JPH08178849A - Fluorometry and fluorometer - Google Patents

Fluorometry and fluorometer

Info

Publication number
JPH08178849A
JPH08178849A JP31874594A JP31874594A JPH08178849A JP H08178849 A JPH08178849 A JP H08178849A JP 31874594 A JP31874594 A JP 31874594A JP 31874594 A JP31874594 A JP 31874594A JP H08178849 A JPH08178849 A JP H08178849A
Authority
JP
Japan
Prior art keywords
fluorescence
wavelength
sample
fluorescent
substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP31874594A
Other languages
Japanese (ja)
Inventor
Takashi Yamazaki
隆 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP31874594A priority Critical patent/JPH08178849A/en
Publication of JPH08178849A publication Critical patent/JPH08178849A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Microscoopes, Condenser (AREA)
  • Optical Filters (AREA)

Abstract

PURPOSE: To provide a fluorometry and fluorometer for measuring fluorescence of sample accurately through a simple and inexpensive constitution. CONSTITUTION: The fluorescent microscope 1 comprises a light source 6, an excitation filter 8 arranged on the optical path of exciting light emitted from the light source 6, a fluorescent filter 26 arranged on the optical path of fluorescence emitted from a sample 10, and a photomultiplier 30 for measuring the fluorescence passed through the filter 26. A sample containing a substance to be inspected is previously given to a fluorescence indicator. The sample 10 is irradiated with an exciting light from the light source 6 through an excitation filter 8 passing the excitation wavelength of the fluorescent indicator selectively. Fluorescence emitted from the sample 10 is passed through the fluorescent filter 26 for selecting the equi-fluorescent wavelength or peak wavelength of the fluorescent indicator and the fluorescent intensity is measured by means of the photomultiplier 30. A determination unit 40 calculates the ratio between two fluorescent intensities and determines the concentration of a substance to be inspected comparing with known fluorescent characteristics.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、試料からの蛍光を測
光する蛍光測光装置および蛍光測光方法に係り、特に、
異なる2つの波長を有する蛍光の蛍光強度の比から試料
に含まれる被検査物質の濃度を定量する蛍光測光装置お
よび蛍光測光方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fluorescence metering apparatus and a fluorescence metering method for measuring fluorescence from a sample, and in particular,
The present invention relates to a fluorescence metering apparatus and a fluorescence metering method for quantifying the concentration of a substance to be inspected contained in a sample from a ratio of fluorescence intensities of fluorescence having two different wavelengths.

【0002】[0002]

【従来の技術】例えば、細胞内のカルシウムイオン濃度
を定量する際、細胞に所定の蛍光指示薬(Indo−
1、Fura−2等)を投与して、その細胞に励起光
(340nm)を照射すると、その細胞の蛍光像がカル
シウムイオン濃度に応じた蛍光スペクトルを有する光を
発することが知られている。この蛍光スペクトルの任意
の2波長間の比は細胞内に含まれるカルシウムイオン濃
度に応じた値となる。そこで上記蛍光像を2波長測光し
て2波長間の蛍光強度の比を求めることにより、細胞内
のカルシウムイオン濃度を定量することができる。
2. Description of the Related Art For example, when quantifying intracellular calcium ion concentration, a predetermined fluorescent indicator (Indo-
It is known that the fluorescence image of the cell emits light having a fluorescence spectrum corresponding to the calcium ion concentration when the cell is irradiated with excitation light (340 nm). The ratio between any two wavelengths of this fluorescence spectrum has a value according to the concentration of calcium ions contained in the cell. Therefore, by measuring the fluorescence image with two wavelengths and obtaining the ratio of the fluorescence intensities between the two wavelengths, the intracellular calcium ion concentration can be quantified.

【0003】このように、蛍光像を2波長測光する装置
として、例えば図6に示す蛍光顕微鏡装置51が知られ
ている。この蛍光顕微鏡装置51は、光源52からの光
を励起フィルター54、ダイクロイックミラー56を介
して試料60に照射し、その試料60からの蛍光をダイ
クロイックミラー56、ハーフミラー58を介して光分
割プレート62に伝搬している。光分割プレート62で
分割された一方の光を吸収フィルター64を介してフォ
トマル65で検出し、もう一方の光を吸収フィルター6
4と異なる透過波長域を持つ吸収フィルター66を介し
てフォトマル67で検出している。
As a device for measuring two wavelengths of a fluorescent image as described above, for example, a fluorescent microscope device 51 shown in FIG. 6 is known. The fluorescence microscope device 51 irradiates a sample 60 with light from a light source 52 via an excitation filter 54 and a dichroic mirror 56, and emits fluorescence from the sample 60 via a dichroic mirror 56 and a half mirror 58 into a light splitting plate 62. Is being propagated to. One light split by the light splitting plate 62 is detected by the photomultiplier 65 through the absorption filter 64, and the other light is absorbed by the absorption filter 6
It is detected by the photomultiplier 67 through the absorption filter 66 having a transmission wavelength range different from that of No. 4.

【0004】2つのフォトマル65、67の各々で検出
された各波長の蛍光強度は、定量装置70に入力されて
互いの蛍光強度の比が算出され、この強度比がカルシウ
ムイオン濃度に応じた既知の蛍光強度特性と照合されて
カルシウムイオン濃度が定量されている。
The fluorescence intensities of the respective wavelengths detected by the two photomultipliers 65 and 67 are input to the quantification device 70 to calculate the ratio of the respective fluorescence intensities, and this intensity ratio corresponds to the calcium ion concentration. The calcium ion concentration is quantified by collating with known fluorescence intensity characteristics.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、従来の
装置においては、2波長同時測光を実行するために2つ
のフォトマルが必要であり、装置が大型になる問題があ
る。また、比較的高価なフォトマルを2つ設ける必要が
あることから装置が高価になる問題がある。
However, in the conventional device, two photomultipliers are required to perform the two-wavelength simultaneous photometry, and there is a problem that the device becomes large. In addition, since it is necessary to provide two relatively expensive photomultipliers, there is a problem that the device becomes expensive.

【0006】また、2つのフォトマルは、互いの感度が
同じになるように感度を調整する必要があるため、感度
の調整に手間がかかり面倒である。更に、フォトマルの
感度は、周辺温度等の環境の変化に影響されやすく、測
光の途中で2つのフォトマルの感度に相対的なずれを生
じる場合がある。この場合、正確な測光が困難となる。
Further, it is necessary to adjust the sensitivity of the two photomultipliers so that they have the same sensitivity, which makes it difficult to adjust the sensitivity. Furthermore, the sensitivity of Photomul is easily affected by changes in the environment such as the ambient temperature, and the sensitivity of the two Photomul may be relatively shifted during the photometry. In this case, accurate photometry becomes difficult.

【0007】この発明は、以上の点に鑑みなされたもの
で、その目的は、簡易で安価な構成により試料の蛍光を
正確に測光できる蛍光測光装置および蛍光測光方法を提
供することにある。
The present invention has been made in view of the above points, and an object thereof is to provide a fluorescence metering apparatus and a fluorescence metering method capable of accurately measuring the fluorescence of a sample with a simple and inexpensive structure.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するた
め、この発明に係る蛍光測光装置は、被検査物質を含む
試料からの蛍光を測光する蛍光測光装置において、上記
被検査物質に作用すべく上記試料に投与された蛍光指示
薬の励起波長を有する励起光を上記試料に照射する照射
手段と、上記励起光により励起された試料から発せられ
る蛍光の光路上に配置され、上記蛍光指示薬の等蛍光波
長または所定波長を択一的に選択し、この2つの波長を
有する蛍光を選択的に通過する波長選択手段と、上記波
長選択手段により選択された蛍光の蛍光強度を測定する
単一の測光手段と、この測光手段により測定された2つ
の蛍光強度の比を算出するとともに、この比を既知の蛍
光強度特性に照合して上記被検査物質の濃度を定量する
定量手段と、を備えている。
In order to achieve the above object, a fluorescence photometric device according to the present invention is intended to act on a substance to be inspected in a fluorescence photometric device for measuring fluorescence from a sample containing the substance to be inspected. Irradiation means for irradiating the sample with excitation light having the excitation wavelength of the fluorescent indicator administered to the sample, and is arranged on the optical path of the fluorescence emitted from the sample excited by the excitation light, the isofluorescence of the fluorescent indicator A wavelength selecting means for selectively selecting a wavelength or a predetermined wavelength and selectively passing fluorescence having these two wavelengths, and a single photometric means for measuring the fluorescence intensity of the fluorescence selected by the wavelength selecting means. And a quantification means for calculating the ratio of the two fluorescence intensities measured by the photometric means and for quantifying the concentration of the substance to be inspected by collating this ratio with a known fluorescence intensity characteristic. There.

【0009】また、この発明に係る蛍光測光方法は、被
検査物質を含む試料に対して該被検査物質に作用する蛍
光指示薬を投与する工程と、上記蛍光指示薬の励起波長
を有する励起光を上記試料に照射する工程と、上記励起
光の照射により励起された試料から発せられる蛍光を単
一の測光装置により測光する工程と、上記測光する工程
は、測光の最初と最後において上記蛍光指示薬の等蛍光
波長における上記蛍光の蛍光強度を測光し、且つ測光の
中間において所定の波長における上記蛍光の蛍光強度を
測光し、上記等蛍光波長における蛍光強度と上記所定の
波長における蛍光強度との比を算出するとともに、この
比を既知の蛍光強度特性に照合して上記被検査物質の濃
度を定量する工程と、を備えている。
Further, the fluorescence photometric method according to the present invention comprises the steps of administering a fluorescent indicator that acts on the substance to be inspected to a sample containing the substance to be inspected, and exciting light having the excitation wavelength of the fluorescent indicator as described above. The step of irradiating the sample, the step of photometrically measuring the fluorescence emitted from the sample excited by the irradiation of the excitation light with a single photometric device, and the step of photometrically measuring the fluorescence indicator at the beginning and the end of the photometry, etc. The fluorescence intensity of the fluorescence at the fluorescence wavelength is measured, and the fluorescence intensity of the fluorescence at a predetermined wavelength is measured in the middle of the photometry, and the ratio between the fluorescence intensity at the equal fluorescence wavelength and the fluorescence intensity at the predetermined wavelength is calculated. And a step of quantifying the concentration of the substance to be inspected by collating this ratio with a known fluorescence intensity characteristic.

【0010】[0010]

【作用】この発明に係る蛍光測光装置および蛍光測光方
法によれば、試料に含まれる被検査物質の励起波長を有
する励起光を照射手段により試料に照射する。この励起
光により励起された試料は、試料中の被検査物質の濃度
に応じた蛍光スペクトルを発する。そして、この蛍光ス
ペクトルの蛍光強度を測光手段により測光する。
According to the fluorescence photometry device and the fluorescence photometry method of the present invention, the excitation light having the excitation wavelength of the substance to be inspected contained in the sample is applied to the sample by the irradiation means. The sample excited by this excitation light emits a fluorescence spectrum corresponding to the concentration of the substance to be inspected in the sample. Then, the fluorescence intensity of this fluorescence spectrum is measured by the photometric means.

【0011】測光手段に向かう蛍光の光路上に設けられ
た波長選択手段は、蛍光指示薬の等蛍光波長または所定
の波長を択一的に選択する機能を有している。測光の最
初と最後において、波長選択手段が蛍光指示薬の等蛍光
波長を選択し、測光手段がこの波長における蛍光の蛍光
強度を測定する。測光の中間において、波長選択手段が
所定の波長、例えば蛍光指示薬が被検査物質と結合した
際の蛍光スペクトルのピーク強度を示す波長を選択し、
測光手段がこの波長における蛍光の蛍光強度を測定す
る。
The wavelength selecting means provided on the optical path of the fluorescence toward the photometric means has a function of selectively selecting the equi-fluorescence wavelength of the fluorescent indicator or a predetermined wavelength. At the beginning and the end of the photometry, the wavelength selection means selects the equifluorescence wavelength of the fluorescent indicator, and the photometry means measures the fluorescence intensity of the fluorescence at this wavelength. In the middle of photometry, the wavelength selecting means has a predetermined wavelength, for example, a wavelength indicating the peak intensity of the fluorescence spectrum when the fluorescent indicator is bound to the test substance,
The photometric means measures the fluorescence intensity of fluorescence at this wavelength.

【0012】測定された2波長における蛍光強度は定量
手段に入力され、ここで両者の間の蛍光強度の比が算出
されるとともに、この蛍光強度の比が試料の既知の蛍光
強度特性に照合され、試料に含まれる被検査物質の濃度
が定量される。
The measured fluorescence intensities at the two wavelengths are input to a quantitative means, where the ratio of the fluorescence intensities between the two is calculated, and this ratio of the fluorescence intensities is collated with the known fluorescence intensity characteristics of the sample. , The concentration of the test substance contained in the sample is quantified.

【0013】[0013]

【実施例】以下、図面を参照しながらこの発明の実施例
について詳細に説明する。図1および図2に示すよう
に、この発明の一実施例に係る蛍光測光装置、つまり、
蛍光顕微鏡装置1は、机上に載置されるベース部2aと
ベース部2aの一端から上方に延出するアーム部2bと
から構成された本体2を備えている。本体2の上部に
は、横方向に延びた投光管4が設けられ、投光管4の一
端側には落射照明用光源6が設けられている。
Embodiments of the present invention will now be described in detail with reference to the drawings. As shown in FIGS. 1 and 2, a fluorescence photometric device according to an embodiment of the present invention, that is,
The fluorescence microscope apparatus 1 includes a main body 2 including a base portion 2a placed on a desk and an arm portion 2b extending upward from one end of the base portion 2a. A light projecting tube 4 extending in the lateral direction is provided on the upper part of the main body 2, and an epi-illumination light source 6 is provided on one end side of the light projecting tube 4.

【0014】投光管4内であって光源6からの励起光の
光路上には、励起フィルター8が設けられている。この
励起フィルター8は、試料10に投与される後述する蛍
光指示薬の励起波長を有する励起光のみを選択的に通過
する機能を有し、使用する蛍光指示薬の種類に応じて交
換可能に光路上に配置されている。光源6および励起フ
ィルター8により、照射手段を構成している。
An excitation filter 8 is provided in the light projecting tube 4 and on the optical path of the excitation light from the light source 6. The excitation filter 8 has a function of selectively passing only the excitation light having the excitation wavelength of the fluorescent indicator described later to be administered to the sample 10, and is replaceable on the optical path according to the type of the fluorescent indicator used. It is arranged. The light source 6 and the excitation filter 8 constitute an irradiation means.

【0015】励起フィルター8の下流側には、ダイクロ
イックミラー12が設けられ、ダイクロイックミラー1
2により略垂直下方に折り曲げられた光路には対物レン
ズ14が設けられている。また、本体部2は、対物レン
ズ14の光軸に沿って試料10を移動可能に載置するス
テージ11を備えている。
A dichroic mirror 12 is provided on the downstream side of the excitation filter 8, and the dichroic mirror 1 is provided.
An objective lens 14 is provided on the optical path bent substantially vertically downward by 2. In addition, the main body 2 includes a stage 11 on which the sample 10 is movably mounted along the optical axis of the objective lens 14.

【0016】対物レンズ14の上方には、鏡筒20、お
よび波長切り替え部25を介して測光手段としての単一
のフォトマル30が設けられている。鏡筒20内には、
ハーフミラー21が設けられており、試料10からの蛍
光の一部を鏡筒20に接続された接眼部22に導くよう
になっている。波長切り替え部25内には、試料10か
らの蛍光の所定波長成分のみを透過する波長選択手段と
しての蛍光フィルター26が設けられている。この蛍光
フィルター26は、試料10に投与される蛍光指示薬の
等蛍光波長の蛍光を選択的に通過する吸収フィルター2
6aと、蛍光指示薬が試料10内の被検査物質と結合し
た場合の蛍光のピークを選択的に通過する吸収フィルタ
ー26bと、を備えている。これらのフィルター26
a、26bは、いずれも蛍光の光路上に挿脱可能且つ他
のフィルターと交換可能に設けられている。
Above the objective lens 14, a single photomultiplier 30 as a photometric means is provided via a lens barrel 20 and a wavelength switching section 25. In the lens barrel 20,
A half mirror 21 is provided to guide a part of the fluorescence from the sample 10 to an eyepiece 22 connected to the lens barrel 20. In the wavelength switching unit 25, a fluorescence filter 26 is provided as a wavelength selection unit that transmits only a predetermined wavelength component of fluorescence from the sample 10. The fluorescence filter 26 is an absorption filter 2 that selectively passes fluorescence of the same fluorescence wavelength of the fluorescence indicator administered to the sample 10.
6a, and an absorption filter 26b that selectively passes the fluorescence peak when the fluorescent indicator binds to the substance to be tested in the sample 10. These filters 26
Both a and 26b are provided so that they can be inserted into and removed from the optical path of fluorescence and can be replaced with other filters.

【0017】フォトマル30は、2つの波長に関する蛍
光強度の比を算出するとともにこの比に基づいてカルシ
ウムイオンの濃度を定量する定量手段としての定量装置
32に接続されている。
The photomultiplier 30 is connected to a quantification device 32 as a quantification means for calculating the ratio of fluorescence intensities for two wavelengths and quantifying the concentration of calcium ions based on this ratio.

【0018】以上のように構成された蛍光顕微鏡装置1
を用いて試料中の被検査物質の濃度を定量する方法につ
いて図3を用いて説明する。ここでは、特に、試料とし
ての細胞に含まれるカルシウムイオン濃度を定量する方
法を例にとって説明する。
Fluorescence microscope apparatus 1 constructed as described above
A method for quantifying the concentration of the substance to be inspected in the sample by using will be described with reference to FIG. Here, in particular, a method for quantifying the calcium ion concentration contained in cells as a sample will be described as an example.

【0019】まず、検査対象となる細胞に所定の蛍光指
示薬を投与する(ステップ41)。この蛍光指示薬(例
えば、Indo−1)は、細胞内のカルシウムイオンと
結合して細胞から発せられる蛍光スペクトルをシフトす
る機能を有している。
First, a predetermined fluorescent indicator is administered to cells to be inspected (step 41). This fluorescent indicator (for example, Indo-1) has a function of binding to intracellular calcium ions and shifting the fluorescence spectrum emitted from the cells.

【0020】そして、励起フィルター8により、光源6
からの励起光のうち蛍光指示薬の励起波長(340n
m)を有する励起光のみを選択的に通過して、ダイクロ
イックミラー12および対物レンズ14を介してこの励
起光を細胞に照射する(ステップ42)。これにより、
励起された細胞から蛍光指示薬によりシフトされた蛍光
スペクトルを有する光が発せられる。
Then, by the excitation filter 8, the light source 6
Of the excitation light from the fluorescent indicator (340n
Only the excitation light having m) is selectively passed through and the cells are irradiated with this excitation light via the dichroic mirror 12 and the objective lens 14 (step 42). This allows
The excited cells emit light having a fluorescence spectrum that is shifted by the fluorescent indicator.

【0021】蛍光を測光する場合、まず初めに、蛍光の
光路上に蛍光指示薬の等蛍光波長(455nm)のみを
通過する吸収フィルター26aを配置する。そして、フ
ォトマル30により蛍光の蛍光強度S0を測定する(ス
テップ43)。
In the case of measuring fluorescence, first, an absorption filter 26a which passes only the equifluorescence wavelength (455 nm) of the fluorescence indicator is arranged on the fluorescence optical path. Then, the fluorescence intensity S0 of the fluorescence is measured by the photomultiplier 30 (step 43).

【0022】次に、蛍光の光路上に所定波長、即ち蛍光
指示薬がカルシウムイオンと結合した際の蛍光のピーク
強度を示す波長(405nm)のみを通過する吸収フィ
ルター26bを配置する。そして、フォトマル30によ
り蛍光の蛍光強度S1を測定する(ステップ44)。
Next, an absorption filter 26b that passes only a predetermined wavelength, that is, a wavelength (405 nm) showing the peak intensity of fluorescence when the fluorescent indicator is bound to calcium ions is arranged on the optical path of fluorescence. Then, the fluorescence intensity S1 of the fluorescence is measured by the photomultiplier 30 (step 44).

【0023】測光の最後に、蛍光の光路上に吸収フィル
ター26aを再び配置して、フォトマル30により蛍光
の蛍光強度S0´を測定する(ステップ45)。この蛍
光強度S0´は、ステップ43において測定された蛍光
強度S0を補正するために用いられる。
At the end of the photometry, the absorption filter 26a is arranged again on the fluorescence optical path, and the fluorescence intensity S0 'of the fluorescence is measured by the photomultiplier 30 (step 45). This fluorescence intensity S0 'is used to correct the fluorescence intensity S0 measured in step 43.

【0024】そして、フォトマル30により測定された
蛍光強度S0および蛍光強度S1は、カルシウムイオン
濃度を定量する定量装置32に入力されて強度比S1/
S0が算出される(ステップ46)。ステップ46にお
いて算出された強度比S1/S0は、カルシウムイオン
を含む細胞の既知の蛍光強度特性と比較され、或いは既
知の変換式に入力され、カルシウムイオン濃度が定量さ
れる(ステップ47)。
Then, the fluorescence intensity S0 and the fluorescence intensity S1 measured by the Photomul 30 are input to the quantification device 32 for quantifying the calcium ion concentration, and the intensity ratio S1 /
S0 is calculated (step 46). The intensity ratio S1 / S0 calculated in step 46 is compared with a known fluorescence intensity characteristic of cells containing calcium ions, or is input into a known conversion formula to quantify the calcium ion concentration (step 47).

【0025】以上のように、この発明の蛍光顕微鏡装置
は、単一のフォトマルを用いて蛍光を測光することか
ら、従来の装置と比較して装置を小型化できるとともに
装置コストを安価にできる。また、単一のフォトマルを
用いることにより、フォトマルの感度調整が容易にな
り、従来の装置のように測光中に互いの感度に相対的な
ずれを生じる問題がなく、正確な測光が可能となる。
As described above, since the fluorescence microscope apparatus of the present invention measures fluorescence using a single photomultiplier, the apparatus can be downsized and the apparatus cost can be reduced as compared with the conventional apparatus. . In addition, by using a single Photomul, the photomul sensitivity can be adjusted easily, and accurate photometry can be performed without the problem of relative shifts in sensitivity during photometry as with conventional devices. Becomes

【0026】また、この発明の測光方法によれば、測光
の最初と最後で蛍光強度S0、S0´を測光し、測光の
途中で蛍光強度S1を測光している。このため、測光の
度に測光波長を切り替えることなく2波長測光が可能と
なり、波長選択に要する時間を短縮でき、カルシウムイ
オンの経時的な変化に対応した迅速な測光が可能とな
る。
According to the photometric method of the present invention, the fluorescence intensities S0 and S0 'are measured at the beginning and the end of the photometry, and the fluorescence intensity S1 is measured during the photometry. Therefore, dual-wavelength photometry can be performed without switching the photometric wavelength each time photometry is performed, the time required for wavelength selection can be shortened, and rapid photometry that responds to changes over time of calcium ions is possible.

【0027】次に、この発明の変形例について図4およ
び図5を用いて説明する。尚、基本的な構成は上記実施
例と同じであるので、同一の部分については同一符号を
用いて説明を省略し、異なる部分についてのみ説明す
る。
Next, a modified example of the present invention will be described with reference to FIGS. Since the basic structure is the same as that of the above-mentioned embodiment, the same parts are designated by the same reference numerals, and the description thereof will be omitted. Only different parts will be described.

【0028】図4および図5に示すように、蛍光顕微鏡
装置101は、光源6と投光管4との間に励起光の波長
を選択的に切り替えるための励起波長選択装置125を
備えている。この励起波長選択装置125としては、分
光器や連続干渉フィルター、または任意の角度を選択し
て透過波長を変化する機能を備えた干渉フィルター等が
あり、光源からの励起光のうち所望の波長を有する励起
光のみを透過できる機能を有している。尚、上述した実
施例において蛍光の光路上に設けられていた波長切り替
え部25は、取り外されている。
As shown in FIGS. 4 and 5, the fluorescence microscope apparatus 101 is provided between the light source 6 and the light projecting tube 4 with an excitation wavelength selection device 125 for selectively switching the wavelength of the excitation light. . As the excitation wavelength selection device 125, there is a spectroscope, a continuous interference filter, or an interference filter having a function of changing the transmission wavelength by selecting an arbitrary angle. It has a function of transmitting only its own excitation light. The wavelength switching unit 25 provided on the fluorescence optical path in the above-described embodiment is removed.

【0029】このように構成された装置を用いて、細胞
内のカルシウムイオン濃度を定量する。この場合、カル
シウムイオン濃度の定量に先立って、蛍光指示薬として
のFura−2の等蛍光波長を確定する。
Using the device thus constructed, the intracellular calcium ion concentration is quantified. In this case, the isofluorescence wavelength of Fura-2 as a fluorescence indicator is determined prior to the quantitative determination of the calcium ion concentration.

【0030】まず、異なるカルシウムイオン濃度を有す
る試料(溶液)を2種類用意し、この2種類の溶液にそ
れぞれFura−2を投与する。そして、これら濃度の
異なる溶液を交互に蛍光顕微鏡装置101に配置して、
それぞれ360nmの励起光を照射する。励起された溶
液から得られる蛍光スペクトルをそれぞれグラフ化し、
両者の交点からFura−2の等蛍光波長を確定する。
First, two types of samples (solutions) having different calcium ion concentrations are prepared, and Fura-2 is administered to each of these two types of solutions. Then, these solutions having different concentrations are alternately arranged in the fluorescence microscope apparatus 101,
Each is irradiated with excitation light of 360 nm. Graph each fluorescence spectrum obtained from the excited solution,
The isofluorescence wavelength of Fura-2 is determined from the intersection of the two.

【0031】次に、励起波長選択装置125の選択波長
をこの確定された等蛍光波長と一致するように調整し、
カルシウムイオン濃度を測定する細胞を蛍光顕微鏡装置
101にセットする。そして、細胞に励起光を照射して
細胞から反射される蛍光の強度をフォトマル30により
測光する。
Next, the selection wavelength of the excitation wavelength selection device 125 is adjusted so as to match the determined equal fluorescence wavelength,
The cells for measuring the calcium ion concentration are set in the fluorescence microscope apparatus 101. Then, the cells are irradiated with the excitation light, and the intensity of the fluorescence reflected from the cells is measured by the photomultiplier 30.

【0032】この蛍光強度は、定量装置32に入力さ
れ、既知の蛍光強度特性値と比較されて細胞のカルシウ
ムイオン濃度が定量される。以上のように、等蛍光波長
を確定した後にこの等蛍光波長を有する励起光を試料に
照射し、試料からの蛍光を測光することにより、より確
実な測光が可能となり、正確な定量が実施できる。尚、
この発明は、上述した実施例に限定されるものではな
く、発明の範囲を超えることなく種々変形可能である。
This fluorescence intensity is input to the quantification device 32 and compared with a known fluorescence intensity characteristic value to quantify the calcium ion concentration of the cell. As described above, after determining the isofluorescence wavelength, the sample is irradiated with the excitation light having the isofluorescence wavelength, and the fluorescence from the sample is measured, whereby more reliable photometry is possible and accurate quantification can be performed. . still,
The present invention is not limited to the above-described embodiments, and can be variously modified without exceeding the scope of the invention.

【0033】[0033]

【発明の効果】以上説明したように、この発明の蛍光測
光装置は、上記のような構成および作用を有しているの
で、比較的高価とされている測光装置(フォトマル)の
数を減少できる、このことから、装置を比較的小型に構
成できるとともに装置コストを安価にできる。
As described above, since the fluorescence photometric device of the present invention has the above-described structure and operation, the number of photometric devices (photomul), which are relatively expensive, is reduced. Therefore, the device can be configured to be relatively small and the device cost can be reduced.

【0034】また、従来の装置のように複数の測光装置
を設ける必要がないことから、測光装置同士の感度を一
致させるように互いの感度を調整する必要がなく、感度
調整の手間が省ける。更に、測光の途中で各測光装置の
感度が相対的にずれる問題を解消することができ、より
正確な測光が可能となる。
Since it is not necessary to provide a plurality of photometric devices as in the conventional device, it is not necessary to adjust the sensitivities of the photometric devices so that the sensitivities of the photometric devices are matched with each other, and the labor for sensitivity adjustment can be saved. Further, it is possible to solve the problem that the sensitivities of the respective photometric devices relatively shift during the photometry, and more accurate photometry becomes possible.

【0035】更にまた、測光の最初と最後に蛍光指示薬
の等蛍光波長を有する蛍光の蛍光強度を測定し、測光の
中間において蛍光のピーク強度を測定することから、蛍
光フィルターの切り替えに要する時間を削減でき、カル
シウムイオンの経時的変化に対応した迅速な測光が可能
となる。
Furthermore, since the fluorescence intensity of the fluorescence having the same fluorescence wavelength of the fluorescence indicator is measured at the beginning and the end of the photometry and the peak intensity of the fluorescence is measured in the middle of the photometry, the time required for switching the fluorescence filter is reduced. It is possible to reduce the amount, and it is possible to perform rapid photometry corresponding to the change with time of calcium ions.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、この発明の実施例に係る蛍光顕微鏡装
置を示す概略図。
FIG. 1 is a schematic diagram showing a fluorescence microscope apparatus according to an embodiment of the present invention.

【図2】図2は、図1の蛍光顕微鏡装置の装置構成を示
すブロック図。
FIG. 2 is a block diagram showing a device configuration of the fluorescence microscope device of FIG.

【図3】図3は、図1の蛍光顕微鏡装置を用いたカルシ
ウムイオン濃度の定量動作を示す図。
FIG. 3 is a diagram showing a quantitative operation of calcium ion concentration using the fluorescence microscope apparatus of FIG. 1.

【図4】図4は、この発明の蛍光顕微鏡装置の変形例を
示す概略図。
FIG. 4 is a schematic view showing a modified example of the fluorescence microscope apparatus of the present invention.

【図5】図5は、図4の蛍光顕微鏡装置の装置構成を示
すブロック図。
5 is a block diagram showing an apparatus configuration of the fluorescence microscope apparatus of FIG.

【図6】図6は、従来の蛍光顕微鏡装置を示す概略図。FIG. 6 is a schematic view showing a conventional fluorescence microscope apparatus.

【符号の説明】[Explanation of symbols]

1…蛍光顕微鏡装置、6…光源、8…励起フィルター、
10…試料、12…ダイクロイックミラー、14…対物
レンズ、26…蛍光フィルター、30…フォトマル、4
0…濃度定量装置。
1 ... Fluorescence microscope device, 6 ... Light source, 8 ... Excitation filter,
10 ... Sample, 12 ... Dichroic mirror, 14 ... Objective lens, 26 ... Fluorescent filter, 30 ... Photomaru, 4
0 ... Concentration quantification device.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 被検査物質を含む試料からの蛍光を測光
する蛍光測光装置において、 上記被検査物質に作用すべく上記試料に投与された蛍光
指示薬の励起波長を有する励起光を上記試料に照射する
照射手段と、 上記励起光により励起された試料から発せられる蛍光の
光路上に配置され、上記蛍光指示薬の等蛍光波長または
所定波長を択一的に選択し、この2つの波長を有する蛍
光を選択的に通過する波長選択手段と、 上記波長選択手段により選択された蛍光の蛍光強度を測
定する単一の測光手段と、 この測光手段により測定された2つの蛍光強度の比を算
出するとともに、この比を既知の蛍光強度特性に照合し
て上記被検査物質の濃度を定量する定量手段と、 を備えていることを特徴とする蛍光測光装置。
1. A fluorescence photometric device for measuring fluorescence from a sample containing a substance to be inspected, wherein the sample is irradiated with excitation light having an excitation wavelength of a fluorescent indicator administered to the sample to act on the substance to be inspected. And an irradiation means arranged on the optical path of fluorescence emitted from the sample excited by the excitation light, and an alternative fluorescence wavelength or a predetermined wavelength of the fluorescence indicator is selectively selected, and fluorescence having these two wavelengths is selected. A wavelength selection means that selectively passes through, a single photometric means that measures the fluorescence intensity of the fluorescence selected by the wavelength selection means, and a ratio of the two fluorescence intensities measured by this photometry means are calculated, A fluorescence photometric device, comprising: a quantitative means for quantifying the concentration of the substance to be inspected by comparing this ratio with a known fluorescence intensity characteristic.
【請求項2】 被検査物質を含む試料に対して該被検査
物質に作用する蛍光指示薬を投与する工程と、 上記蛍光指示薬の励起波長を有する励起光を上記試料に
照射する工程と、 上記励起光の照射により励起された試料から発せられる
蛍光を単一の測光装置により測光する工程と、 上記測光する工程は、測光の最初と最後において上記蛍
光指示薬の等蛍光波長における上記蛍光の蛍光強度を測
光し、且つ測光の中間において所定の波長における上記
蛍光の蛍光強度を測光し、 上記等蛍光波長における蛍光強度と上記所定の波長にお
ける蛍光強度との比を算出するとともに、この比を既知
の蛍光強度特性に照合して上記被検査物質の濃度を定量
する工程と、 を備えていることを特徴とする蛍光測光方法。
2. A step of administering a fluorescence indicator acting on the test substance to a sample containing the test substance; a step of irradiating the sample with excitation light having an excitation wavelength of the fluorescence indicator; The step of photometrically measuring the fluorescence emitted from the sample excited by the irradiation of light with a single photometric device, and the step of photometrically measuring the fluorescence intensity of the fluorescence at the equal fluorescence wavelength of the fluorescent indicator at the beginning and the end of the photometry. Photometric, and in the middle of the photometry to measure the fluorescence intensity of the fluorescence at a predetermined wavelength, to calculate the ratio of the fluorescence intensity at the equal fluorescence wavelength and the fluorescence intensity at the predetermined wavelength, the ratio of known fluorescence And a step of quantifying the concentration of the substance to be inspected by collating with the intensity characteristic, and a fluorescence photometric method.
JP31874594A 1994-12-21 1994-12-21 Fluorometry and fluorometer Withdrawn JPH08178849A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31874594A JPH08178849A (en) 1994-12-21 1994-12-21 Fluorometry and fluorometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31874594A JPH08178849A (en) 1994-12-21 1994-12-21 Fluorometry and fluorometer

Publications (1)

Publication Number Publication Date
JPH08178849A true JPH08178849A (en) 1996-07-12

Family

ID=18102474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31874594A Withdrawn JPH08178849A (en) 1994-12-21 1994-12-21 Fluorometry and fluorometer

Country Status (1)

Country Link
JP (1) JPH08178849A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000056228A (en) * 1998-08-04 2000-02-25 Carl Zeiss Jena Gmbh System for detection by wavelengths to be used for laser scanning microscope, and image recording method
JP2004333579A (en) * 2003-04-30 2004-11-25 Olympus Corp Laser scanning microscope
JP2006528350A (en) * 2003-07-18 2006-12-14 ルミネックス・コーポレーション Method and system for discriminating materials having overlapping spectra
US7696491B2 (en) 2006-06-26 2010-04-13 Olympus Corporation Fluorescence observation or fluorescence measuring system, and fluorescence observation or fluorescence measuring method
CN102235976A (en) * 2010-04-28 2011-11-09 索尼公司 Fluorescence intensity correcting method, fluorescence intensity calculating method, and fluorescence intensity calculating apparatus
KR101479970B1 (en) * 2012-06-22 2015-01-08 (주)엘립소테크놀러지 Microscope For Inspecting ITO Pattern of Touch-Screen Panel And Method Thereof
CN110734090A (en) * 2019-09-24 2020-01-31 南京邮电大学 rare earth ion doping-based α -Ag2WO4Method for preparing optical thermometer

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000056228A (en) * 1998-08-04 2000-02-25 Carl Zeiss Jena Gmbh System for detection by wavelengths to be used for laser scanning microscope, and image recording method
JP2004333579A (en) * 2003-04-30 2004-11-25 Olympus Corp Laser scanning microscope
JP4583723B2 (en) * 2003-04-30 2010-11-17 オリンパス株式会社 Method for discriminating fluorescent reagent dyed sample using laser scanning microscope
JP2006528350A (en) * 2003-07-18 2006-12-14 ルミネックス・コーポレーション Method and system for discriminating materials having overlapping spectra
US7696491B2 (en) 2006-06-26 2010-04-13 Olympus Corporation Fluorescence observation or fluorescence measuring system, and fluorescence observation or fluorescence measuring method
US8825431B2 (en) 2010-04-28 2014-09-02 Sony Corporation Fluorescence intensity correcting method, fluorescence intensity calculating method, and fluorescence intensity calculating apparatus
CN102235976A (en) * 2010-04-28 2011-11-09 索尼公司 Fluorescence intensity correcting method, fluorescence intensity calculating method, and fluorescence intensity calculating apparatus
US10295466B2 (en) 2010-04-28 2019-05-21 Sony Corporation Fluorescence intensity correcting method, fluorescence intensity calculating method, and fluorescence intensity calculating apparatus
US10656090B2 (en) 2010-04-28 2020-05-19 Sony Corporation Fluorescence intensity correcting method, fluorescence intensity calculating method, and fluorescence intensity calculating apparatus
US11262305B2 (en) 2010-04-28 2022-03-01 Sony Corporation Fluorescence intensity correcting method, fluorescence intensity calculating method, and fluorescence intensity calculating apparatus
US11340167B2 (en) 2010-04-28 2022-05-24 Sony Corporation Fluorescence intensity correcting method, fluorescence intensity calculating method, and fluorescence intensity calculating apparatus
KR101479970B1 (en) * 2012-06-22 2015-01-08 (주)엘립소테크놀러지 Microscope For Inspecting ITO Pattern of Touch-Screen Panel And Method Thereof
CN110734090A (en) * 2019-09-24 2020-01-31 南京邮电大学 rare earth ion doping-based α -Ag2WO4Method for preparing optical thermometer

Similar Documents

Publication Publication Date Title
JP2749069B2 (en) Fluorescence microscope equipment
US6566143B2 (en) Multiple label fluorescence polarization assay system and method
JP2970967B2 (en) Intracellular ion concentration measurement method using fluorescent probe reagent
US10379046B2 (en) Method and system for multiplexed time-resolved fluorescence detection
JP2004514878A (en) Versatile microplate analyzer
JPH10170429A (en) Adjustable excitation and/or adjustable detection microplate reader
JPH0915156A (en) Spectroscopic measuring method and measuring device
US8334522B2 (en) Method for the quantitative determination of the concentration of fluorophores of a substance in a sample and apparatus for carrying out the same
US7449151B2 (en) Fluorescence resonance energy transfer analyzer
US20100140506A1 (en) Method of determining a measurement value on the basis of single molecule events
JPH08178849A (en) Fluorometry and fluorometer
US7304733B2 (en) Method and device for conducting the spectral differentiating, imaging measurement of fluorescent light
US6597439B1 (en) Method and apparatus for measurement of light from illuminated specimen eliminating influence of background light
DE60328808D1 (en) FLUORESCENCE ANALYSIS PROCEDURE USING A FLUORESCENT ANTIBODY
US10677734B2 (en) Method and apparatus for optical measurement of liquid sample
JP2749928B2 (en) Sample measuring method and sample measuring device
US20010039005A1 (en) Method for determining drug-serum protein binding
US20030117705A1 (en) Fluorescence polarization assay system and method
FI96638C (en) "Inner filter" correction with a multifunction device based on a fluorescence meter
JPH06317526A (en) Multiple-wavelength light measuring instrument
RU196306U1 (en) TWO CHANNEL FLUORIMETER
Hazlett et al. Application of fluorescence correlation spectroscopy to hapten-antibody binding
JPH09145619A (en) Method and instrument for spectroscopic measurement of scattered light and so on
JPH03221838A (en) Method and device for measuring body to be tested
JP3039700B2 (en) Chemiluminescence measuring method and measuring device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020305