JPH08183954A - El fluorescent material powder - Google Patents

El fluorescent material powder

Info

Publication number
JPH08183954A
JPH08183954A JP6337664A JP33766494A JPH08183954A JP H08183954 A JPH08183954 A JP H08183954A JP 6337664 A JP6337664 A JP 6337664A JP 33766494 A JP33766494 A JP 33766494A JP H08183954 A JPH08183954 A JP H08183954A
Authority
JP
Japan
Prior art keywords
phosphor powder
activator
zinc sulfide
ion
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6337664A
Other languages
Japanese (ja)
Inventor
Etsuji Kimura
悦治 木村
Kazumi Shimura
一美 志村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP6337664A priority Critical patent/JPH08183954A/en
Publication of JPH08183954A publication Critical patent/JPH08183954A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Luminescent Compositions (AREA)
  • Illuminated Signs And Luminous Advertising (AREA)

Abstract

PURPOSE: To obtain the powder comprising zinc sulfide as a matrix material, and an activating agent and a coactivating agent which are used as light- emitting centers, having the characteristics of high brightness and long life, and useful for flat face type displays, luminous panels for display, etc. CONSTITUTION: This fluorescent material powder comprises (A) zinc sulfide as a matrix material, (B) an activating agent (preferably the ion of at least one kind of element selected from copper, manganese, silver, gold and rare earth elements, especially preferably copper ion), and (C) a coactivating agent (preferably the ion of at least one kind of element selected from chlorine, bromine, iodine, and Al, especially preferably chloride ion). The fluorescent material powder uniformly has flat lamination defects in a high density over the whole body of the particle wherein the average face distance of the lamination defects is 0.2-10nm, and preferably further has an average particle diameter of $25μm.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、硫化亜鉛を母体とし発
光の中心となる付活剤および共付活剤を含有する蛍光体
粉末、特に、高輝度で長寿命のエレクトロルミネッセン
ス(EL)蛍光体に関する。
FIELD OF THE INVENTION The present invention relates to a phosphor powder containing zinc sulfide as a base material and an activator and a co-activator which are the center of light emission, and particularly to electroluminescent (EL) fluorescence having high brightness and long life. Regarding the body

【0002】[0002]

【従来技術】EL蛍光体は電圧励起型の蛍光体であり、
蛍光体粉末を電極の間に挟んで発光素子とした分散型E
Lと薄膜型ELとが知られている。分散型EL蛍光体の
一般的な形状は、蛍光体粉末を高誘電率のバインダー中
に分散したものを、少なくとも一方が透明な二枚の電極
の間に挟み込んだ構造からなり、両電極間に交流電場を
印加することにより発光する。EL蛍光体粉末を用いて
作成された発光素子は数mm以下の厚さとすることが可
能で、面発光体であり、発熱がなく発光効率が良いなど
数多くの利点を有するため、道路標識等の表示用発光パ
ネル、各種インテリアやエクステリア用の照明、液晶デ
ィスプレイ等のフラットパネルディスプレイ用の光源等
としての用途が期待されている。
2. Description of the Related Art EL phosphors are voltage excitation type phosphors,
Dispersion type E as a light emitting device with a phosphor powder sandwiched between electrodes
L and thin film type EL are known. The general shape of a dispersion type EL phosphor has a structure in which phosphor powder is dispersed in a binder having a high dielectric constant and is sandwiched between two electrodes, at least one of which is transparent. It emits light when an alternating electric field is applied. A light-emitting element created using EL phosphor powder can have a thickness of several mm or less, is a surface light-emitting body, and has many advantages such as no heat generation and good luminous efficiency. It is expected to be used as a light-emitting panel for display, lighting for various interiors and exteriors, and a light source for flat panel displays such as liquid crystal displays.

【0003】EL蛍光体粉末としては、硫化亜鉛を母体
として、銅等の付活剤(発光中心としての金属イオン)
および塩素等の共付活剤が添加されたものが広く知られ
ている。しかし、この蛍光体粉末を用いて作成された発
光素子は、他の原理に基づく発光素子と比べて発光輝度
が低く、また発光寿命が短いという欠点があり、このた
め従来から種々の改良が試みられてきた。例えば、特開
昭61−296085号には、硫化亜鉛、銅化合物、ハ
ロゲン化物の混合物を1000〜1200℃で焼成する
ことにより六方晶系の中間蛍光体粉末を製造し、これに
常温下で静水圧を加えた後に700〜950℃でアニー
ルするか、またはアニールと同時に熱間プレスして立方
晶系に転移させ、高輝度、長寿命の蛍光体粉末を製造す
る方法が記載されている。また、特開平6−33053
号には、中間蛍光体粉末を大気中でアニールする方法に
代えて、硫酸塩存在下で大気を遮断して再焼成し、エッ
チング後さらに大気中で比較的低温で熱処理する製造方
法が記載されている。後者の方法で製造された蛍光体粉
末は従来のものより発光輝度が高く、寿命も長い利点を
有しているが、さらに、その高輝度化および長寿命化が
求められている。
As the EL phosphor powder, zinc sulfide is used as a base material, and an activator such as copper (metal ion as an emission center) is used.
Those to which a co-activator such as chlorine and chlorine is added are widely known. However, a light emitting device created by using this phosphor powder has drawbacks of low emission brightness and short emission life as compared with light emitting devices based on other principles. Therefore, various improvements have been attempted conventionally. Has been. For example, in JP-A-61-296085, a hexagonal intermediate phosphor powder is manufactured by firing a mixture of zinc sulfide, a copper compound and a halide at 1000 to 1200 ° C. It describes a method of producing a phosphor powder having high brightness and long life, which is performed by annealing at 700 to 950 ° C. after applying water pressure or by hot pressing simultaneously with annealing to transform into a cubic system. In addition, JP-A-6-33053
In the publication, instead of the method of annealing the intermediate phosphor powder in the atmosphere, a method of manufacturing is described in which the atmosphere is shut off in the presence of a sulfate to re-fire, and after etching, heat treatment is further performed in the atmosphere at a relatively low temperature. ing. The phosphor powder manufactured by the latter method has the advantages of higher emission brightness and longer life than conventional ones, but further, higher brightness and longer life are required.

【0004】[0004]

【発明の解決課題】本発明は、従来のEL蛍光体粉末に
おける上記課題を解決したものであって、発光素子用と
して十分な高輝度、長寿命特性を有するEL蛍光体粉末
を提供することを目的とする。
DISCLOSURE OF THE INVENTION The present invention is to solve the above-mentioned problems in conventional EL phosphor powders, and to provide EL phosphor powders having sufficiently high brightness and long life characteristics for light emitting devices. To aim.

【0005】[0005]

【課題の解決手段】EL蛍光体粉末のEL発光の中心
は、粒子内に存在する積層欠陥部に析出した付活剤の硫
化銅(Cu2 S)等の針状結晶と硫化亜鉛母体との界面
部分であると考えられている(『銅付活蛍光体』セラミ
ックス26(1991) No.7)。本発明者等は従来のEL
蛍光体粉末が、粒子内に自然に存在する積層欠陥を利用
しているためEL発光の中心となる積層欠陥の密度が低
く、従って高輝度発光を得られないことを見い出した。
そこで本発明においては、中間蛍光体粉末に衝撃力を加
えるなどの方法により面状の積層欠陥を粒子全体に均一
かつ高密度に生じさせ、EL発光の中心部分を硫化亜鉛
粒子全体に均一に分散させ、その密度を高めることによ
り発光輝度と発光寿命を大幅に向上させた。
SOLUTION OF THE PROBLEM The center of EL emission of an EL phosphor powder is formed by acicular crystals of an activator such as copper sulfide (Cu 2 S) deposited in a stacking fault portion existing in the particle and a zinc sulfide matrix. It is considered to be the interface portion (“Copper-activated phosphor”, Ceramics 26 (1991) No. 7). The present inventors
It has been found that since the phosphor powder utilizes stacking faults naturally existing in the particles, the density of stacking faults, which is the center of EL emission, is low, and therefore high-luminance emission cannot be obtained.
Therefore, in the present invention, planar stacking faults are uniformly and densely generated in the whole particles by a method such as applying an impact force to the intermediate phosphor powder, and the central part of EL emission is uniformly dispersed in the entire zinc sulfide particles. By increasing the density, the emission brightness and the emission lifetime were significantly improved.

【0006】すなわち、本発明によれば、以下の構成を
有するEL蛍光体粉末とその製造方法が提供される。 (1) 硫化亜鉛を母体とし付活剤および共付活剤を含
有する蛍光体粉末であって、面状の積層欠陥を粒子全体
に均一かつ高密度に有しており、その積層欠陥の平均面
間隔が0.2〜10nmであることを特徴とするEL蛍光
体粉末。 (2) 蛍光体粉末の平均粒径が25μm 以下の上記
(1) のEL蛍光体粉末。 (3) 付活剤が銅、マンガン、銀、金および希土類元
素から選択された少なくとも一種のイオンである上記
(1) または(2) に記載のEL蛍光体粉末。 (4)共付活剤が塩素、臭素、ヨウ素およびアルミニウ
ムから選択された少なくとも一種のイオンである上記
(1) 〜(3) のいずれかに記載のEL蛍光体粉末。 (5) 付活剤が銅イオンであり、共付活剤が塩素イオ
ンである上記(1) 〜(4)のいずれかに記載のEL蛍光体
粉末。
That is, according to the present invention, an EL phosphor powder having the following constitution and a method for producing the same are provided. (1) A phosphor powder containing zinc sulfide as a base material and an activator and a co-activator, having planar stacking faults uniformly and densely throughout the particle, and the stacking faults are averaged. An EL phosphor powder having a surface spacing of 0.2 to 10 nm. (2) The average particle size of the phosphor powder is 25 μm or less
(1) EL phosphor powder. (3) The above, wherein the activator is at least one ion selected from copper, manganese, silver, gold and rare earth elements.
The EL phosphor powder according to (1) or (2). (4) The coactivator is at least one ion selected from chlorine, bromine, iodine and aluminum.
The EL phosphor powder according to any one of (1) to (3). (5) The EL phosphor powder according to any one of the above (1) to (4), wherein the activator is copper ion and the co-activator is chlorine ion.

【0007】[0007]

【具体的な説明】本発明の蛍光体粉末は、硫化亜鉛を母
体とし、発光中心である付活剤(金属イオン)および共
付活剤を含有する硫化亜鉛ベースの蛍光体粉末である。
硫化亜鉛には高温安定型(1024℃以上)の六方晶系(ウ
ルツ鉱型β−ZnS)と低温安定型の立方晶系(閃亜鉛
鉱型α−ZnS)の2つの結晶形があるが、本発明にお
いて蛍光体粉末の母体として用いる硫化亜鉛はいずれの
結晶形のものでもよく、両者が混在していてもよい。
[Detailed Description] The phosphor powder of the present invention is a zinc sulfide-based phosphor powder containing zinc sulfide as a base material and containing an activator (metal ion) as a luminescent center and a co-activator.
Zinc sulfide has two crystal forms, a high temperature stable type (1024 ° C or higher) hexagonal system (wurtzite type β-ZnS) and a low temperature stable cubic system (zincblende type α-ZnS). In the present invention, the zinc sulfide used as the matrix of the phosphor powder may be in any crystal form, and both may be mixed.

【0008】発光中心となる付活剤は、付活剤として蛍
光体に一般に使用される金属イオンが用いられる。具体
的には、銅、マンガン、銀、金および希土類元素等が好
適に用いられる。これらは単独で用いても、複数を組み
合わせて用いてもよい。蛍光発光の波長域(色)は付活
剤の種類に依存しており、例えば、緑色(銅)、オレン
ジ(マンガン)、青(銀)等の蛍光が得られる。最適付
活剤濃度は付活剤の種類により異なるが、たとえば、銅
付活剤の場合は母体の硫化亜鉛に対して0.01〜0.
1重量%(以下%)の範囲であればよく、0.01%未
満では十分な発光が得られず、0.1%を越えると輝度
の低下を招く。共付活剤としては、従来、蛍光体に使用
されている各種の共付活剤が用いられる。具体的には塩
素、臭素、ヨウ素およびアルミニウムが好適に用いられ
る。これらは単独で用いてもよく、複数を組み合わせて
用いてもよい。共付活剤濃度は塩素の場合、母体中で硫
化亜鉛に対し0.01〜0.2%の範囲であればよい。
0.01%未満では十分な発光が得られず、0.2%を
超えると輝度の低下を招く。
As the activator which becomes the luminescent center, metal ions generally used for phosphors are used as the activator. Specifically, copper, manganese, silver, gold, rare earth elements and the like are preferably used. These may be used alone or in combination. The wavelength range (color) of fluorescence emission depends on the type of activator, and, for example, fluorescence of green (copper), orange (manganese), blue (silver), or the like can be obtained. The optimum activator concentration varies depending on the type of activator. For example, in the case of a copper activator, 0.01 to 0.
The amount may be in the range of 1% by weight (% or less). If it is less than 0.01%, sufficient light emission cannot be obtained, and if it exceeds 0.1%, the brightness is lowered. As the co-activator, various co-activators conventionally used for phosphors are used. Specifically, chlorine, bromine, iodine and aluminum are preferably used. These may be used alone or in combination of two or more. In the case of chlorine, the coactivator concentration may be in the range of 0.01 to 0.2% with respect to zinc sulfide in the matrix.
If it is less than 0.01%, sufficient light emission cannot be obtained, and if it exceeds 0.2%, the brightness is lowered.

【0009】本発明の蛍光体粉末は、図1の顕微鏡写真
に示すように、面状の積層欠陥が硫化亜鉛の母体全体に
均一かつ高密度に生じており、その平均面間隔が0.2
〜10nmであることを特徴とする。図1は硫化亜鉛に付
活剤として硫化銅をドープした例であり、同図において
基質部分は母体の硫化亜鉛であり、縞状の部分がその積
層欠陥の部分である。図1は面状に広がる積層欠陥に対
してほぼ直角の断面を示している。硫化銅は母体の硫化
亜鉛の積層欠陥に沿って析出する。図示するように本発
明の蛍光体粉末は、各積層欠陥の平均面間隔が極めて狭
い。このような面間隔の高密度の積層欠陥は、中間蛍光
体粉末に衝撃力を加えることにより形成することができ
る。さらに、この高密度の積層欠陥を有する蛍光体粉末
を再焼成することにより付活剤析出部分を粒子全体に均
一に分散させることができる。一方、従来のEL蛍光体
粉末は、その大部分が中間蛍光体粉末に自然に存在する
積層欠陥を利用して付活剤を析出させているため、図2
に示すように、積層欠陥の平均面間隔が本発明の蛍光体
粉末に比べて広い。本発明の蛍光体粉末における積層欠
陥相互の平均面間隔は、概ね、従来の蛍光体粉末の約1
0分の1であり、積層欠陥の密度が格段に高く、かつ母
体粒子全体に均一に分散している。
In the phosphor powder of the present invention, as shown in the micrograph of FIG. 1, planar stacking faults are uniformly and densely generated throughout the zinc sulfide matrix, and the average interplanar spacing is 0.2.
It is characterized by being 10 nm. FIG. 1 shows an example in which zinc sulfide is doped with copper sulfide as an activator. In the figure, the substrate portion is the base zinc sulfide, and the striped portion is the stacking fault portion. FIG. 1 shows a cross section that is substantially perpendicular to a stacking fault that spreads in a plane. Copper sulfide is deposited along the stacking fault of the matrix zinc sulfide. As shown in the figure, the phosphor powder of the present invention has an extremely narrow average spacing between stacking faults. Such a high-density stacking fault with a surface spacing can be formed by applying an impact force to the intermediate phosphor powder. Further, by re-baking the phosphor powder having a high density of stacking faults, the activator-precipitated portion can be uniformly dispersed throughout the particles. On the other hand, most of the conventional EL phosphor powders use the stacking fault naturally present in the intermediate phosphor powders to deposit the activator.
As shown in, the average plane spacing of stacking faults is wider than that of the phosphor powder of the present invention. The average interplanar spacing between stacking faults in the phosphor powder of the present invention is about 1 of that of the conventional phosphor powder.
It is 1/0, and the density of stacking faults is remarkably high, and the base particles are uniformly dispersed.

【0010】蛍光体粉末の一般的な製法は、原料の硫化
亜鉛粉末を付活剤となる金属化合物および共付活剤とな
るハロゲン化物などと共に一次焼成して中間蛍光体粉末
を製造し、この中間蛍光体粉末の結晶内部に存在する刃
状転位や双晶などの積層欠陥を利用して、これを二次焼
成(再焼成)することにより積層欠陥を中心に付活剤を
析出させる。この積層欠陥は面状の格子欠陥であり、母
体の硫化亜鉛結晶内において、この面状の積層欠陥に沿
って付活剤が析出する。
A general method for producing a phosphor powder is as follows. A raw material zinc sulfide powder is primarily fired together with a metal compound as an activator and a halide as a co-activator to produce an intermediate phosphor powder. Utilizing stacking faults such as edge dislocations and twins existing inside the crystal of the intermediate phosphor powder, secondary firing (re-baking) of this causes the activator to be deposited mainly on the stacking faults. The stacking fault is a planar lattice defect, and the activator is deposited along the planar stacking fault in the matrix zinc sulfide crystal.

【0011】具体的には、硫化亜鉛は立方晶系(α−Zn
S )と六方晶系(β−ZnS )の2つの結晶形が存在し、
前者では最密原子面((111) 面)はABCABC……の
三層構造をなし、後者ではc軸に垂直な最密原子面がA
BAB……の二層構造を形成している。このため、例え
ば、硫化亜鉛結晶に衝撃力を加えた場合、α−ZnS で最
密原子面のすべりが起こりC面が抜けると部分的にAB
ABのβ−ZnS となり刃状転位が生じ、また、AB面が
逆転して双晶が生じることもある。一般に、結晶中の不
純物は格子欠陥部分に集中するため、積層欠陥を有する
硫化亜鉛を加熱して硫化銅などの付活剤を拡散させると
積層欠陥に付活剤が析出する。付活剤の析出部分と母体
の硫化亜鉛部分との界面がEL発光の中心となることか
ら、積層欠陥の密度が高いことは発光輝度を高めるうえ
で有利である。
Specifically, zinc sulfide is a cubic system (α-Zn
S) and hexagonal (β-ZnS) crystal forms exist,
In the former case, the closest packed atomic plane ((111) plane) has a three-layer structure of ABCABC ... In the latter case, the closest packed atomic plane perpendicular to the c-axis is A
A two-layer structure of BAB ... is formed. For this reason, for example, when an impact force is applied to a zinc sulfide crystal, slippage of the close-packed atomic plane occurs in α-ZnS, and if the C plane comes out, AB
In some cases, AB becomes β-ZnS and edge dislocations occur, and the AB plane is reversed and twins may occur. In general, impurities in crystals are concentrated in lattice defect portions, so that when zinc sulfide having a stacking fault is heated to diffuse an activator such as copper sulfide, the activator is precipitated in the stacking fault. The interface between the activator deposit and the zinc sulfide part of the host becomes the center of EL light emission, so that the high density of stacking faults is advantageous in increasing the emission brightness.

【0012】本発明の蛍光体粉末では、発光中心となる
付活剤が析出する積層欠陥部分が前述のように母体の硫
化亜鉛結晶全体にわたって均一に分布し、かつ高密度に
存在するために高い発光輝度が得られる。また、EL蛍
光体粉末の発光寿命が失われるのは付活剤の逆拡散が起
こるためであるが、本発明の蛍光体粉末は、付活剤が粒
子全体に均一に分布しているので輝度低下の影響が少な
く、また付活剤の析出密度が高いために付活剤の逆拡散
自体が抑制されるので発光寿命が長い。
In the phosphor powder of the present invention, the stacking fault portion in which the activator serving as the emission center is deposited is uniformly distributed over the entire matrix zinc sulfide crystal as described above and is high in density. The emission brightness can be obtained. Further, the emission lifetime of the EL phosphor powder is lost because back diffusion of the activator occurs. However, in the phosphor powder of the present invention, the activator is evenly distributed throughout the particles, and thus the brightness is reduced. The influence of the decrease is small, and since the activator precipitation density is high, the back diffusion itself of the activator is suppressed, so that the emission life is long.

【0013】本発明のEL蛍光体粉末は、常法に従い中
間蛍光体粉末を製造し、これに衝撃力を加えて高密度の
積層欠陥を生ぜしめ、しかる後に再焼成して付活剤を積
層欠陥内に析出させ、必要に応じ、表面のエッチングお
よび分級を経て製造する。中間蛍光体粉末は、高純度の
硫化亜鉛粉末に付活剤となる金属化合物および融剤を混
合し、1000〜1300℃で一次焼成した後、融剤を
洗浄除去し乾燥することにより得られる。付活剤となる
金属化合物は銅、マンガン、銀、金および希土類元素等
の酢酸塩、硫酸塩等が用いられる。融剤は硫化亜鉛母体
の結晶成長を行うと同時に、共付活剤の供給源となる。
融剤の例としては、アルカリやアルカリ土類金属のハロ
ゲン化物および等が挙げられる。
For the EL phosphor powder of the present invention, an intermediate phosphor powder is produced according to a conventional method, and impact force is applied thereto to generate a high-density stacking fault, which is then re-fired to stack an activator. It is deposited in the defect and, if necessary, the surface is etched and classified to manufacture. The intermediate phosphor powder is obtained by mixing a high-purity zinc sulfide powder with a metal compound serving as an activator and a flux, performing primary firing at 1000 to 1300 ° C., washing and removing the flux, and then drying. As the metal compound serving as an activator, acetate, sulfate, etc. of copper, manganese, silver, gold and rare earth elements are used. The flux serves as a supply source of the coactivator at the same time as crystal growth of the zinc sulfide matrix.
Examples of the flux include alkali and alkaline earth metal halides and the like.

【0014】本発明の蛍光体粉末では、面間隔の狭い付
活剤析出部分は積層欠陥を生じさせるために、中間蛍光
体の粉末粒子に衝撃力を加え、これにより結晶全体に積
層欠陥を高密度に発生させる。例えば、具体的には、中
間蛍光体の粉末粒子を高速で壁に衝突させ、または粒子
どうしを衝突させる。付活剤を積層欠陥内に析出させる
ための再焼成は、例えば、700〜900℃で2〜10
時間加熱することにより行なわれる。再焼成後、エッチ
ングにより粒子表面の酸化亜鉛膜を除去する。この際、
粒子中の銅が溶解して表面に析出することがあるため、
これを好ましくはEDTAなどを用いて除き、水洗、乾
燥、分級を経て、目的とする粒径のEL蛍光体粉末を得
る。
In the phosphor powder of the present invention, since the activator-deposited portion having a narrow interplanar spacing causes stacking faults, an impact force is applied to the powder particles of the intermediate phosphor, thereby increasing stacking faults throughout the crystal. Raise to density. For example, specifically, the powder particles of the intermediate phosphor are caused to collide with the wall at high speed, or the particles are collided with each other. The re-baking for precipitating the activator in the stacking fault is, for example, 2 to 10 at 700 to 900 ° C.
It is performed by heating for a time. After rebaking, the zinc oxide film on the particle surface is removed by etching. On this occasion,
Since the copper in the particles may dissolve and precipitate on the surface,
This is preferably removed using EDTA or the like, washed with water, dried and classified to obtain an EL phosphor powder having a target particle size.

【0015】蛍光体粉末の粒径は25μm 以下が好まし
い。発光輝度は粒径によっても影響を受け、粒径が小さ
いほうが有利である。蛍光体粉末の粒径が40μm 以上
になると発光輝度が大幅に低下するので好ましくない。
蛍光体粉末の粒径は主に中間蛍光体粉末を製造する一次
焼成によって定まり、一般に焼成温度を下げて融剤量を
減らせば粒径は小さくなるが、従来の蛍光体粉末では焼
成温度や融剤量を下げると付活剤および共付活剤のドー
プ量のバランスが崩れるために発光輝度は必ずしも向上
せず、色調も変化するが、本発明の蛍光体では付活剤が
高密度に粒子全体に均一に分布しているのでこのような
欠点を生じない。
The particle size of the phosphor powder is preferably 25 μm or less. The emission brightness is also affected by the particle size, and the smaller the particle size, the more advantageous. If the particle size of the phosphor powder is 40 μm or more, the emission brightness is significantly reduced, which is not preferable.
The particle size of the phosphor powder is mainly determined by the primary firing that produces the intermediate phosphor powder, and generally the particle size becomes smaller by lowering the firing temperature to reduce the amount of the fluxing agent. When the amount of the activator is decreased, the dope amount of the activator and the co-activator is unbalanced, so that the emission luminance is not necessarily improved and the color tone is changed, but in the phosphor of the present invention, the activator has high density particles. Since it is uniformly distributed over the whole, such a defect does not occur.

【0016】[0016]

【実施例】実施例1 高純度硫化亜鉛粉末(不純物金属元素含有量<0.1ppm)
150gに2.0gの酢酸銅水和物 Cu(CH3 C00)2 ・H
2 O を加え、さらに、融剤として10gの塩化マグネシ
ウムMgCl2 ・6H2 O 、5gの塩化バリウムBaCl2 ・2H2
O および10gの塩化アンモニウムNH4 Clを混合したも
のを、鉄心入りナイロン球150gと共に容器に装入
し、30分間回転させてよく混合した。次いで、この原
料粉体を磁製ルツボに封入し、1200℃で6時間焼成
した後、イオン交換水3リットルで10回洗浄し・濾過を繰
り返して融剤を完全に洗い流し、乾燥して中間蛍光体粉
末(平均粒径28μm )を得た。次に、この中間蛍光体
粉末を150m/sec の高速気流中に分散させて壁面に衝
突させる方法によって衝撃力を加えた。不純物の混入を
避けるため、衝突壁は表面をシリコンゴムで被覆したも
のを用いた。衝撃力を加えた後、中間蛍光体粉末を70
0℃で6時間再焼成し、5%塩酸水溶液中で30分間撹
拌して表面エッチング処理を行ない、水洗、乾燥、分級
して、平均粒径23μm のEL蛍光体粉末を得た。この
蛍光体粉末の透過電子顕微鏡像を図1に示す。細い縞模
様は積層欠陥(主として双晶面)であり、母体の硫化亜
鉛粒子全体に均一に分布している。相互の平均面間隔は
2.5nmである。さらに、この蛍光体粉末について後述
の発光特性試験を行った。
Example 1 High-purity zinc sulfide powder (impurity metal element content <0.1 ppm)
2.0g of copper acetate hydrate to 150g Cu (CH 3 C00) 2 · H
2 O was added, and as a flux, 10 g of magnesium chloride MgCl 2 .6H 2 O, 5 g of barium chloride BaCl 2 .2H 2
A mixture of O and 10 g of ammonium chloride NH 4 Cl was charged into a container together with 150 g of nylon balls containing an iron core, and the mixture was rotated for 30 minutes to mix well. Then, this raw material powder is enclosed in a porcelain crucible, baked at 1200 ° C. for 6 hours, washed with 3 liters of ion-exchanged water 10 times, and the filtration is repeated to completely wash away the flux, followed by drying and intermediate fluorescence Body powder (average particle size 28 μm) was obtained. Next, an impact force was applied by a method of dispersing this intermediate phosphor powder in a high-speed air stream of 150 m / sec and colliding it with a wall surface. In order to avoid mixing of impurities, the collision wall used had its surface coated with silicon rubber. After applying the impact force, the intermediate phosphor powder 70
It was re-baked at 0 ° C. for 6 hours, stirred for 30 minutes in a 5% hydrochloric acid aqueous solution, surface-etched, washed with water, dried and classified to obtain an EL phosphor powder having an average particle diameter of 23 μm. A transmission electron microscope image of this phosphor powder is shown in FIG. The thin striped pattern is a stacking fault (mainly twin plane) and is uniformly distributed over the entire matrix zinc sulfide particles. The mutual average interplanar spacing is 2.5 nm. Further, this phosphor powder was subjected to a light emission characteristic test described later.

【0017】実施例2 焼成温度、衝撃力を変えた以外は実施例1と同様にして
EL蛍光体粉末を製造し、平均粒径35μm のEL蛍光
体粉末を得た。またこの蛍光体粉末について実施例1と
同様の発光特性試験を行った。
Example 2 An EL phosphor powder was produced in the same manner as in Example 1 except that the firing temperature and impact force were changed to obtain an EL phosphor powder having an average particle size of 35 μm. Further, this phosphor powder was subjected to the same light emission characteristic test as in Example 1.

【0018】比較例1 実施例1と全く同様の方法で中間蛍光体粉末を製造した
後に、衝撃力を加えずに再焼成して蛍光体粉末を製造し
た。その後、焼成条件および表面処理方法など全て実施
例1と同一の条件で処理し蛍光体粉末を得た。この蛍光
体粉末の透過電子顕微鏡像を図2に示した。図1と同様
に細い縞模様は積層欠陥であり、相互の平均面間隔は2
6nmである。実施例1の蛍光体粉末に比べて積層欠陥の
平均面間隔は約10倍程度大きい。さらに、この蛍光体
粉末について実施例1と同様の発光特性試験を行った。
Comparative Example 1 An intermediate phosphor powder was manufactured in the same manner as in Example 1 and then refired without applying impact force to manufacture a phosphor powder. Then, the phosphor powder was obtained by treating under the same conditions as in Example 1, such as firing conditions and surface treatment method. A transmission electron microscope image of this phosphor powder is shown in FIG. Similar to FIG. 1, the thin striped pattern is a stacking fault, and the average interplanar spacing is 2
6 nm. The average plane spacing of stacking faults is about 10 times larger than that of the phosphor powder of Example 1. Further, this phosphor powder was subjected to the same luminescence property test as in Example 1.

【0019】比較例2 焼成温度を実施例2と同一とした以外は、比較例1と同
様にしてEL蛍光体粉末を製造した。この蛍光体粉末に
ついて実施例1と同様の発光特性試験を行った。
Comparative Example 2 An EL phosphor powder was produced in the same manner as in Comparative Example 1 except that the firing temperature was the same as in Example 2. The same luminescent property test as in Example 1 was conducted on this phosphor powder.

【0020】蛍光体粉末の発光特性試験 実施例および比較例で得た蛍光体粉末について、各々の
蛍光体粉末0.6gとひまし油0.3gを混合しペース
ト状にして導電膜付きガラスに塗布し、これに厚さ10
0μmの絶縁スペーサーを介在させて、もう1枚の導電
膜付きガラスを重ねてEL発光素子を作製した。この発
光素子に室温で120V、1 kHzの交流電圧を印加して
各々の輝度を測定した。各発光素子における相対輝度お
よび相対輝度半減寿命を表1に示した。なお相対輝度お
よび半減寿命は比較例1の蛍光体粉末を用いた発光素子
の輝度および輝度半減寿命を1とした。
Luminescent Characteristic Test of Phosphor Powders With respect to the phosphor powders obtained in Examples and Comparative Examples, 0.6 g of each phosphor powder and 0.3 g of castor oil were mixed to form a paste, which was applied to glass with a conductive film. , This is 10
Another glass with a conductive film was overlaid with an insulating spacer of 0 μm interposed to manufacture an EL light emitting device. The brightness of each light-emitting device was measured by applying an AC voltage of 120 V and 1 kHz at room temperature. Table 1 shows the relative luminance and the relative luminance half life of each light emitting element. The relative brightness and the half-life were set to 1 for the brightness and the brightness half-life of the light emitting device using the phosphor powder of Comparative Example 1.

【0021】[0021]

【表1】 No. 付活剤 共付活剤 平均粒径 結晶欠陥 相対輝度 輝度半減寿命 実施例1 Cu Cl 23μm 2.5nm 11.20 2.11 〃 2 Cu Cl 35μm 2.7nm 9.35 1.90 比較例1 Cu Cl 24μm 26 nm 1.00 1.00 〃 2 Cu Cl 38μm 30 nm 0.81 1.23 (注)結晶欠陥は積層欠陥の平均面間隔[Table 1] No. Activator Co-activator Average particle size Crystal defects Relative luminance Luminance Half life Example 1 Cu Cl 23 μm 2.5 nm 11.20 2.11 〃 2 Cu Cl 35 μm 2.7 nm 9.351 .90 Comparative Example 1 Cu Cl 24 μm 26 nm 1.00 1.00 〃 2 Cu Cl 38 μm 30 nm 0.81 1.23 (Note) Crystal defects are the average interplanar spacing of stacking faults.

【0022】[0022]

【発明の効果】本発明のEL蛍光体粉末は、従来のEL
蛍光体粉末よりも発光輝度および発光寿命が格段に向上
しており、平面型ディスプレイや表示用発光パネルなど
への幅広い利用が可能である。
The EL phosphor powder of the present invention is the same as the conventional EL phosphor powder.
The emission brightness and emission life are remarkably improved as compared with the phosphor powder, and it can be widely used for flat-panel displays and light-emitting panels for display.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る蛍光体粒子の組織状態を表わす透
過電子顕微鏡写真。
FIG. 1 is a transmission electron micrograph showing a tissue state of phosphor particles according to the present invention.

【図2】比較例に係る蛍光体粒子の組織状態を表わす透
過電子顕微鏡写真。
FIG. 2 is a transmission electron micrograph showing a tissue state of phosphor particles according to a comparative example.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 硫化亜鉛を母体とし付活剤および共付活
剤を含有する蛍光体粉末であって、面状の積層欠陥を粒
子全体に均一かつ高密度に有しており、その積層欠陥の
平均面間隔が0.2〜10nmであることを特徴とするエ
レクトロルミネッセンス(EL)蛍光体粉末。
1. A phosphor powder containing zinc sulfide as a base material and an activator and a co-activator, having planar stacking faults uniformly and at high density throughout the particles. The average surface spacing is from 0.2 to 10 nm, the electroluminescent (EL) phosphor powder.
【請求項2】 蛍光体粉末の平均粒径が25μm 以下の
請求項1のEL蛍光体粉末。
2. The EL phosphor powder according to claim 1, wherein the average particle size of the phosphor powder is 25 μm or less.
【請求項3】 付活剤が銅、マンガン、銀、金および希
土類元素から選択された少なくとも一種のイオンである
請求項1または2のEL蛍光体粉末。
3. The EL phosphor powder according to claim 1, wherein the activator is at least one type of ion selected from copper, manganese, silver, gold and rare earth elements.
【請求項4】 共付活剤が塩素、臭素、ヨウ素およびア
ルミニウムから選択された少なくとも一種のイオンであ
る請求項1〜3のいずれかに記載のEL蛍光体粉末。
4. The EL phosphor powder according to claim 1, wherein the coactivator is at least one ion selected from chlorine, bromine, iodine and aluminum.
【請求項5】 付活剤が銅イオンであり、共付活剤が塩
素イオンである請求項1〜4のいずれかに記載のEL蛍
光体粉末。
5. The EL phosphor powder according to claim 1, wherein the activator is copper ion and the co-activator is chloride ion.
JP6337664A 1994-12-28 1994-12-28 El fluorescent material powder Withdrawn JPH08183954A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6337664A JPH08183954A (en) 1994-12-28 1994-12-28 El fluorescent material powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6337664A JPH08183954A (en) 1994-12-28 1994-12-28 El fluorescent material powder

Publications (1)

Publication Number Publication Date
JPH08183954A true JPH08183954A (en) 1996-07-16

Family

ID=18310795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6337664A Withdrawn JPH08183954A (en) 1994-12-28 1994-12-28 El fluorescent material powder

Country Status (1)

Country Link
JP (1) JPH08183954A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002074879A1 (en) * 2001-03-15 2002-09-26 Sony Corporation Fluorescent powder, process for producing the same, display panel, and flat display
JP2004265866A (en) * 2003-02-14 2004-09-24 Fuji Photo Film Co Ltd Electroluminescent element
US6924592B2 (en) 2002-10-10 2005-08-02 Fuji Photo Film Co., Ltd EL phosphor powder and EL device
JP2006052250A (en) * 2004-08-10 2006-02-23 Fuji Photo Film Co Ltd Electroluminescent (el) phosphor, method for producing the same and electroluminescent element
JP2006063317A (en) * 2004-06-24 2006-03-09 Fuji Photo Film Co Ltd Electroluminescent phosphor
JP2006097028A (en) * 2004-09-29 2006-04-13 Osram Sylvania Inc Single-component, yellow light-emitting electroluminescent fluorophor
US7176616B2 (en) 2003-02-14 2007-02-13 Fuji Photo Film Co., Ltd. Electroluminescence device having phosphor particles which give donor-acceptor type luminescence
WO2009099250A1 (en) * 2008-02-06 2009-08-13 National University Corporation Kumamoto University Method for producing group ii-vi compound semiconductor, method for producing group ii-vi compound semiconductor phosphor, and hexagonal group ii-vi compound semiconductor
US7862738B2 (en) 2005-10-11 2011-01-04 Kuraray Co., Ltd. Luminous body
US8110124B2 (en) 2006-07-27 2012-02-07 Kuraray Co., Ltd. Method of preparing fluorescent body precursor
US8258690B2 (en) 2005-10-11 2012-09-04 Kuraray Co., Ltd. High brightness inorganic electroluminescence device driven by direct current
TWI464237B (en) * 2008-08-06 2014-12-11 Kuraray Co Method for producing zinc sulfide fluorescent substances

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6833086B2 (en) 2001-03-15 2004-12-21 Sony Corporation Phosphor powder and production method therof, display panel, and flat-panel display device
WO2002074879A1 (en) * 2001-03-15 2002-09-26 Sony Corporation Fluorescent powder, process for producing the same, display panel, and flat display
US6924592B2 (en) 2002-10-10 2005-08-02 Fuji Photo Film Co., Ltd EL phosphor powder and EL device
US7009337B2 (en) 2002-10-10 2006-03-07 Fuji Photo Film Co., Ltd EL phosphor powder and EL device
US7176616B2 (en) 2003-02-14 2007-02-13 Fuji Photo Film Co., Ltd. Electroluminescence device having phosphor particles which give donor-acceptor type luminescence
JP2004265866A (en) * 2003-02-14 2004-09-24 Fuji Photo Film Co Ltd Electroluminescent element
JP2006063317A (en) * 2004-06-24 2006-03-09 Fuji Photo Film Co Ltd Electroluminescent phosphor
JP2006052250A (en) * 2004-08-10 2006-02-23 Fuji Photo Film Co Ltd Electroluminescent (el) phosphor, method for producing the same and electroluminescent element
JP4562453B2 (en) * 2004-08-10 2010-10-13 富士フイルム株式会社 Electroluminescent phosphor, method for producing the same, and electroluminescent device
JP2006097028A (en) * 2004-09-29 2006-04-13 Osram Sylvania Inc Single-component, yellow light-emitting electroluminescent fluorophor
US7862738B2 (en) 2005-10-11 2011-01-04 Kuraray Co., Ltd. Luminous body
US8258690B2 (en) 2005-10-11 2012-09-04 Kuraray Co., Ltd. High brightness inorganic electroluminescence device driven by direct current
US8110124B2 (en) 2006-07-27 2012-02-07 Kuraray Co., Ltd. Method of preparing fluorescent body precursor
WO2009099250A1 (en) * 2008-02-06 2009-08-13 National University Corporation Kumamoto University Method for producing group ii-vi compound semiconductor, method for producing group ii-vi compound semiconductor phosphor, and hexagonal group ii-vi compound semiconductor
US8551363B2 (en) 2008-02-06 2013-10-08 National University Corporation Kumamoto University Method of producing group II-VI compound semiconductor, method of producing group II-VI compound semiconductor phosphor, and hexagonal group II-VI compound semiconductor
TWI464237B (en) * 2008-08-06 2014-12-11 Kuraray Co Method for producing zinc sulfide fluorescent substances

Similar Documents

Publication Publication Date Title
US7067071B1 (en) Zinc sulfide electroluminophores and method for production thereof
US6924592B2 (en) EL phosphor powder and EL device
US20050189518A1 (en) Method of producing a fluorescent particle
JPWO2005087892A1 (en) Electroluminescent phosphor, method for producing the same and electroluminescent device
JPH08183954A (en) El fluorescent material powder
US20100193740A1 (en) Method of producing an electroluminescence phosphor
JPS6346117B2 (en)
JP2994058B2 (en) Electroluminescent phosphor and display element
JPH0578659A (en) Fluorescent substance and fluorescent lamp
US6143201A (en) Method of manufacturing fluorescent material
US20050104509A1 (en) Electroluminescent device
JP2005139372A (en) Fluorescent substance for inorganic el, method for producing the same and fluorescent substance-dispersing type el element using the same
JP3904897B2 (en) High-brightness electroluminescent phosphor and electroluminescent device using the same
JPH08283711A (en) Production of el phosphor
JP2006097028A (en) Single-component, yellow light-emitting electroluminescent fluorophor
JPH07166161A (en) Zinc sulfide fluorescent substance for el
JP4330475B2 (en) Method for producing electroluminescent phosphor
JP2010215787A (en) Inorganic phosphor particle and distributed electroluminescence element using the same
JPH11172245A (en) Electroluminescent phosphor and electroluminescent panel
JP2005132947A (en) Fluorophor for inorganic electroluminescence, method for producing the same, and inorganic electroluminescent device
JP2005206821A (en) Method for producing electroluminescent phosphor
JP3779409B2 (en) Phosphor particles and fluorescent lamp
JP3514836B2 (en) Green light emitting phosphor
JP2005060562A (en) Method for producing vacuum ultraviolet-exited fluorescent material, vacuum ultraviolet-excited fluorescent material, and plasma display panel
JP3556325B2 (en) Phosphors for electron tubes and electroluminescent phosphors

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020305