音響
変換器配列、13:被検体、14,15:音波、16,
17,31:超音波ビーム送受信、18:血管、20:
送受分離回路群、21:送波回路、22:送波回路群、
23:トリガ回路、24:受波回路群、25:整相回
路、26:ドプラ計測回路、27:相関演算器、28:
ディジタルスキャンコンバータ、29:表示装置、41
〜43,51,53:ドプラ信号、61:、62:計算
機、200:Bモード断層像撮像・ドプラ血流計測機
構、440〜444,540〜543:心拍による波
形、450〜452,511,512,530,453
0〜4534:加振による波形
Reference numeral 10: probe, 11: electroacoustic transducer, 12: electroacoustic transducer array, 13: subject, 14, 15: sound wave, 16,
17, 31: ultrasonic beam transmission / reception, 18: blood vessel, 20:
Transmission / reception separation circuit group, 21: Wave transmission circuit, 22: Wave transmission circuit group,
23: Trigger circuit, 24: Wave receiving circuit group, 25: Phase adjusting circuit, 26: Doppler measurement circuit, 27: Correlation calculator, 28:
Digital scan converter, 29: Display device, 41
-43,51,53: Doppler signal, 61 :, 62: Calculator, 200: B-mode tomographic imaging / Doppler blood flow measurement mechanism, 440-444, 540-543: Heartbeat waveforms, 450-452, 511, 512 , 530, 453
0-4534: Waveform due to vibration

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 被検体内の運動体に超音波を放射して、
反射してくる音波のドプラ効果をもとに、上記被検体内
の運動体の運動を検出して表示する超音波計測装置にお
いて、上記被検体内の運動体の移動経路を構成する特定
部位を振動させる音波を放射する電気音響変換手段と、
該電気音響変換手段による上記振動を含む上記ドプラ効
果の計測結果信号に基づき、上記振動が上記特定部位間
を伝播する時間を求める伝播時間取得手段とを設け、該
伝播時間取得手段で求めた上記振動の伝播時間と上記特
定部位間の距離から、上記振動の上記特定部位での伝播
時間を求めることを特徴とすることを特徴とする超音波
計測装置。
1. An ultrasonic wave is radiated to a moving body in a subject,
Based on the Doppler effect of the reflected sound waves, in the ultrasonic measurement device for detecting and displaying the movement of the moving body in the subject, a specific portion constituting the moving path of the moving body in the subject is determined. Electro-acoustic conversion means for emitting sound waves to vibrate,
Based on a measurement result signal of the Doppler effect including the vibration by the electroacoustic conversion means, a propagation time acquisition means for determining a time during which the vibration propagates between the specific parts is provided, and the propagation time acquisition means determines the time. An ultrasonic measuring device characterized in that the propagation time of the vibration at the specific portion is obtained from the propagation time of vibration and the distance between the specific portions.
【請求項2】 被検体内の運動体に超音波を放射して、
反射してくる音波のドプラ効果をもとに、上記被検体内
の運動体の運動を検出して表示する超音波計測装置にお
いて、上記被検体内の運動体の移動経路を構成する特定
部位に、該特定部位に固有な周波数の振動を励起させる
音波を放射する電気音響変換手段と、該電気音響変換手
段により励振された振動を含む上記ドプラ効果の計測結
果信号に基づき、上記励起した振動が上記特定部位間を
伝播する時間を求める伝播時間取得手段とを設け、該伝
播時間取得手段で求めた上記励起した振動の伝播時間と
上記特定部位間の距離から、上記励起した振動の上記特
定部位での伝播時間を求めることを特徴とする超音波計
測装置。
2. An ultrasonic wave is radiated to a moving body in the subject,
Based on the Doppler effect of the reflected sound waves, in the ultrasonic measurement device for detecting and displaying the movement of the moving body in the subject, in a specific portion constituting the moving path of the moving body in the subject , Based on the measurement result signal of the Doppler effect including the electroacoustic conversion means that emits a sound wave that excites the vibration of the specific region, and the vibration excited by the electroacoustic conversion means, the excited vibration is Propagation time acquisition means for determining the propagation time between the specific parts is provided, and the specific part of the excited vibration is calculated from the propagation time of the excited vibration calculated by the propagation time acquisition means and the distance between the specific parts. An ultrasonic measuring device, characterized in that the propagation time in a vehicle is obtained.
【請求項3】 請求項1に記載の超音波計測装置におい
て、上記伝播時間取得手段は、上記電気音響変換手段か
ら放射されたパルス状の音波が、上記移動経路上の音響
インピーダンス変化に原因する反射点間を往復反射する
場合に、上記反射点間の任意の1観測点で計測される上
記ドプラ効果の計測結果信号の自己相関関数を求めて、
上記パルスが上記特定区間を往復する時間を求める相関
演算手段からなることを特徴とする超音波計測装置。
3. The ultrasonic measurement device according to claim 1, wherein in the propagation time acquisition means, the pulse-shaped sound waves radiated from the electroacoustic conversion means cause a change in acoustic impedance on the movement path. When reciprocating between the reflection points, the autocorrelation function of the measurement result signal of the Doppler effect measured at any one observation point between the reflection points is obtained,
An ultrasonic measuring device comprising a correlation calculating means for obtaining a time required for the pulse to make a round trip in the specific section.
【請求項4】 請求項1記載の超音波計測装置におい
て、上記伝播時間取得手段は、上記電気音響変換手段か
ら放射されたパルス状の音波に対する上記特定部位間の
任意の2乃至はそれ以上の観測点で計測される上記ドプ
ラ効果の計測結果信号の相互相関関数を求めて、上記パ
ルスが上記特定区間を伝播する時間を求める相関演算手
段からなることを特徴とする超音波計測装置。
4. The ultrasonic measurement device according to claim 1, wherein the propagation time acquisition means includes any two or more between the specific parts with respect to the pulsed sound waves emitted from the electroacoustic conversion means. An ultrasonic measuring device, comprising: a correlation calculating unit that obtains a cross-correlation function of a measurement result signal of the Doppler effect measured at an observation point and obtains a time during which the pulse propagates in the specific section.
【請求項5】 被検体内の運動体に超音波を放射して、
反射してくる音波のドプラ効果をもとに、上記被検体内
の運動体の運動を検出して表示する超音波計測装置にお
いて、上記被検体内の運動体の移動経路を構成する特定
部位に、音波を放射する電気音響変換手段と、上記電気
音響変換手段の出力する音波を周波数掃引して、上記被
検体内の特定部位の固有振動数に一致する音波を放射さ
せる送波手段と、該送波手段で掃引される周波数毎の上
記特定部位での上記ドプラ効果の計測結果信号の増減に
基づき、最も強く共振する周波数を上記特定部位の固有
周波数として求める固有周波数取得手段とを設け、該固
有周波数取得手段で求めた上記特定部位の固有周波数と
上記特定部位間の距離から、上記固有周波数の振動の上
記特定部位での伝播速度を求めることを特徴とする超音
波計測装置。
5. An ultrasonic wave is radiated to a moving body in the subject,
Based on the Doppler effect of the reflected sound waves, in the ultrasonic measurement device for detecting and displaying the movement of the moving body in the subject, in a specific portion constituting the moving path of the moving body in the subject An electroacoustic conversion means for radiating a sound wave; a wave transmission means for frequency-sweeping the sound wave output by the electroacoustic conversion means to radiate a sound wave matching the natural frequency of a specific portion in the subject; Based on the increase and decrease of the measurement result signal of the Doppler effect at the specific site for each frequency swept by the transmitting means, the natural frequency acquisition means for determining the most strongly resonating frequency as the natural frequency of the specific site, An ultrasonic measurement apparatus, characterized in that a propagation velocity of vibration of the natural frequency at the specific site is obtained from the natural frequency of the specific site obtained by the natural frequency acquisition means and the distance between the specific sites.
JP474395A 1995-01-17 1995-01-17 Ultrasonic measuring device Withdrawn JPH08191834A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP474395A JPH08191834A (en) 1995-01-17 1995-01-17 Ultrasonic measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP474395A JPH08191834A (en) 1995-01-17 1995-01-17 Ultrasonic measuring device

Publications (1)

Publication Number Publication Date
JPH08191834A true JPH08191834A (en) 1996-07-30

Family

ID=11592403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP474395A Withdrawn JPH08191834A (en) 1995-01-17 1995-01-17 Ultrasonic measuring device

Country Status (1)

Country Link
JP (1) JPH08191834A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006087744A (en) * 2004-09-24 2006-04-06 Toshiba Corp Ultrasonic diagnostic apparatus and ultrasonic signal processing device
JP2010501231A (en) * 2006-08-22 2010-01-21 スーパー ソニック イマジン Ultrasonic imaging probe for imaging temporary changes in media
JP2010526626A (en) * 2007-05-16 2010-08-05 スーパー ソニック イマジン Method and apparatus for measuring the average value of viscoelasticity of a region of interest
JP2011083645A (en) * 2011-02-02 2011-04-28 Toshiba Corp Ultrasonograph and ultrasonic signal processing device
JP2012081269A (en) * 2010-10-06 2012-04-26 Siemens Medical Solutions Usa Inc Method and system for solving for shear wave information in medical ultrasound imaging
JP2014030774A (en) * 2013-11-22 2014-02-20 Super Sonic Imagine Method and device for measuring mean value of visco-elasticity of region of interest
JP2016116875A (en) * 2009-11-25 2016-06-30 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Ultrasonic shear wave imaging in focused scan line beam formation
JP2017515575A (en) * 2014-05-16 2017-06-15 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Autocorrelation guide cross-correlation in ultrasonic shear wave elastography
JP2017533031A (en) * 2014-10-29 2017-11-09 メイヨ フォンデーシヨン フォー メディカル エジュケーション アンド リサーチ Method for ultrasonic elastography with continuous vibration of ultrasonic transducer
US11493616B2 (en) 2006-03-29 2022-11-08 Supersonic Imagine Method and a device for imaging a visco-elastic medium
US11644440B2 (en) 2017-08-10 2023-05-09 Mayo Foundation For Medical Education And Research Shear wave elastography with ultrasound probe oscillation

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006087744A (en) * 2004-09-24 2006-04-06 Toshiba Corp Ultrasonic diagnostic apparatus and ultrasonic signal processing device
US11493616B2 (en) 2006-03-29 2022-11-08 Supersonic Imagine Method and a device for imaging a visco-elastic medium
JP2010501231A (en) * 2006-08-22 2010-01-21 スーパー ソニック イマジン Ultrasonic imaging probe for imaging temporary changes in media
JP2010526626A (en) * 2007-05-16 2010-08-05 スーパー ソニック イマジン Method and apparatus for measuring the average value of viscoelasticity of a region of interest
US10603013B2 (en) 2007-05-16 2020-03-31 Super Sonic Imagine Method and device for measuring velocity of shear waves in biological tissue
US10368843B2 (en) 2009-11-25 2019-08-06 Koninklijke Philips N.V. Ultrasonic shear wave imaging with focused scanline beamforming
JP2016116875A (en) * 2009-11-25 2016-06-30 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Ultrasonic shear wave imaging in focused scan line beam formation
US11464489B2 (en) 2009-11-25 2022-10-11 Koninklijke Philips N.V. Ultrasonic shear wave imaging with focused scanline beamforming
JP2012081269A (en) * 2010-10-06 2012-04-26 Siemens Medical Solutions Usa Inc Method and system for solving for shear wave information in medical ultrasound imaging
JP2011083645A (en) * 2011-02-02 2011-04-28 Toshiba Corp Ultrasonograph and ultrasonic signal processing device
JP2014030774A (en) * 2013-11-22 2014-02-20 Super Sonic Imagine Method and device for measuring mean value of visco-elasticity of region of interest
JP2017515575A (en) * 2014-05-16 2017-06-15 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Autocorrelation guide cross-correlation in ultrasonic shear wave elastography
JP2017533031A (en) * 2014-10-29 2017-11-09 メイヨ フォンデーシヨン フォー メディカル エジュケーション アンド リサーチ Method for ultrasonic elastography with continuous vibration of ultrasonic transducer
US10779799B2 (en) 2014-10-29 2020-09-22 Mayo Foundation For Medical Education And Research Method for ultrasound elastography through continuous vibration of an ultrasound transducer
US11644440B2 (en) 2017-08-10 2023-05-09 Mayo Foundation For Medical Education And Research Shear wave elastography with ultrasound probe oscillation

Similar Documents

Publication Publication Date Title
US7753847B2 (en) Ultrasound vibrometry
US7785259B2 (en) Detection of motion in vibro-acoustography
JP4582827B2 (en) Ultrasonic diagnostic equipment
JP2008136855A (en) Ultrasonic diagnostic apparatus
JPH074373B2 (en) Ultrasound endoscopy
JP3583789B2 (en) Continuous wave transmitting / receiving ultrasonic imaging apparatus and ultrasonic probe
US7291108B2 (en) Ultrasonic transmission/reception apparatus for generating an image based on ultrasonic echoes and vibro-acoustic sounds
US4313444A (en) Method and apparatus for ultrasonic Doppler detection
JP2002253549A (en) Ultrasonic image pickup device and method, and probe
JPH08191834A (en) Ultrasonic measuring device
JPH043223B2 (en)
JP2012192077A (en) Ultrasound diagnostic apparatus and ultrasound image generation method
JP7167045B2 (en) Location devices and systems for positioning acoustic sensors
JP4074100B2 (en) Ultrasound diagnostic imaging equipment
JP2012170467A (en) Ultrasound probe and ultrasound diagnostic apparatus
JP2012161569A (en) Ultrasound diagnostic apparatus and ultrasound image producing method
JP6944048B2 (en) Ultrasonic system and control method of ultrasonic system
JP5331839B2 (en) Ultrasonic probe and ultrasonic diagnostic apparatus
JPH04200539A (en) Ultrasonic wave probe and blood flow measuring instrument
JP2735266B2 (en) Pulse echo type ultrasonic device
JP2002301071A (en) Ultrasonic imaging method and apparatus
JP2002301072A (en) Ultrasonic imaging method and apparatus
JP2010110642A (en) Ultrasonic diagnostic apparatus
JPH0467857A (en) Ultrasonic diagnostic device
JP2004321647A (en) Ultrasonic diagnostic apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040416

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040629

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070227