JPH0818002A - Inversion mounting type passive element mounting structure - Google Patents

Inversion mounting type passive element mounting structure

Info

Publication number
JPH0818002A
JPH0818002A JP14604694A JP14604694A JPH0818002A JP H0818002 A JPH0818002 A JP H0818002A JP 14604694 A JP14604694 A JP 14604694A JP 14604694 A JP14604694 A JP 14604694A JP H0818002 A JPH0818002 A JP H0818002A
Authority
JP
Japan
Prior art keywords
passive element
mounting
reverse mounting
reverse
circuit module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14604694A
Other languages
Japanese (ja)
Other versions
JP2526526B2 (en
Inventor
Takao Koizumi
孝雄 小泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP14604694A priority Critical patent/JP2526526B2/en
Publication of JPH0818002A publication Critical patent/JPH0818002A/en
Application granted granted Critical
Publication of JP2526526B2 publication Critical patent/JP2526526B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0237High frequency adaptations
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/341Surface mounted components
    • H05K3/3431Leadless components

Abstract

PURPOSE:To enable replacing of passive elements on a line farmed on a coplanar line, relating to a compound microwave circuit module and a microwave integrated circuit. CONSTITUTION:An inversion mounting type passive element structure is applied to a compound microwave circuit module and a microwave integrated circuit. In this counting structure, a pattern of an area on a coplanar line 6 on which an inversion mounting type passive element 3 is mounted is removed. Only an overlap width 10, however, far soldering is left. The area an which the inversion mounting type passive element 3 is mounted is where a characteristics of the passive element needs to be changed, and a passive element built in in the process for manufacturing a substrate is replaced with an inversion mounting type passive element. The conductor side of the inversion mounting type passive element 3 is reversed to face the overlap width 10, for soldering.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、複合マイクロ波回路モ
ジュール(以下では、MMCMと略記する場合がある)
等のマイクロ波回路実装構造に関し、特にコプレーナ線
路等で構成された回路に受動素子を逆転実装する実装構
造に関する。
BACKGROUND OF THE INVENTION The present invention relates to a composite microwave circuit module (hereinafter sometimes abbreviated as MMCM).
The present invention relates to a microwave circuit mounting structure such as the above, and particularly to a mounting structure in which a passive element is reversely mounted on a circuit configured by a coplanar line or the like.

【0002】[0002]

【従来の技術】近年、高周波特性を良くするために複合
マイクロ波回路モジュール(例えば特開平4−2910
3号広報)、マイクロ波集積回路等の実装構造がもては
やされている。
2. Description of the Related Art Recently, in order to improve high frequency characteristics, a composite microwave circuit module (for example, Japanese Patent Laid-Open No. 4-2910).
(Publication No. 3), mounting structures such as microwave integrated circuits are touted.

【0003】複合マイクロ波回路モジュールの一例を図
5に全体図で示し、また図6に断面斜視図で示す。複合
マイクロ波回路モジュールでは、図5及び図6に示すよ
うに、多層に重ね合せた誘電体基板の上層(上層グラン
ド54)と下層(下層グランド53)とにグランド面が
形成され、信号伝送のための導体層からなる信号回路
(RF信号層55)が中層部に形成されている。表層か
らRF信号層55までをけがいてキャビティが形成され
ており、ここに能動素子56や受動素子等の各種素子が
実装される。またこれら素子が実装されたならば、ちり
や湿気から各素子を保護するためにキャビティにはメタ
ルシール52による蓋が形成される。
An example of the composite microwave circuit module is shown in FIG. 5 as an overall view and in FIG. 6 as a sectional perspective view. In the composite microwave circuit module, as shown in FIGS. 5 and 6, ground planes are formed in the upper layer (upper layer ground 54) and the lower layer (lower layer ground 53) of the dielectric substrates that are stacked in multiple layers, and the ground plane is formed. A signal circuit (RF signal layer 55) composed of a conductor layer for forming is formed in the middle layer portion. A cavity is formed from the surface layer to the RF signal layer 55, and various elements such as an active element 56 and a passive element are mounted on the cavity. When these elements are mounted, the cavity is covered with a metal seal 52 to protect the elements from dust and moisture.

【0004】RF信号層55はストリップ線路、マイク
ロストリップ線路、コプレーナ線路等によって実現され
ており、受動素子は、これら線路によって構成され基板
製造時に大規模な集積化によってRF信号線路と同時に
作り込まれる。以上のような特徴を持っているのが複合
マイクロ波回路モジュールである。
The RF signal layer 55 is realized by a strip line, a microstrip line, a coplanar line, etc., and a passive element is formed of these lines and is manufactured simultaneously with the RF signal line by large-scale integration at the time of manufacturing a substrate. . The composite microwave circuit module has the above characteristics.

【0005】このように複合マイクロ波回路モジュール
及びマイクロ波集積回路等の実装構造では、アッテネー
タ、フィルタ、カップラ等の受動素子は基板製造時に、
信号線路等のパターンと共に同一基板上に作り込まれ
る。
As described above, in the mounting structure of the composite microwave circuit module and the microwave integrated circuit, the passive elements such as the attenuator, the filter, the coupler, etc.
It is built on the same substrate together with the pattern of signal lines.

【0006】また、面実装部品の部品交換を容易にする
技術として特開平4−212440があり、取り外しが
容易なサブ誘電体基板をストリップ線路を介してメイン
誘電体基板上に接続している。サブ誘電体基板には高周
波回路の面実装素子を有する一部の回路を形成してお
り、メイン誘電体基板に実装することによって一体化
し、高周波回路を実現している。
Also, as a technique for facilitating the component replacement of surface mount components, there is JP-A-4-212440, in which a sub-dielectric substrate which can be easily removed is connected to a main dielectric substrate via a strip line. A part of the circuit having surface-mounted elements of the high-frequency circuit is formed on the sub-dielectric substrate, which is mounted on the main dielectric substrate to be integrated to realize a high-frequency circuit.

【0007】[0007]

【発明が解決しようとする課題】しかし、先に掲げた従
来の複合マイクロ波回路モジュール及びマイクロ波回路
集積回路の実装構造では、アッテネータ、フィルタ、カ
ップラ等の受動素子が基板製造時にRF信号線路と一緒
に作り込まれるため、これら受動素子の特性を変えるこ
とが不可能である。
However, in the mounting structure of the conventional composite microwave circuit module and microwave circuit integrated circuit mentioned above, passive elements such as attenuators, filters, couplers, and the like are used as the RF signal line at the time of manufacturing the substrate. Since they are built together, it is impossible to change the characteristics of these passive elements.

【0008】また、面実装部品の交換を容易にする技術
として先に掲げた特開平4−212440では、ストリ
ップ線路を介して面実装部品の交換を行う技術であるた
め、複合マイクロ波回路モジュール及びマイクロ波回路
集積回路において能動素子をベアチップで実装する際に
よく用いられるコプレーナ線路に用いる技術としてはそ
ぐわない。
Further, in Japanese Patent Laid-Open No. 4-212440 mentioned above as a technique for facilitating the exchange of surface mount components, since it is a technique for exchanging surface mount components via a strip line, a composite microwave circuit module and It is not suitable as a technique used for a coplanar line which is often used when mounting an active element on a bare chip in a microwave circuit integrated circuit.

【0009】本発明の目的は、上記点に鑑みされたもの
で、複合マイクロ波回路モジュール又はマイクロ波集積
回路の基板製造後に受動態素子を逆転実装することによ
り、上記課題を解決する逆転実装型受動素子の実装構造
を提案することにある。
The object of the present invention is to solve the above-mentioned problems by mounting the passive element in reverse after the substrate of the composite microwave circuit module or the microwave integrated circuit is manufactured. It is to propose the mounting structure of the element.

【0010】[0010]

【課題を解決するための手段】このような問題を解ける
するために、請求項1の発明では複合マイクロ波回路モ
ジュールのキャビテイ内のコプレーナ線路のうち逆転実
装型受動態素子を実装する領域のみパターンを削除す
る。逆転実装型受動素子を実装する領域とは受動態素子
の特性を変える必要がある所で、基板製造時に作り込ま
れる受動素子を逆転実装型受動素子におきかえる。パタ
ーンを削除した部分では、逆転実装型受動素子と複合マ
イクロ回路モジュールとをはんだ付けするためにはんだ
しろが残された構造となっており、逆転実装型受動素子
を複合マイクロ波回路モジュールのコプレーナ線路と、
導体面同士が向き合うように反転させはんだ付けを行
う。そして、逆転実装型受動素子は機能別に特性の異な
る物を製造しておけば、適当な特性のものを選択し実装
できる。
In order to solve such a problem, according to the first aspect of the invention, a pattern is formed only in a region of the coplanar line in the cavity of the composite microwave circuit module where the reverse mounting passive element is mounted. delete. The region in which the reverse mounting type passive device is mounted is a place where the characteristics of the passive device need to be changed, and thus the passive device built at the time of manufacturing the substrate is replaced with the reverse mounting type passive device. In the part where the pattern is deleted, a soldering margin is left for soldering the reverse mounting type passive element and the composite micro circuit module, and the reverse mounting type passive element is a coplanar line of the composite microwave circuit module. When,
Solder by reversing so that the conductor surfaces face each other. If the reverse mounting type passive element is manufactured with different characteristics according to function, it is possible to select and mount a passive element having appropriate characteristics.

【0011】また、請求項4の発明では、表層の線路が
コプレーナ線路で形成されるマイクロ波集積回路におい
て、請求項1と同様に受動素子の特性を変える必要があ
る部分についてはパターンを削除する。逆転実装型受動
素子とマイクロ波集積回路をはんだ付けするためにはん
だしろを作り、その両者の導体面同士が向かい合うよう
に逆転実装型受動素子を反転してはんだ付けを行う。逆
転実装型受動素子は適当な特性のものを選択して実装す
る。
Further, in the invention of claim 4, in the microwave integrated circuit in which the surface layer line is formed of a coplanar line, the pattern is deleted in the portion where the characteristic of the passive element needs to be changed as in the case of claim 1. . In order to solder the reverse mounting type passive element and the microwave integrated circuit, a soldering margin is made, and the reverse mounting type passive element is inverted so that the conductor surfaces of both sides face each other and soldering is performed. Reverse mounting type passive elements are selected and mounted with appropriate characteristics.

【0012】[0012]

【実施例】図1は本発明の第1実施例を示す図であり、
(a)は逆転実装型受動素子実装構造を含む複合マイク
ロ波回路モジュールの斜視図、(b)は同実装構造を含
むキャビティの部分拡大図、(c)は逆転実装型受動素
子の斜視図、(d)は逆転実装型受動素子を実装する領
域のパターンを示している。
FIG. 1 is a diagram showing a first embodiment of the present invention.
(A) is a perspective view of a composite microwave circuit module including a reverse mounting type passive element mounting structure, (b) is a partially enlarged view of a cavity including the same mounting structure, (c) is a perspective view of a reverse mounting type passive element, (D) shows a pattern of a region in which the reverse mounting passive element is mounted.

【0013】本実施例の逆転実装型受動素子実装構造
は、図1で示すように、複合マイクロ波回路モジュー
ル、及び逆転実装型受動素子3からなっている。多層セ
ラミック基板からなる複合マイクロ波回路モジュールに
は内層に高周波信号線路が設けてあり、その一部にトラ
ンジスタ、ダイオードなどの能動素子2を実装するキャ
ビティ4が設けられている(例えば特開平4−2910
3号広報)。このキャビティ4内の線路は、能動素子2
をベアチップにて実装するために、高周波信号線路と同
一面にグランドがあるコプレーナ線路6でなくてはなら
ない。ベアチップの能動素子2はこのグランド面にはん
だ付けされる。このため逆転実装型受動素子3はコプレ
ーナ線路に実装するためコプレーナ線路とする。
As shown in FIG. 1, the reverse mounting passive element mounting structure of this embodiment comprises a composite microwave circuit module and a reverse mounting passive element 3. A high-frequency signal line is provided in an inner layer of a composite microwave circuit module made of a multilayer ceramic substrate, and a cavity 4 for mounting an active element 2 such as a transistor or a diode is provided in a part of the high-frequency signal line (for example, Japanese Unexamined Patent Publication No. Hei 4- 2910
No. 3 public information). The line in the cavity 4 is the active element 2
In order to mount the above as a bare chip, it must be a coplanar line 6 having a ground on the same surface as the high-frequency signal line. The bare chip active element 2 is soldered to this ground plane. Therefore, the reverse mounting passive element 3 is a coplanar line because it is mounted on the coplanar line.

【0014】図1(c)は逆転逆転型受動素子を示す射
視図である。この逆転実装型受動素子の基板は、複合マ
イクロ波回路モジュールのキャビティ内に入る大きさの
アルミナセラミック基板であり、外形寸法は数[mm]
〜数+[mm]、厚さは、数百[μm]である。このセ
ラミック基板に薄膜技術で高周波信号線路を形成する。
逆転実装型受動素子の設計の際には、ある誘電率を持つ
複合マイクロ波回路モジュール基板上に、別の誘電率の
逆転実装型受動素子(セラミック基板)が逆転実装され
ることを考慮して、逆転実装型受動素子のコプレーナ線
路の線路幅等を設計する。このように設計することによ
って、逆転実装型受動素子におけるインピーダンスの不
連続を解消しているために、リターンロスが良い。本実
施例を示す図1の逆転実装型受動素子はπ型アッテネー
タとなっている。π型アッテネータの高周波特性を良く
するために、低抗体9は精度の許される範囲で小さくす
る。逆転実装型受動素子は先ほど述べた様に薄膜技術で
製造するので、低抗体も数[μm]オーダの精度で形成
出来る。導体の高周波線路も同様の精度で形成出来るた
め所望の特性が得られ易い。また低抗体は製造の際にト
リミングにって抵抗値の調整が可能である。
FIG. 1 (c) is a perspective view showing a reversing / reversing type passive element. The substrate of this reverse mounting passive element is an alumina ceramic substrate of a size that fits inside the cavity of the composite microwave circuit module, and the external dimensions are several [mm].
~ Several + [mm], and the thickness is several hundred [μm]. A high frequency signal line is formed on this ceramic substrate by thin film technology.
When designing the reverse mounting passive device, consider that the reverse mounting passive device (ceramic substrate) with another permittivity is reverse mounted on the composite microwave circuit module substrate with a certain permittivity. , Design the line width of the coplanar line of the reverse mounting passive device. By designing in this way, the impedance discontinuity in the reverse mounting passive element is eliminated, so the return loss is good. The reverse mounting passive element of FIG. 1 showing the present embodiment is a π-type attenuator. In order to improve the high frequency characteristics of the π-type attenuator, the low antibody 9 is made small within the range where accuracy is allowed. Since the reverse mounting passive device is manufactured by the thin film technology as described above, the low antibody can be formed with an accuracy of the order of several [μm]. Since the conductor high-frequency line can be formed with the same accuracy, desired characteristics can be easily obtained. Further, the resistance value of the low antibody can be adjusted by trimming during production.

【0015】図1(d)はキャビティ4内における逆転
実装型受動素子実装領域を示す斜視図であり、この領域
ではコプレーナ線路に逆転実装型受動素子を実装する部
分の導体は削除してある。但し、複合マイクロ波モジュ
ール基板上に、逆転実装型受動素子を反転させて、はん
だつけを行うために、はんだしろ10を数百[μm]の
幅で図(d)中の破線で示したように設けておく。
FIG. 1D is a perspective view showing a reverse mounting type passive element mounting region in the cavity 4. In this region, the conductor of the portion for mounting the reverse mounting type passive device on the coplanar line is deleted. However, in order to invert and solder the reverse mounting passive element on the composite microwave module substrate, the soldering margin 10 has a width of several hundred [μm] as shown by the broken line in FIG. Be provided in.

【0016】この図1(d)で示した領域に、図1
(c)で示した逆転実装型受動素子がはんだ付けで実装
される。図1(d)の領域に図1(c)の逆転実装型受
動素子のa’面を対面させる。すなわち、図1(d)の
a面に図1(c)のa’面が対面し、両面におけるグラ
ンド面同士、コプレーナ線路同士が相互に接続されるよ
うに位置合せを行い、はんだ付けを行う。これにより図
1(b)に示す様な逆転実装型受動素子構造が実現す
る。図1(b)に示すように、コプレーナ線路上に受動
素子を逆転実装することによって広帯域、低損失な接続
が可能となる。この図に示すように、トランジスタやダ
イオード等の能動素子はベアチップによりキャビティ内
のグランド面にはんだ付けし、ワイヤボンディンブ8に
よって電気的接続を取っている。これら素子の実装が終
了したらキャビティ4にはメタルシール5により蓋をし
て、ちりや湿気から能動素子を守る。
In the area shown in FIG. 1D, FIG.
The reverse mounting passive element shown in (c) is mounted by soldering. The a ′ surface of the reverse mounting passive element of FIG. 1C is faced to the area of FIG. 1D. That is, the a'plane of FIG. 1C faces the a plane of FIG. 1D, and the ground planes and coplanar lines on both sides are aligned and soldered so that they are connected to each other. . As a result, a reverse mounting type passive element structure as shown in FIG. 1B is realized. As shown in FIG. 1B, by mounting the passive elements in reverse on the coplanar line, a wide band and low loss connection is possible. As shown in this figure, active elements such as transistors and diodes are soldered to the ground surface in the cavity by bare chips and electrically connected by wire bonds 8. When the mounting of these elements is completed, the cavity 4 is covered with a metal seal 5 to protect the active elements from dust and moisture.

【0017】具体的に周波数負帰還回路(以下PLL回
路とする)の一部が複合マイクロ波回路モジュールに実
装される場合の逆転実装受動素子の実装手順について説
明する。図2はPLL回路のブロック図である。PLL
回路は電圧制御発振器11(以下VCOとする)バッフ
ァ・アンプ12、プリスケーラ14、プログラムカウン
タ15、位相比較器16、ローパスフィルタ17(以下
L.P.Fとする)が基本構成であり、これに負荷18
が接続される。MMCMにはこのうち、VCO11、バ
ッファアンプ12、プリスケーラ14、及び負荷18の
図中破線19で示した要素が実装される。
A mounting procedure of the reverse mounting passive element when a part of the frequency negative feedback circuit (hereinafter referred to as a PLL circuit) is specifically mounted on the composite microwave circuit module will be described. FIG. 2 is a block diagram of the PLL circuit. PLL
The circuit basically has a voltage controlled oscillator 11 (hereinafter referred to as VCO) buffer amplifier 12, a prescaler 14, a program counter 15, a phase comparator 16, and a low-pass filter 17 (hereinafter referred to as LPF). Load 18
Is connected. Among these, the VCO 11, the buffer amplifier 12, the prescaler 14, and the element shown by the broken line 19 in the figure of the load 18 are mounted in the MMCM.

【0018】以下PLL回路について簡単に説明する。
PLL回路とは負荷に対して出力の信号周波数を常に一
定に保つように構成された回路である。VCO11がf
VCOという周波数で発振したとする。バッファアンプ1
2は発信周波数fVCOを変えず、振幅を増幅する。この
信号は負荷18へと導かれるが、一部はプリスケーラ1
4に入力される。プリスケーラ14は高い周波数(例え
ば十数[GHz])を1/Mに分周する機能を持ってい
る(入力された信号の周波数が1/Mになる)。そし
て、プログラムカウンタ15も同様に入力信号の周波数
を1/Nに分周する。但しプログラムカウンタ15の分
周比Nは可変である。位相比較器16は基準周波数fr
と比較周波数fPの位相差に応じたパルス信号を出す。
プログラムカウンタ15の出力がこの比較周波数fP
ある。このパルス信号をL.P.F17によって直流電
圧に変換し、VCO11に帰還する。このときVCO1
1の出力周波数fVCOは、 fVCO=N×M×fr となる。このようにしてPLL回路の出力周波数は常に
一定に保たれる。このPLL回路において、プリスケー
ラ14の入力信号レベルは、ある一定の値でなくてはな
らない。しかし実際には、VCO11、バッファアンプ
12に使用される能動素子の特性バラツキや温度特性な
どにより、プリスケーラ14の入力レベルを一定に保つ
のは難しい。そこでバッファ・アンプ12の出力レベル
を測定し、プリスケーラ14の入力に適合するようにア
ッテネータ13の減衰量を決め、プリスケーア入力の前
にそのアッテネータ13を実装すれば、プリスケーラ入
力レベルを一定に保つことが可能となる。このアッテネ
ータ13を逆転実装型受動素子構造によって実現する。
The PLL circuit will be briefly described below.
The PLL circuit is a circuit configured to always keep the output signal frequency constant with respect to the load. VCO11 is f
Suppose that it oscillates at a frequency called VCO . Buffer amplifier 1
2 amplifies the amplitude without changing the oscillation frequency f VCO . This signal is led to the load 18, but part of it is the prescaler 1
4 is input. The prescaler 14 has a function of dividing a high frequency (for example, ten and several [GHz]) into 1 / M (the frequency of the input signal becomes 1 / M). Then, the program counter 15 similarly divides the frequency of the input signal into 1 / N. However, the frequency division ratio N of the program counter 15 is variable. The phase comparator 16 has a reference frequency f r
And a pulse signal corresponding to the phase difference between the comparison frequency f P and.
The output of the program counter 15 is this comparison frequency f P. This pulse signal is converted into L. P. It is converted to a DC voltage by F17 and fed back to the VCO 11. At this time VCO1
1 of the output frequency f VCO becomes f VCO = N × M × f r. In this way, the output frequency of the PLL circuit is always kept constant. In this PLL circuit, the input signal level of the prescaler 14 must be a constant value. However, in reality, it is difficult to keep the input level of the prescaler 14 constant due to characteristic variations and temperature characteristics of the active elements used in the VCO 11 and the buffer amplifier 12. Therefore, the output level of the buffer amplifier 12 is measured, the attenuation amount of the attenuator 13 is determined so as to match the input of the prescaler 14, and the attenuator 13 is mounted before the prescaler input to keep the prescaler input level constant. Is possible. This attenuator 13 is realized by a reverse mounting passive element structure.

【0019】図3は、図1の実装例を変形した例を示す
図である。
FIG. 3 is a diagram showing a modified example of the mounting example of FIG.

【0020】図3(a)の実施例は図1の複合回路モジ
ュールの第1実施例の応用で、キャビティ21の壁面間
寸法(内形寸法)を逆転実装型受動素子20の外形寸法
と同一にし、はんだ付けの際の位置合せを容易にした構
造である。
The embodiment of FIG. 3 (a) is an application of the first embodiment of the composite circuit module of FIG. 1, and the dimension between the walls of the cavity 21 (inner dimension) is the same as the outer dimension of the reverse mounting passive element 20. And the structure facilitates alignment during soldering.

【0021】複合マイクロ波回路モジュールの高周波信
号線路は内層に設けられており、能動素子のベアチップ
を実装するキャビティ22内の高周波信号線路はコプレ
ーナ線路で形成され、これが逆転実装型受動素子を実装
するキャビティ21まで接続されている。このキャビテ
ィ21に逆転実装型受動素子20が実装されたときは、
キャビティ21内の高周波信号線路はコプレーナ線路と
なる。ただし、逆転実装型受動素子20が実装されるま
では、キャビティ21には逆転実装型受動素子を実装す
るためのはんだしろ28だけがある(図3(b))。
The high frequency signal line of the composite microwave circuit module is provided in the inner layer, and the high frequency signal line in the cavity 22 for mounting the bare chip of the active element is formed by a coplanar line, which mounts the reverse mounting type passive element. It is connected to the cavity 21. When the reverse mounting passive element 20 is mounted in this cavity 21,
The high-frequency signal line in the cavity 21 becomes a coplanar line. However, until the reverse mounting passive element 20 is mounted, the cavity 21 has only the soldering margin 28 for mounting the reverse mounting passive element (FIG. 3B).

【0022】キャビティ内の内形寸法と逆転実装型受動
素子の外形寸法との関係を上述の如くに一致させた構造
にすることによって、キャビティ内に逆転実装型受動素
子を反転して落とし込むだけで位置合せが可能となり、
製造性が良くなる。受動素子のみなのでこのキャビティ
には必ずしもメタルシールで蓋をする必要はない。
By constructing the structure in which the relationship between the internal dimensions in the cavity and the external dimensions of the reverse mounting passive element is matched as described above, it is only necessary to reverse and drop the reverse mounting passive element in the cavity. Positioning is possible,
Manufacturability is improved. This cavity does not necessarily need to be covered with a metal seal because it is a passive element only.

【0023】図4は、本発明の第2実施例の斜視図であ
る。本実施例は第1実施例とは異なり、マイクロ波集積
回路に適用するものである。金属性の台座31に乗せら
れたマイクロ波集積回路基板32はコプレーナ線路34
で形成されており、グランド38面に能動素子36のベ
アチップが実装されて、ボンティンブワイヤ35によっ
てコプレーナ線路34に電気的に接続されている。逆転
実装型受動素子33が実装される部分のコプレーナ線路
は削除され、破線で囲まれた部分が逆転実装型受動素子
を反転させてはんだ付けをする際のはんだしろ39とな
る。図4の構造では、逆転実装型受動素子33は基板3
2に直接にはんだ付けされるから、広帯域、低損失な接
続が可能となっており、逆転実装型受動素子33がコプ
レーナ線路に接続出来ることから、ベアチップの能動素
子と同一面に実装でき、低損失、広帯域化の方向に一層
改善されている。これら素子が実装された後に、メタル
キャップ37により蓋をして、ちり、湿気から能動素子
を守る。
FIG. 4 is a perspective view of the second embodiment of the present invention. This embodiment is different from the first embodiment and is applied to a microwave integrated circuit. The microwave integrated circuit board 32 mounted on the metallic pedestal 31 is a coplanar line 34.
The bare chip of the active element 36 is mounted on the surface of the ground 38 and is electrically connected to the coplanar line 34 by the bonding wire 35. The coplanar line in the portion where the reverse mounting passive element 33 is mounted is deleted, and the portion surrounded by the broken line serves as a soldering margin 39 when the reverse mounting passive element is inverted and soldered. In the structure of FIG. 4, the reverse mounting passive element 33 is the substrate 3
Since it is directly soldered to 2, the wide band and low loss connection is possible, and since the reverse mounting type passive element 33 can be connected to the coplanar line, it can be mounted on the same surface as the bare chip active element, It is further improved in the direction of loss and wide band. After these elements are mounted, the metal cap 37 covers the elements to protect the active elements from dust and moisture.

【0024】[0024]

【発明の効果】以上に説明したように請求項1及び4に
記載の発明によれば、複合マイクロ波回路モジュール、
又はマイクロ波集積回路において、受動素子を希望の特
性を持つ物に交換可能な構造となるから能動素子の特性
ばらつきに対応した受動素子の実装が可能になる。特に
本発明では、コプレーナ線路にて逆転実装型受動素子を
実装するから、グランド面と高周波信号線路が同一面に
ある特長を生かした実装が可能となる。その特徴とし
て、能動素子をベアチップ実装する際にグランド面が高
周波信号線路の近傍にあるので高周波的に安定であり、
この能動素子と同一面上の近くに逆転実装型受動素子を
実装することが可能となる。
As described above, according to the inventions of claims 1 and 4, the composite microwave circuit module,
Alternatively, in the microwave integrated circuit, the passive element can be replaced with one having a desired characteristic, so that the passive element can be mounted corresponding to the characteristic variation of the active element. In particular, in the present invention, since the reverse mounting type passive element is mounted by the coplanar line, it is possible to perform the mounting by utilizing the feature that the ground surface and the high frequency signal line are on the same surface. The feature is that the ground plane is near the high-frequency signal line when the active element is mounted on the bare chip, so it is stable at high frequencies,
The reverse mounting passive element can be mounted near the same surface as the active element.

【0025】また、本発明では、逆転実装型受動素子と
して、特性の異なる物と入れ換えることを可能にするこ
とによって、複合マイクロ波回路モジュール、マイクロ
波集積回路の自由度が向上する。そして接続構造が単純
なために広帯域、低損失な接続ができ、合せて組み立て
性をも向上できる。
Further, in the present invention, as the reverse mounting type passive element, it is possible to replace the passive element with one having different characteristics, so that the flexibility of the composite microwave circuit module and the microwave integrated circuit is improved. Since the connection structure is simple, broadband and low-loss connection can be made, and the assembling property can be improved.

【0026】請求項3に記載の発明によれば、逆転実装
型素子を実装する際の位置合せが容易になり、さらに組
み立て性を向上する。
According to the third aspect of the present invention, the positioning when mounting the reverse mounting element is facilitated, and the assemblability is further improved.

【0027】逆転実装型受動素子を各種の複合マイクロ
波回路モジュール及び、マイクロ波集積回路で共用して
使用するとによってコストの低減をはかることが出来
る。
Cost reduction can be achieved by using the reverse mounting type passive element commonly for various composite microwave circuit modules and microwave integrated circuits.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例を示す図であり、(a)は
逆転実装型受動素子実装構造を含むMMCMの斜視図、
(b)は逆転実装型受動素子実装構造を含むキャビティ
の部分拡大図、(c)は逆転実装型受動素子の斜視図、
(d)は逆転実装型受動素子を実装する領域のパターン
図である。
FIG. 1 is a diagram showing a first embodiment of the present invention, in which (a) is a perspective view of an MMCM including a reverse mounting passive element mounting structure;
(B) is a partially enlarged view of a cavity including a reverse mounting type passive element mounting structure, (c) is a perspective view of the reverse mounting type passive element,
(D) is a pattern diagram of a region in which the reverse mounting passive element is mounted.

【図2】PLL回路の基本構成図である。FIG. 2 is a basic configuration diagram of a PLL circuit.

【図3】図1に示した第1実施例の変形例の斜視図
(a)およびこの変形例における逆転実装型受動素子実
装用キャビティの上面図(b)である。
FIG. 3 is a perspective view (a) of a modification of the first embodiment shown in FIG. 1 and a top view (b) of a reverse mounting type passive element mounting cavity in this modification.

【図4】本発明の第2実施例を示す斜視図である。FIG. 4 is a perspective view showing a second embodiment of the present invention.

【図5】従来の複合マイクロ波回路モジュールの全体図
である。
FIG. 5 is an overall view of a conventional composite microwave circuit module.

【図6】図5に示した複合マイクロ波回路モジュールの
詳細断面図である。
6 is a detailed cross-sectional view of the composite microwave circuit module shown in FIG.

【符号の説明】[Explanation of symbols]

1 複合マイクロモジュール 2 能動素子(ベアチップ) 3 逆転実装型受動素子 4 キャビティ 5 メタルシール 6 コプレーナ線路 7 GND 8 ワイヤボンディング 9 抵抗体 10 はんだしろ 11 電圧制御発振器 12 バッファアンプ 13 逆転実装型受動素子によるアッテネータ 14 プリスケーラ 15 プログラムカウンタ 16 位相比較器 17 ローパスフィルタ(L.P.F) 19 PLL回路のうちMMCMに実装される部分 20 逆転実装型受動素子 21 逆転実装型受動素子実用キャビティ 22 能動素子実装用キョビティ 23 ワイヤボンディング 24 複合マイクロ波回路モジュール 25 能動素子 26 ボンディングワイヤ 27 コプレーナ線路 28 はんだしろ 29 入出力端子 30 電源端子 31 台座 32 配線基板 33 逆転実装型受動素子 34 コプレーナ線路 35 ボンディングワイヤ 36 能動素子 37 メタルキャップ 38 GND 39 はんだしろ 40 多層誘電体基板(SVB) 41 ベースプレート 42 電圧制御発振器(VCO) 43 増幅器(AMP) 44 プリスケーラ(PSC) 45 ミキサー(MIX) 46 可変減衰器(ATT) 47 電力増幅器(AMP) 48 検波器(DET) 49 方向性結合器(DC) 50 バンドパスフィルタ(B.P.F) 51 ローパスフィルタ 52 メタルシール(CAP) 53 下層グランド層 54 上層グランド層 55 RF信号層 56 能動素子 57 ビア 58 ボンディングワイヤ 59 信号パターン 60 電源パターン 1 Composite Micro Module 2 Active Element (Bare Chip) 3 Reverse Mounting Type Passive Element 4 Cavity 5 Metal Seal 6 Coplanar Line 7 GND 8 Wire Bonding 9 Resistor 10 Solder Allowance 11 Voltage Controlled Oscillator 12 Buffer Amplifier 13 Attenuator by Reverse Mounting Type Passive Element 14 Prescaler 15 Program Counter 16 Phase Comparator 17 Low Pass Filter (LPF) 19 Part of PLL Circuit Mounted on MMCM 20 Reverse-Mounting Passive Element 21 Reverse-Mounting Passive Practical Cavity 22 Active Device Mounting Kyobi 23 wire bonding 24 composite microwave circuit module 25 active element 26 bonding wire 27 coplanar line 28 soldering margin 29 input / output terminal 30 power supply terminal 31 pedestal 32 wiring board 33 reverse Mounted passive element 34 Coplanar line 35 Bonding wire 36 Active element 37 Metal cap 38 GND 39 Solder allowance 40 Multilayer dielectric substrate (SVB) 41 Base plate 42 Voltage controlled oscillator (VCO) 43 Amplifier (AMP) 44 Prescaler (PSC) 45 Mixer (MIX) 46 Variable attenuator (ATT) 47 Power amplifier (AMP) 48 Detector (DET) 49 Directional coupler (DC) 50 Band pass filter (BPF) 51 Low pass filter 52 Metal seal (CAP) 53 Lower Ground Layer 54 Upper Ground Layer 55 RF Signal Layer 56 Active Element 57 Via 58 Bonding Wire 59 Signal Pattern 60 Power Supply Pattern

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】多層構造の内層にある高周波信号線路から
表層までをけがいてキャビティが形成され、このキャビ
ティの底に露出した高周波信号線路がコプレーナ線路で
ある複合マイクロ波回路モジュールに逆転実装型受動素
子を実装する構造において、前記キャビティ内の領域で
あって前記逆転実装型受動素子を実装する領域の導体の
少なくとも一部を削除し、前記コプレーナ線路の一部分
を遮断するとともに、前記逆転実装型受動素子と前記複
合マイクロ波回路モジュールとの電気的接続を行うため
に必要なコプレーナ線路及びグランド面をはんだしろと
して前記キャビティ内に残し、前記逆転実装型受動素子
の導体面が前記はんだしろに乗るように逆転させ、前記
逆転実装型受動素子と前記複合マイクロ波回路モジュー
ルの前記コプレーナ線路及びグランドが互いにはんだ付
けされていることを特徴とする逆転実装型受動素子実装
構造。
1. A composite microwave circuit module in which a cavity is formed by scribing from a high-frequency signal line in the inner layer of a multilayer structure to a surface layer, and the high-frequency signal line exposed at the bottom of this cavity is a coplanar line in a reverse mounting passive type. In a structure for mounting an element, at least a part of a conductor in an area for mounting the reverse mounting passive element in the cavity is removed to block a part of the coplanar line, and the reverse mounting passive The coplanar line and the ground surface necessary for making an electrical connection between the element and the composite microwave circuit module are left in the cavity as a soldering margin so that the conductor surface of the reverse mounting passive element rides on the soldering margin. The reverse mounting type passive element and the composite microwave circuit module. Reverse-mounted passive element mounting structure, wherein the lines and the ground are soldered to one another.
【請求項2】前記逆転実装型受動素子がアッテネータ、
フィルタ、カップラ等の機能を有し、セラミックを基板
材料として薄膜技術を用いることによって製造されるも
のであり、複合マイクロ波回路モジュールの基板上に逆
転実装されたときに前記逆転実装型受動素子における前
記コプレーナ線路のインピーダンスが前記複合マイクロ
波回路モジュールにおける前記コプレーナ線路のインピ
ーダンスにほぼ一致することを特徴とする請求項1に記
載の逆転実装型受動素子実装構造。
2. The reverse mounting type passive element is an attenuator,
It has a function of a filter, a coupler, etc., and is manufactured by using thin film technology using ceramics as a substrate material, and when it is reversely mounted on the substrate of the composite microwave circuit module, The reverse mounting passive element mounting structure according to claim 1, wherein the impedance of the coplanar line is substantially equal to the impedance of the coplanar line in the composite microwave circuit module.
【請求項3】前記逆転実装型受動素子の基板の平面形状
とのこの逆転実装型受動素子が実装されるキャビティの
平面形状とが一致していることを特徴とする請求項1ま
たは2に記載の逆転実装型受動素子実装構造。
3. The planar shape of the substrate of the reverse mounting passive element and the planar shape of a cavity in which the reverse mounting passive element is mounted are matched with each other. Reverse mounting type passive device mounting structure.
【請求項4】表層の高周波信号線路がコプレーナ線路で
形成されるマイクロ波集積回路に逆転実装型受動素子を
実装する構造において、前記コプレーナ線路のうち前記
逆転実装型受動素子が実装される領域の導体の少なくと
も一部分が削除されており、しかも前記逆転実装型受動
素子と前記マイクロ波集積回路との電気的接続を行なう
ためにはんだしろとしての導体が残されており、前記逆
転実装型受動素子はその導体面が前記はんだしろに乗る
ように逆転され、前記はんだしろにはんだ付けされてい
ることを特徴とする逆転実装型受動素子実装構造。
4. In a structure in which a reverse mounting type passive element is mounted on a microwave integrated circuit in which a high-frequency signal line of a surface layer is formed by a coplanar line, in a region of the coplanar line where the reverse mounting type passive element is mounted. At least a part of the conductor is deleted, and a conductor as a soldering margin is left for making electrical connection between the reverse mounting passive element and the microwave integrated circuit, and the reverse mounting passive element is A reverse mounting type passive element mounting structure, wherein the conductor surface is reversed so as to ride on the soldering margin and is soldered to the soldering margin.
JP14604694A 1994-06-28 1994-06-28 Reverse mounting type passive element mounting structure Expired - Lifetime JP2526526B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14604694A JP2526526B2 (en) 1994-06-28 1994-06-28 Reverse mounting type passive element mounting structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14604694A JP2526526B2 (en) 1994-06-28 1994-06-28 Reverse mounting type passive element mounting structure

Publications (2)

Publication Number Publication Date
JPH0818002A true JPH0818002A (en) 1996-01-19
JP2526526B2 JP2526526B2 (en) 1996-08-21

Family

ID=15398883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14604694A Expired - Lifetime JP2526526B2 (en) 1994-06-28 1994-06-28 Reverse mounting type passive element mounting structure

Country Status (1)

Country Link
JP (1) JP2526526B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6876846B2 (en) 2000-08-24 2005-04-05 Mitsubishi Denki Kabushiki Kaisha High frequency module

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6876846B2 (en) 2000-08-24 2005-04-05 Mitsubishi Denki Kabushiki Kaisha High frequency module
US7164905B2 (en) 2000-08-24 2007-01-16 Mitsubishi Denki Kabushiki Kaisha High frequency module
EP1182704A3 (en) * 2000-08-24 2008-04-16 Mitsubishi Denki Kabushiki Kaisha High frequency module
US7756503B2 (en) 2000-08-24 2010-07-13 Mitsubishi Denki Kabushiki Kaisha High frequency module

Also Published As

Publication number Publication date
JP2526526B2 (en) 1996-08-21

Similar Documents

Publication Publication Date Title
US7304377B2 (en) Package substrate, integrated circuit apparatus, substrate unit, surface acoustic wave apparatus, and circuit device
JP2000151219A (en) Complex circuit substrate, nonreversible circuit element, resonator, filter, duplexer, communication device, circuit module, manufacture of complex circuit substrate and manufacture of nonreversible circuit element
US6016090A (en) Dielectric resonator apparatus and high-frequency module
JP3663898B2 (en) High frequency module
JPH11239021A (en) Dielectric resonator device
US6781484B2 (en) SAW filter module capable of being easily miniaturized
JP2526526B2 (en) Reverse mounting type passive element mounting structure
KR100263643B1 (en) Dielectric resonance device and high frequency module
US6727766B2 (en) Oscillator with dielectric resonator and electronic apparatus using the same
JPH0472804A (en) Strip line filter
Eurskens et al. Design and performance of UHF band inductors, capacitors and resonators using LTCC technology for mobile communication systems
JP2758889B2 (en) 1-chip low-pass filter
JPH06232608A (en) Composite microwave circuit module
Müller et al. Improved design options and microwave performance by combining thin film with LTCC
JP3772513B2 (en) High frequency module
JPH05114804A (en) High frequency filter
JPH11163607A (en) High frequency module and its characteristic adjusting method
JPH03125501A (en) Microwave circuit module
Müller et al. Design Capabilities and Microwave Performance of Thin Film on LTCC
JPH03125502A (en) Microwave circuit module
JPH11298108A (en) Circuit board and electronic device using the same
JPH10200305A (en) Dielectric filter
JPH1041745A (en) Voltage controlled oscillator
JP2003046301A (en) High frequency wiring board
JPH04363901A (en) Hybrid integrated circuit for high frequency microwave and its manufacture

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960409