JPH08176798A - Production of functional thin film - Google Patents

Production of functional thin film

Info

Publication number
JPH08176798A
JPH08176798A JP32496194A JP32496194A JPH08176798A JP H08176798 A JPH08176798 A JP H08176798A JP 32496194 A JP32496194 A JP 32496194A JP 32496194 A JP32496194 A JP 32496194A JP H08176798 A JPH08176798 A JP H08176798A
Authority
JP
Japan
Prior art keywords
substrate
thin film
functional thin
film
elastically deformed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32496194A
Other languages
Japanese (ja)
Inventor
Nobuyoshi Sakakibara
伸義 榊原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IDOUTAI TSUSHIN SENTAN GIJUTSU
IDOUTAI TSUSHIN SENTAN GIJUTSU KENKYUSHO KK
Original Assignee
IDOUTAI TSUSHIN SENTAN GIJUTSU
IDOUTAI TSUSHIN SENTAN GIJUTSU KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IDOUTAI TSUSHIN SENTAN GIJUTSU, IDOUTAI TSUSHIN SENTAN GIJUTSU KENKYUSHO KK filed Critical IDOUTAI TSUSHIN SENTAN GIJUTSU
Priority to JP32496194A priority Critical patent/JPH08176798A/en
Publication of JPH08176798A publication Critical patent/JPH08176798A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE: To relieve internal stress produced in a functional thin film at the action temp. of the film even when the material of the film on a substrate is different from the material of the substrate in the coefft. of thermal expansion. CONSTITUTION: When a film of the material 2 of a functional thin film is formed on a substrate 1 at a film formation temp. different from the action temp. of the film to produce a functional thin film, the substrate 1 is elastically deformed and a film of the material 2 is formed on the deformed substrate 1. After thin film formation, the substrate 1 is straightened.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、機能薄膜材料を基板上
に成膜する機能薄膜の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a functional thin film in which a functional thin film material is formed on a substrate.

【0002】[0002]

【従来の技術】従来、超伝導体、半導体、EL、磁性体
などの機能薄膜材料(機能薄膜材料とは、材料そのもの
が有する機械的な特性以外に機能特性を有するものをい
う)を基板上に成膜する場合には、蒸着法、スパッタ
法、CVD法などが用いられている。いずれの方法にお
いても機能薄膜の特性を十分に得るためには成膜条件と
しての成膜温度が重要となり、所定の温度でなければ品
質の良い機能薄膜を得ることができない。
2. Description of the Related Art Conventionally, functional thin film materials such as superconductors, semiconductors, ELs, and magnetic materials (functional thin film materials have functional characteristics in addition to the mechanical characteristics of the materials themselves) are placed on a substrate. When forming a film on the substrate, a vapor deposition method, a sputtering method, a CVD method or the like is used. In any of the methods, the film forming temperature as a film forming condition is important for obtaining sufficient characteristics of the functional thin film, and a functional thin film of good quality cannot be obtained unless the temperature is a predetermined temperature.

【0003】[0003]

【発明が解決しようとする課題】ところで、その機能薄
膜における成膜温度は、一般に、動作温度とは異なって
いる。このため、成膜時には機能薄膜には内部応力は生
じないが、基板材料と機能薄膜材料の熱膨張係数が異な
っていると、動作時に機能薄膜に内部応力が発生する。
この内部応力は、機能薄膜の特性を悪化させる(199
4年秋期 第55回応用物理学会学術講演会 講演予稿
集 NO.1 22a−ZT−8参照)。従って、動作温
度において内部応力を抑制することが望まれる。
By the way, the film forming temperature of the functional thin film is generally different from the operating temperature. Therefore, internal stress does not occur in the functional thin film during film formation, but if the substrate material and the functional thin film material have different thermal expansion coefficients, internal stress occurs in the functional thin film during operation.
This internal stress deteriorates the characteristics of the functional thin film (199
Proceedings of 55th Annual Meeting of the Japan Society of Applied Physics, Autumn 4th year, No. 122a-ZT-8). Therefore, it is desirable to suppress internal stress at operating temperatures.

【0004】動作温度における内部応力を低減するに
は、基板に熱膨張係数が機能薄膜と等しい材料を用いれ
ば良い。しかし、例えば基板上に機能薄膜をエピタキシ
ャル成長させる場合には機能薄膜の結晶の格子定数の近
い材料に基板材料が限定されるため、この場合には、熱
膨張係数と格子定数がともに近い材料しか基板として使
用できず、場合によってはそのような基板が存在しない
ことも考えられる。
In order to reduce the internal stress at the operating temperature, a material having a coefficient of thermal expansion equal to that of the functional thin film may be used for the substrate. However, for example, when a functional thin film is epitaxially grown on a substrate, the substrate material is limited to a material having a crystal lattice constant close to that of the functional thin film. In this case, therefore, only a material having a thermal expansion coefficient and a lattice constant close to each other is used. It is also conceivable that no such substrate exists in some cases.

【0005】本発明は上記問題に鑑みてなされたもの
で、動作時における内部応力を低減させるとともに、基
板材料の選択の自由度を大きくすることを目的とする。
The present invention has been made in view of the above problems, and an object thereof is to reduce internal stress during operation and to increase the degree of freedom in selecting a substrate material.

【0006】[0006]

【課題を解決するための手段】本願発明者は、機能薄膜
は成膜時には応力フリーで形成されため、その後の動作
温度時に内部応力を抑制できれば基板材料の選択の自由
度を増やすことができるという点に着目した。かかる観
点に基づいてなされた本発明は、請求項の各項に記載し
て特徴を有する。すなわち、請求項1に記載の発明にお
いては、成膜温度と動作温度の異なる機能薄膜材料
(2)を基板(1)上に成膜する機能薄膜の製造方法に
おいて、前記基板(1)を弾性変形させた後、前記機能
薄膜材料(2)を前記基板(1)上に成膜し、この成膜
後に前記基板(1)の弾性変形を解除することを特徴と
している。
The inventor of the present application states that the functional thin film is formed without stress at the time of film formation, so that if the internal stress can be suppressed at the subsequent operating temperature, the degree of freedom in selecting the substrate material can be increased. Focused on the point. The present invention made based on this point of view has the features described in each of the claims. That is, in the invention according to claim 1, in the method for producing a functional thin film, wherein the functional thin film material (2) having a different film forming temperature and an operating temperature is formed on the substrate (1), the substrate (1) is elastic. After the deformation, the functional thin film material (2) is formed into a film on the substrate (1), and after this film formation, the elastic deformation of the substrate (1) is released.

【0007】請求項2に記載の発明では、請求項1に記
載の発明において、前記基板(1)の成膜側表面の伸縮
度合い(L3−L2)が、前記機能薄膜材料の熱膨張係
数と前記基板の材料の熱膨張係数の差(Δρ)および前
記機能薄膜の成膜温度と動作温度の差(ΔT)により決
定される、前記基板と前記機能薄膜の伸縮量の差(Δ
L)に相当するように、前記基板(1)を弾性変形させ
ることを特徴としている。
According to a second aspect of the invention, in the invention of the first aspect, the degree of expansion and contraction (L3-L2) of the film-forming side surface of the substrate (1) is equal to the thermal expansion coefficient of the functional thin film material. The difference in expansion and contraction amount (ΔT) between the substrate and the functional thin film, which is determined by the difference (Δρ) in the coefficient of thermal expansion of the material of the substrate and the difference (ΔT) in the film forming temperature and the operating temperature of the functional thin film.
The substrate (1) is elastically deformed so as to correspond to L).

【0008】請求項3に記載の発明では、請求項1又は
2に記載の発明において、前記弾性変形時に前記基板
(1)に発生する曲げ応力が基板(1)の曲げ強度以下
となっていることを特徴としている。請求項4に記載の
発明においては、成膜温度と動作温度の異なる機能薄膜
材料(2)を基板(1)上に成膜する機能薄膜の製造方
法において、前記成膜温度と動作温度の温度差による、
前記機能薄膜と前記基板の伸縮量の差をキャンセルすべ
く、前記基板(1)を前記成膜前に弾性変形させ、成膜
中において前記変形を維持することを特徴としている。
According to a third aspect of the present invention, in the first or second aspect of the invention, the bending stress generated in the substrate (1) during the elastic deformation is less than the bending strength of the substrate (1). It is characterized by that. In the invention according to claim 4, in the method for producing a functional thin film, wherein a functional thin film material (2) having a different film forming temperature and an operating temperature is formed on a substrate (1), the temperature of the film forming temperature and the operating temperature is Due to the difference
In order to cancel the difference in expansion / contraction amount between the functional thin film and the substrate, the substrate (1) is elastically deformed before the film formation, and the deformation is maintained during the film formation.

【0009】請求項5に記載の発明においては、成膜温
度が動作温度より高い機能薄膜材料(2)を基板(1)
上に成膜する機能薄膜の製造方法において、前記機能薄
膜材料と基板材料の熱膨張係数により、その大小関係に
対応して前記基板(1)の成膜側がそれぞれ凸凹となる
ように前記基板を弾性変形させ、この弾性弾性変形して
いる基板(1)上に前記機能薄膜材料(2)を成膜し、
この成膜後、前記基板(1)の弾性変形を解除すること
を特徴としている。
In a fifth aspect of the invention, the functional thin film material (2) having a film forming temperature higher than the operating temperature is provided on the substrate (1).
In the method for producing a functional thin film formed on the substrate, the substrate is formed so that the film-forming side of the substrate (1) is uneven depending on the size relationship between the functional thin film material and the substrate material. Elastically deformed, and the functional thin film material (2) is deposited on the elastically and elastically deformed substrate (1),
After this film formation, the elastic deformation of the substrate (1) is released.

【0010】請求項6に記載の発明においては、成膜温
度が動作温度より低い機能薄膜材料(2)を基板(1)
上に成膜する機能薄膜の製造方法において、前記機能薄
膜材料と基板材料の熱膨張係数により、その大小関係に
対応して前記基板(1)の成膜側がそれぞれ凹凸となる
ように前記基板を弾性変形させ、この弾性弾性変形して
いる基板(1)上に前記機能薄膜材料(2)を成膜し、
この成膜後、前記基板(1)の弾性変形を解除すること
を特徴としている。
In a sixth aspect of the present invention, the functional thin film material (2) whose film forming temperature is lower than the operating temperature is formed on the substrate (1).
In the method of manufacturing a functional thin film formed on the substrate, the substrate is formed so that the film-forming side of the substrate (1) becomes uneven depending on the size relationship between the functional thin film material and the substrate material. Elastically deformed, and the functional thin film material (2) is deposited on the elastically and elastically deformed substrate (1),
After this film formation, the elastic deformation of the substrate (1) is released.

【0011】請求項7に記載の発明では、請求項1乃至
6のいずれか1つに記載の発明において、前記基板
(1)の端部を支点として前記基板の中央部に所定の荷
重を印加することにより前記基板を弾性変形させること
を特徴としている(図3の例)。請求項8に記載の発明
では、請求項1乃至6のいずれか1つに記載の発明にお
いて、前記基板(1)の裏面側の圧力と前記基板(1)
の表面側の圧力の差により前記基板(1)を弾性変形さ
せることを特徴としている(図4の例)。
According to a seventh aspect of the present invention, in the invention according to any one of the first to sixth aspects, a predetermined load is applied to the central portion of the substrate with the end portion of the substrate (1) as a fulcrum. By doing so, the substrate is elastically deformed (example of FIG. 3). In the invention according to claim 8, in the invention according to any one of claims 1 to 6, the pressure on the back surface side of the substrate (1) and the substrate (1)
The substrate (1) is elastically deformed by the difference in pressure on the surface side of the substrate (1) (example of FIG. 4).

【0012】請求項9に記載の発明では、請求項1乃至
6のいずれか1つに記載の発明において、所定の湾曲形
状を有する基板ホルダー(51)の前記湾曲形状に沿っ
て前記基板(1)を固定することにより前記基板(1)
を弾性変形させることを特徴としている(図5の例)。
請求項10に記載の発明では、請求項1乃至6のいずれ
か1つに記載の発明において、前記基板(1)に基板変
形部材(61)を設け、前記成膜温度において前記基板
(1)と前記基板変形部材(61)の熱膨張係数の差に
より前記基板(1)を弾性変形させることを特徴として
いる(図6の例)。
According to a ninth aspect of the invention, in the invention according to any one of the first to sixth aspects, the substrate (1) is provided along the curved shape of the substrate holder (51) having a predetermined curved shape. ) By fixing the substrate (1)
Is elastically deformed (example of FIG. 5).
According to a tenth aspect of the invention, in the invention according to any one of the first to sixth aspects, the substrate (1) is provided with a substrate deforming member (61), and the substrate (1) is provided at the film forming temperature. The substrate (1) is elastically deformed by the difference in thermal expansion coefficient between the substrate deformation member (61) and the substrate deformation member (61) (example of FIG. 6).

【0013】なお、上記各手段のカッコ内の符号等は、
後述する実施例記載の具体的手段との対応関係を示すも
のである。
The reference numerals in parentheses for the above means are as follows:
It shows a correspondence relationship with a specific means described in the embodiments described later.

【0014】[0014]

【発明の作用効果】請求項各項に記載の発明によれば、
基板を弾性変形させた後に機能薄膜材料を成膜し、その
後、基板の弾性変形を解除している。従って、基板材料
と機能薄膜材料の熱膨張係数に差がある場合でも、機能
薄膜の成膜時に基板を変形させておくことで機能薄膜の
動作温度において膜内に発生する内部応力を低減させる
ことができる。
According to the invention described in each claim,
After the substrate is elastically deformed, the functional thin film material is deposited, and then the elastic deformation of the substrate is released. Therefore, even if there is a difference in the coefficient of thermal expansion between the substrate material and the functional thin film material, the internal stress generated in the film at the operating temperature of the functional thin film can be reduced by deforming the substrate during film formation of the functional thin film. You can

【0015】また、基板材料と機能薄膜材料の熱膨張係
数の差が少ないものでなくても上記応力低減が図れるた
め、基板材料の選択の自由度を高めることができる。
Further, since the stress can be reduced even if the difference in the coefficient of thermal expansion between the substrate material and the functional thin film material is small, the degree of freedom in selecting the substrate material can be increased.

【0016】[0016]

【実施例】以下、本発明を図に示す実施例について説明
する。図1は本発明を適用した機能薄膜の製造方法の一
実施例を示す工程模式断面図である。以下、一例として
機能薄膜の1つである高温超伝導体(High Temperature
Superconductors : HTS)薄膜の場合について説明す
る。また、HTS材料の熱膨張係数が基板材料の熱膨張
係数よりも大きい場合を想定する。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a process schematic sectional view showing an embodiment of a method for producing a functional thin film to which the present invention is applied. As an example, a high temperature superconductor (High Temperature
The case of a Superconductors: HTS) thin film will be described. Further, it is assumed that the thermal expansion coefficient of the HTS material is larger than the thermal expansion coefficient of the substrate material.

【0017】まず、基板1となる材料を成膜装置にセッ
トする(図1(a))。この時、基板の温度は室温であ
る。次に、成膜温度まで基板温度を上昇させるとともに
所定の分だけ基板1を弾性変形させる(図1(b))。
ここで、HTS材料の熱膨張係数が基板材料の熱膨張係
数よりも大きいと想定しているので、成膜側表面が凸と
なるように弾性変形させる。この基板1の状態を維持し
たままでHTS材料2を基板1上に成膜させる(図1
(c))。この成膜は、レーザーアブレーション蒸着
法、スパッタ法、CVD法などによりHTS材料をエピ
タキシャル成長させることにより行う。この時、基板1
には変形のために応力がかかっているが、HTS膜2は
応力フリーとなっている。
First, the material to be the substrate 1 is set in the film forming apparatus (FIG. 1 (a)). At this time, the temperature of the substrate is room temperature. Next, the substrate temperature is raised to the film formation temperature and the substrate 1 is elastically deformed by a predetermined amount (FIG. 1B).
Here, since it is assumed that the thermal expansion coefficient of the HTS material is larger than the thermal expansion coefficient of the substrate material, it is elastically deformed so that the film formation side surface becomes convex. The HTS material 2 is deposited on the substrate 1 while maintaining the state of the substrate 1 (see FIG. 1).
(C)). This film formation is performed by epitaxially growing an HTS material by a laser ablation vapor deposition method, a sputtering method, a CVD method or the like. At this time, the substrate 1
Is stressed due to deformation, but the HTS film 2 is stress-free.

【0018】成膜が終了し、基板1及びHTS膜2を室
温まで冷却するとともに基板1の変形を解除する(図1
(d))。この場合、HTS材料の方が基板材料よりも
熱膨張係数が大きいので冷却時には、HTS膜2の方が
基板1よりも余分に収縮することになる。従って、基板
1を変形させずに成膜した場合にはHTS膜2に引っ張
り応力が発生することになるが、図1に示すように予め
基板を変形させておけば変形を解除した際にこの分だけ
基板1が収縮するために熱膨張係数差による内部応力の
発生をキャンセルすることができる。
After the film formation is completed, the substrate 1 and the HTS film 2 are cooled to room temperature and the deformation of the substrate 1 is released (FIG. 1).
(D)). In this case, since the HTS material has a larger coefficient of thermal expansion than the substrate material, the HTS film 2 shrinks more than the substrate 1 during cooling. Therefore, when the film is formed without deforming the substrate 1, tensile stress is generated in the HTS film 2, but if the substrate is deformed in advance as shown in FIG. Since the substrate 1 contracts by that amount, it is possible to cancel the generation of internal stress due to the difference in thermal expansion coefficient.

【0019】なお、成膜後に基板1の弾性変形を解除さ
せる場合、動作温度下まで一度に温度低下させてその解
除を行う必要はなく、上記のように室温まで温度低下さ
せ、動作時に動作温度まで低下させた場合に、内部応力
の発生がキャンセルできるようにすればよい。ここで、
上記の実施例において、基板を弾性変形させる時に基板
を破壊させないようにする必要がある。そこで、具体的
に変形量と基板の内部応力(曲げ応力)を求め、基板材
料の曲げ強度との比較により、この点について考察す
る。
When the elastic deformation of the substrate 1 is to be released after the film formation, it is not necessary to lower the temperature to the operating temperature at once and then to release it. It is sufficient to be able to cancel the generation of the internal stress when it is reduced to here,
In the above embodiment, it is necessary to prevent the substrate from being destroyed when elastically deforming the substrate. Therefore, the deformation amount and the internal stress (bending stress) of the substrate are specifically obtained, and this point will be considered by comparison with the bending strength of the substrate material.

【0020】図2に、基板の変形前後における寸法パラ
メータを示す。基板として、直径L2、板厚tの円板を
仮定する(図2(a))。この円板が図2(b)のよう
に球殻状に変形したとする。ここで、球殻の中央は変形
前の直径L2で変化せず、球殻の内側がL1に縮み、球
殻の外側がL3に伸びる。なお、それぞれに対して曲率
半径はR2、R1、R3になる。ここで、このときの球
殻の立体角をθとすると、L、R、θの間には数1〜3
に示す関係がある。
FIG. 2 shows dimensional parameters before and after the deformation of the substrate. A disk having a diameter L2 and a plate thickness t is assumed as the substrate (FIG. 2A). It is assumed that this disk is deformed into a spherical shell shape as shown in FIG. Here, the center of the spherical shell does not change at the diameter L2 before deformation, the inner side of the spherical shell shrinks to L1, and the outer side of the spherical shell extends to L3. The radii of curvature are R2, R1 and R3, respectively. Here, assuming that the solid angle of the spherical shell at this time is θ, the numbers 1 to 3 are between L, R, and θ.
Have the relationship shown in.

【0021】[0021]

【数1】L1=R1×θ=(2πR1×(θ/2π))## EQU1 ## L1 = R1 × θ = (2πR1 × (θ / 2π))

【0022】[0022]

【数2】L2=R2×θ(2) L2 = R2 × θ

【0023】[0023]

【数3】L3=R3×θ 従って、変形による成膜側表面の伸び量(L3−L2)
は数4の式で与えられる。
[Equation 3] L3 = R3 × θ Therefore, the amount of elongation of the film formation side surface due to deformation (L3−L2)
Is given by the equation (4).

【0024】[0024]

【数4】L3−L2=(R3−R2)×θ=(R2+t
/2−R2)×θ=t×θ/2 ここで、基板材料とHTS材料の熱膨張係数の差をΔ
ρ、成膜温度と冷却時の温度差をΔTとした場合、温度
差に伴う収縮のズレ分ΔLを(L3−L2)でキャンセ
ルできればよいから、数5の関係が成り立つ。
## EQU00004 ## L3-L2 = (R3-R2) *. Theta. = (R2 + t
/ 2-R2) × θ = t × θ / 2 where Δ is the difference in thermal expansion coefficient between the substrate material and the HTS material.
If ρ, the film formation temperature and the temperature difference at the time of cooling are ΔT, it is sufficient that the deviation ΔL of the shrinkage due to the temperature difference can be canceled by (L3−L2), and therefore the relationship of Equation 5 holds.

【0025】[0025]

【数5】 ΔL=L2×Δρ×ΔT=L3−L2=t×θ/2 従って、θ=2×L2×Δρ×ΔT/tとなる。また、
直径L2の板が立体角θだけ湾曲した場合、たわみ量Δ
Rは、数6で表される。
ΔL = L2 × Δρ × ΔT = L3-L2 = t × θ / 2 Therefore, θ = 2 × L2 × Δρ × ΔT / t. Also,
When the plate having the diameter L2 is curved by the solid angle θ, the amount of deflection Δ
R is represented by Formula 6.

【0026】[0026]

【数6】ΔR=R2−R2×cos(θ/2) =R2×(1−cos(L2×Δρ×ΔT /t) また、基板の全面に均一荷重pがかけられた時のたわみ
量ΔRおよび曲げ応力σは、数7、数8の式で与えられ
る。
## EQU6 ## ΔR = R2-R2 × cos (θ / 2) = R2 × (1-cos (L2 × Δρ × ΔT / t) Further, the deflection amount ΔR when a uniform load p is applied to the entire surface of the substrate. The bending stress σ is given by the equations (7) and (8).

【0027】[0027]

【数7】 ΔR=p×a4 ×(5+ν)/64D/(1+ν)ΔR = p × a 4 × (5 + ν) / 64D / (1 + ν)

【0028】[0028]

【数8】σ=3×(3+ν)×p×a2 /8/t2 ここで、D=E×t3 /12/(1−ν2 )、a=L2
/2であり、E及びνはそれぞれ基板材料のヤング率と
ポアソン比である。以上の仮定を基に実際にHTS材料
としてYB2 Cu3 7 を用い、基板材料としてLaA
lO3 を用いた場合の荷重pと曲げ応力を求める。な
お、YB2 Cu3 7 及びLaAlO3 の線熱膨張係数
は、論文「Supercond. Sci.Technol.7(1994) 609-622
」より表1で与えられる。
Equation 8] σ = 3 × (3 + ν ) × p × a 2/8 / t 2 where, D = E × t 3/ 12 / (1-ν 2), a = L2
/ 2 and E and ν are the Young's modulus and Poisson's ratio of the substrate material, respectively. Based on the above assumptions, YB 2 Cu 3 O 7 was actually used as the HTS material, and LaA was used as the substrate material.
The load p and bending stress when using 10 3 are obtained. The linear thermal expansion coefficient of YB 2 Cu 3 O 7 and LaAlO 3 is described in the paper “Supercond. Sci. Technol. 7 (1994) 609-622.
Is given in Table 1.

【0029】[0029]

【表1】 成膜時の温度を973K、冷却時の温度を77Kとすれ
ば、差ΔTは896degとなる。LaAlO3 の機械
物性については未だ十分に調べられていないのでAl2
3 の値で代用することにした。ヤング率は380GN
/m(3,877,511kg/cm2 )、ポアソン比
は0.25、曲げ強度は、文献「ケラスの本 ファイン
セラミクス エレセラ出版委員会編 140頁」より、
784MN/m2 (8,000kg/cm2 )とした。
これらにより計算された結果を表2に示す。
[Table 1] If the temperature during film formation is 973 K and the temperature during cooling is 77 K, the difference ΔT is 896 deg. Since the mechanical properties of LaAlO 3 have not been sufficiently investigated, Al 2
I decided to substitute the value of O 3 . Young's modulus is 380GN
/ M (3,877,511 kg / cm 2 ), Poisson's ratio is 0.25, and bending strength is from the document “Keras's Book Fine Ceramics Eresera Publishing Committee, page 140”.
784 MN / m 2 (8,000 kg / cm 2 ).
The results calculated by these are shown in Table 2.

【0030】[0030]

【表2】 表2より、直径2.5cm、板厚500μmのLaAl
3 基板の場合、たわみ量は280μmであり、このと
きの曲げ応力は5,734kg/cm2 であるため曲げ
強度8,000kg/cm2 よりも小さく、変形による
破壊はない。
[Table 2] From Table 2, LaAl with a diameter of 2.5 cm and a plate thickness of 500 μm
O 3 case of a substrate, the amount of deflection is 280 .mu.m, bending stress at this time is smaller than the bending strength 8,000 kg / cm 2 for a 5,734kg / cm 2, no destruction due to deformation.

【0031】当然のことながら、基板材料については曲
げ強度が十分に大きくなく所定の形状まで変形しようと
すると、破壊する場合も考えられる。この場合には、基
板の曲げ強度の許容範囲内で変形を行う。これによっ
て、完全に内部応力を削減することはできないが、内部
応力を従来に比べて低減できることは確実であり、機能
薄膜の特性は向上する。
As a matter of course, the bending strength of the substrate material is not sufficiently large, and it may be broken when it is deformed into a predetermined shape. In this case, the deformation is performed within the allowable range of the bending strength of the substrate. Although this cannot completely reduce the internal stress, it is certain that the internal stress can be reduced as compared with the conventional one, and the characteristics of the functional thin film are improved.

【0032】次に、基板に変形を与える具体的方法につ
いて説明する。図3に、基板に変形を与える第1の方法
を示す。基板ホルダー31により基板1を保持し、基板
1に加圧ピン32を押しつけることによって基板1を変
形させる。従って、基板1の端部を支点として基板1の
中央部に所定の荷重が印加され基板1が弾性変形する。
なお、33はスプリング、34は圧力計である。
Next, a specific method of deforming the substrate will be described. FIG. 3 shows a first method for applying a deformation to the substrate. The substrate 1 is held by the substrate holder 31, and the substrate 1 is deformed by pressing the pressure pin 32 against the substrate 1. Therefore, a predetermined load is applied to the central portion of the substrate 1 with the end portion of the substrate 1 as a fulcrum, and the substrate 1 elastically deforms.
In addition, 33 is a spring and 34 is a pressure gauge.

【0033】加圧ピン32により基板1を所定の圧力で
押しつけた状態で成膜を行い、成膜終了後に基板温度の
低下とともに加圧ピン32による圧力を解除し、基板1
の変形を解除する。図4に、基板に変形を与える第2の
方法を示す。この方法においては、基板ホルダー41に
より基板1を保持し、図3に示す加圧ピン32の代わり
に加圧媒体を用いて基板1の裏面全面に均一荷重を印加
する。
The substrate 1 is pressed by the pressure pin 32 at a predetermined pressure to form a film, and after the film formation is completed, the pressure of the pressure pin 32 is released as the temperature of the substrate is lowered.
Cancel the transformation of. FIG. 4 shows a second method for deforming the substrate. In this method, the substrate 1 is held by the substrate holder 41, and a pressure medium is used instead of the pressure pins 32 shown in FIG. 3 to apply a uniform load to the entire back surface of the substrate 1.

【0034】ここで、基板1の裏面に、圧力導入ケース
42およびシール部材(Oリング)43を設置し、図に
示すような密閉した状態にて加圧を行う。加圧時の加圧
媒体の圧力をp1とし、基板表面側の圧力をp2とする
と、(p1−p2)の圧力差に相当する圧力によって基
板1が変形する。この状態で成膜を行い、成膜終了後に
基板温度の低下とともに加圧媒体の圧力を低減し、基板
1の変形を解除する。
Here, a pressure introducing case 42 and a seal member (O ring) 43 are installed on the back surface of the substrate 1, and pressure is applied in a sealed state as shown in the figure. When the pressure of the pressurizing medium at the time of pressurization is p1 and the pressure on the substrate surface side is p2, the substrate 1 is deformed by the pressure corresponding to the pressure difference of (p1-p2). Film formation is performed in this state, and after the film formation is completed, the substrate temperature is lowered and the pressure of the pressurizing medium is reduced to release the deformation of the substrate 1.

【0035】図5に、基板に変形を与える第3の方法を
示す。この方法においては、基板ホルダー51に所定の
湾曲面を形成しておき、基板1をこの基板ホルダー51
に固定することにより基板1を変形させる。具体的に
は、基板固定治具52により基板1を基板ホルダー51
に固定(複数箇所あるいは円周方向全体に渡って固定)
し、強制的に基板1を変形させる(図5(a))。その
後、ヒータ線53により所定の温度まで加熱し、HTS
膜2を成膜する(図5(b))。成膜終了後、冷却し基
板1を取り出す時に基板1の変形を解除する(図5
(c))。
FIG. 5 shows a third method of deforming the substrate. In this method, a predetermined curved surface is formed on the substrate holder 51, and the substrate 1 is placed on the substrate holder 51.
The substrate 1 is deformed by fixing the substrate 1. Specifically, the substrate 1 is fixed by the substrate fixing jig 52 to the substrate holder 51.
Fixed to (fixed at multiple locations or the entire circumference)
Then, the substrate 1 is forcibly deformed (FIG. 5A). After that, the heater wire 53 is heated to a predetermined temperature, and the HTS
The film 2 is formed (FIG. 5B). After completion of film formation, when the substrate 1 is cooled and taken out, the deformation of the substrate 1 is released (FIG. 5).
(C)).

【0036】図6に、基板に変形を与える第4の方法を
示す。この方法においては、基板1の裏面に基板変形用
膜61を形成し、これによって基板1を変形させる。ま
ず、基板変形用膜61を基板1の裏面に形成する(図6
(a))。この基板変形用膜61はHTS膜2を形成す
る温度において所定の量だけ基板1を変形させるもので
あり、基板1に比べて熱膨張係数が小さい材料を選定す
る。この基板変形用膜61を裏面に形成した基板1は加
熱時にその熱膨張係数の差によってHTS膜2を形成す
る側(表面側)が凸となるように変形する(図6
(b))。
FIG. 6 shows a fourth method for deforming the substrate. In this method, a substrate-deforming film 61 is formed on the back surface of the substrate 1, and thereby the substrate 1 is deformed. First, the substrate deformation film 61 is formed on the back surface of the substrate 1 (FIG. 6).
(A)). The substrate deforming film 61 deforms the substrate 1 by a predetermined amount at the temperature at which the HTS film 2 is formed, and a material having a smaller thermal expansion coefficient than the substrate 1 is selected. The substrate 1 having the substrate deforming film 61 formed on the back surface is deformed so that the side (front surface side) on which the HTS film 2 is formed is convex due to the difference in the coefficient of thermal expansion during heating (FIG. 6).
(B)).

【0037】その後、HTS膜2を成膜し(図6
(c))、これを冷却すると基板1の変形が解除され、
平板となる(図6(d))。その後、基板変形用膜61
を除去する。なお、上記実施例においては、機能薄膜の
成膜温度が動作温度よりも高い場合で、機能薄膜材料の
熱膨張係数が基板の材料の熱膨張係数よりも大きい時
に、基板の成膜側が凸になるように基板を弾性変形させ
るものを示したが、その基板の変形の仕方については以
下のようにすることができる。
After that, the HTS film 2 is formed (see FIG. 6).
(C)), when this is cooled, the deformation of the substrate 1 is released,
It becomes a flat plate (FIG. 6 (d)). Then, the substrate deformation film 61
Is removed. In the above example, when the film forming temperature of the functional thin film is higher than the operating temperature and the coefficient of thermal expansion of the functional thin film material is larger than the coefficient of thermal expansion of the material of the substrate, the film forming side of the substrate becomes convex. Although the substrate is elastically deformed as described above, the method of deforming the substrate can be as follows.

【0038】すなわち、機能薄膜の成膜温度が動作温度
よりも高い場合で、機能薄膜材料の熱膨張係数が基板の
材料の熱膨張係数よりも小さい時には、基板の成膜側が
凹になるように基板を弾性変形させる。また、機能薄膜
の成膜温度が動作温度よりも低い場合で、機能薄膜材料
の熱膨張係数が基板材料の熱膨張係数よりも大きい時に
は基板の成膜側が凹、小さい時には凸となるように基板
を弾性変形させる。
That is, when the film forming temperature of the functional thin film is higher than the operating temperature and the coefficient of thermal expansion of the functional thin film material is smaller than the coefficient of thermal expansion of the material of the substrate, the film forming side of the substrate becomes concave. The substrate is elastically deformed. In addition, when the film-forming temperature of the functional thin film is lower than the operating temperature, the film-forming side of the substrate is concave when the coefficient of thermal expansion of the functional thin-film material is larger than the coefficient of thermal expansion of the substrate material. Elastically deform.

【0039】以上のべたように、基板材料と機能薄膜の
熱膨張係数に差がある場合、機能薄膜の成膜時に基板を
変形させることで機能薄膜の動作温度において膜内に発
生する内部応力を低減、緩和することができるので、機
能薄膜の持つ特性を悪化させることなく高品位に維持す
ることができる。なお、上記実施例では、機能薄膜とし
てHTS膜を取り上げたが、他の機能材料(半導体薄
膜、EL膜、磁性薄膜など)においても、基板材料と機
能薄膜材料の熱膨張係数が異なり、かつ成膜温度と動作
温度が異なる場合には本発明を適用することができる。
As described above, when there is a difference in the coefficient of thermal expansion between the substrate material and the functional thin film, the internal stress generated in the film at the operating temperature of the functional thin film can be reduced by deforming the substrate when the functional thin film is formed. Since it can be reduced or eased, it is possible to maintain high quality without deteriorating the characteristics of the functional thin film. Although the HTS film is taken as the functional thin film in the above-mentioned embodiments, the thermal expansion coefficient of the substrate material and the functional thin film material are different even in other functional materials (semiconductor thin film, EL film, magnetic thin film, etc.) The present invention can be applied when the film temperature and the operating temperature are different.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を適用した機能薄膜の製造方法の一実施
例を示す工程模式断面図である。
FIG. 1 is a process schematic cross-sectional view showing an example of a method for producing a functional thin film to which the present invention is applied.

【図2】基板の変形前後における寸法パラメータを説明
するための説明図である。
FIG. 2 is an explanatory diagram for explaining dimensional parameters before and after deformation of a substrate.

【図3】基板に変形を与える第1の方法を示す図であ
る。
FIG. 3 is a diagram showing a first method for applying deformation to a substrate.

【図4】基板に変形を与える第2の方法を示す図であ
る。
FIG. 4 is a diagram showing a second method for applying deformation to a substrate.

【図5】基板に変形を与える第3の方法を示す図であ
る。
FIG. 5 is a diagram showing a third method of applying deformation to a substrate.

【図6】基板に変形を与える第4の方法を示す図であ
る。
FIG. 6 is a diagram showing a fourth method of applying deformation to a substrate.

【符号の説明】[Explanation of symbols]

1…基板、2…HTS膜、31、41、51…基板ホル
ダー、32…加圧ピン、42…圧力導入ケース、52…
基板固定治具、61…基板変形用膜。
1 ... Substrate, 2 ... HTS film, 31, 41, 51 ... Substrate holder, 32 ... Pressurizing pin, 42 ... Pressure introducing case, 52 ...
Substrate fixing jig, 61 ... Substrate deforming film.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/205 // C23C 14/28 ZAA 14/34 ZAA ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Internal reference number FI Technical indication H01L 21/205 // C23C 14/28 ZAA 14/34 ZAA

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 成膜温度と動作温度の異なる機能薄膜材
料を基板上に成膜する機能薄膜の製造方法において、 前記基板を弾性変形させた後、前記機能薄膜材料を前記
基板上に成膜し、この成膜後に前記基板の弾性変形を解
除することを特徴とする機能薄膜の製造方法。
1. A method of manufacturing a functional thin film, wherein a functional thin film material having different film forming temperatures and operating temperatures is formed on a substrate, wherein the functional thin film material is formed on the substrate after elastically deforming the substrate. Then, the method for producing a functional thin film, wherein the elastic deformation of the substrate is released after the film formation.
【請求項2】 前記基板の成膜側表面の伸縮度合いが、
前記機能薄膜材料の熱膨張係数と前記基板の材料の熱膨
張係数の差および前記機能薄膜の成膜温度と動作温度の
差により決定される、前記基板と前記機能薄膜の伸縮量
の差に相当するように、前記基板を弾性変形させること
を特徴とする請求項1に記載の機能薄膜の製造方法。
2. The degree of expansion and contraction of the film formation side surface of the substrate is
Equivalent to the difference between the expansion and contraction amounts of the substrate and the functional thin film, which is determined by the difference between the coefficient of thermal expansion of the functional thin film material and the coefficient of thermal expansion of the material of the substrate and the difference between the film forming temperature and the operating temperature of the functional thin film. The method for producing a functional thin film according to claim 1, wherein the substrate is elastically deformed so as to do so.
【請求項3】 前記弾性変形時に前記基板に発生する曲
げ応力が基板の曲げ強度以下となっていることを特徴と
する請求項1又は2に記載の機能薄膜の製造方法。
3. The method for producing a functional thin film according to claim 1, wherein the bending stress generated in the substrate during the elastic deformation is not more than the bending strength of the substrate.
【請求項4】 成膜温度と動作温度の異なる機能薄膜材
料を基板上に成膜する機能薄膜の製造方法において、 前記成膜温度と動作温度の温度差による、前記機能薄膜
と前記基板の伸縮量の差をキャンセルすべく、前記基板
を前記成膜前に弾性変形させ、成膜中において前記変形
を維持することを特徴とする機能薄膜の製造方法。
4. A method for manufacturing a functional thin film, wherein functional thin film materials having different film forming temperatures and operating temperatures are formed on a substrate, wherein expansion and contraction of the functional thin film and the substrate due to a temperature difference between the film forming temperature and the operating temperature. A method for producing a functional thin film, comprising elastically deforming the substrate before the film formation so as to cancel the difference in the amount, and maintaining the deformation during the film formation.
【請求項5】 成膜温度が動作温度より高い機能薄膜材
料を基板上に成膜する機能薄膜の製造方法において、 前記機能薄膜材料と基板材料の熱膨張係数により、その
大小関係に対応して前記基板の成膜側がそれぞれ凸凹と
なるように前記基板を弾性変形させ、 この弾性弾性変形している基板上に前記機能薄膜材料を
成膜し、この成膜後、前記基板の弾性変形を解除するこ
とを特徴とする機能薄膜の製造方法。
5. A method of manufacturing a functional thin film, wherein a functional thin film material having a film forming temperature higher than an operating temperature is formed on a substrate, the thermal expansion coefficient of the functional thin film material and the substrate material being set to correspond to the magnitude relationship. The substrate is elastically deformed so that the film forming sides of the substrate are uneven, and the functional thin film material is formed on the elastically deformed substrate, and after this film formation, the elastic deformation of the substrate is released. A method for producing a functional thin film, comprising:
【請求項6】 成膜温度が動作温度より低い機能薄膜材
料を基板上に成膜する機能薄膜の製造方法において、 前記機能薄膜材料と基板材料の熱膨張係数により、その
大小関係に対応して前記基板の成膜側がそれぞれ凹凸と
なるように前記基板を弾性変形させ、 この弾性弾性変形している基板上に前記機能薄膜材料を
成膜し、この成膜後、前記基板の弾性変形を解除するこ
とを特徴とする機能薄膜の製造方法。
6. A method of manufacturing a functional thin film, wherein a functional thin film material having a film forming temperature lower than an operating temperature is formed on a substrate, the thermal expansion coefficient of the functional thin film material and the substrate material is used to correspond to the magnitude relationship. The substrate is elastically deformed so that the film formation side of the substrate becomes uneven, and the functional thin film material is formed on the elastically elastically deformed substrate, and after this film formation, the elastic deformation of the substrate is released. A method for producing a functional thin film, comprising:
【請求項7】 前記基板の端部を支点として前記基板の
中央部に所定の荷重を印加することにより前記基板を弾
性変形させることを特徴とする請求項1乃至6のいずれ
か1つに記載の機能薄膜の製造方法。
7. The substrate according to claim 1, wherein the substrate is elastically deformed by applying a predetermined load to a central portion of the substrate with the end portion of the substrate as a fulcrum. Of the functional thin film of.
【請求項8】 前記基板の裏面側の圧力と前記基板の表
面側の圧力の差により前記基板を弾性変形させることを
特徴とする請求項1乃至6のいずれか1つに記載の機能
薄膜の製造方法。
8. The functional thin film according to claim 1, wherein the substrate is elastically deformed by the difference between the pressure on the back side of the substrate and the pressure on the front side of the substrate. Production method.
【請求項9】 所定の湾曲形状を有する基板ホルダーの
前記湾曲形状に沿って前記基板を固定することにより前
記基板を弾性変形させることを特徴とする請求項1乃至
6のいずれか1つに記載の機能薄膜の製造方法。
9. The substrate according to claim 1, wherein the substrate is elastically deformed by fixing the substrate along the curved shape of the substrate holder having a predetermined curved shape. Of the functional thin film of.
【請求項10】 前記基板に基板変形部材を設け、前記
成膜温度において前記基板と前記基板変形部材の熱膨張
係数の差により前記基板を弾性変形させることを特徴と
する請求項1乃至6のいずれか1つに記載の機能薄膜の
製造方法。
10. The substrate deforming member is provided on the substrate, and the substrate is elastically deformed by a difference in thermal expansion coefficient between the substrate and the substrate deforming member at the film forming temperature. The method for producing a functional thin film according to any one of claims.
JP32496194A 1994-12-27 1994-12-27 Production of functional thin film Pending JPH08176798A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32496194A JPH08176798A (en) 1994-12-27 1994-12-27 Production of functional thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32496194A JPH08176798A (en) 1994-12-27 1994-12-27 Production of functional thin film

Publications (1)

Publication Number Publication Date
JPH08176798A true JPH08176798A (en) 1996-07-09

Family

ID=18171564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32496194A Pending JPH08176798A (en) 1994-12-27 1994-12-27 Production of functional thin film

Country Status (1)

Country Link
JP (1) JPH08176798A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11158617A (en) * 1997-11-28 1999-06-15 Miyagi Oki Denki Kk Sputtering method and sputtering device
JPH11345807A (en) * 1998-06-01 1999-12-14 Sharp Corp Stress load film and manufacturing method therefor
JP2004133109A (en) * 2002-10-09 2004-04-30 Seiko Epson Corp Method for manufacturing substrate having thin film formed thereon, method for manufacturing electrooptical device, electrooptical device, and electronic appliance
JP2005166742A (en) * 2003-11-28 2005-06-23 Tdk Corp Method of manufacturing laminate and method of manufacturing organic field effect transistor
JP2007179804A (en) * 2005-12-27 2007-07-12 Fujikura Ltd Oxide superconductive conductor, and its manufacturing method
JP2014154355A (en) * 2013-02-08 2014-08-25 Furukawa Electric Co Ltd:The Oxide film formation method and cvd apparatus
JP2015098411A (en) * 2013-11-19 2015-05-28 古河機械金属株式会社 Method and apparatus for manufacturing nitride semiconductor substrate
JP2016503238A (en) * 2012-12-31 2016-02-01 サンエディソン・セミコンダクター・リミテッドSunEdison Semiconductor Limited Equipment for applying stress to semiconductor substrates

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11158617A (en) * 1997-11-28 1999-06-15 Miyagi Oki Denki Kk Sputtering method and sputtering device
JPH11345807A (en) * 1998-06-01 1999-12-14 Sharp Corp Stress load film and manufacturing method therefor
JP2004133109A (en) * 2002-10-09 2004-04-30 Seiko Epson Corp Method for manufacturing substrate having thin film formed thereon, method for manufacturing electrooptical device, electrooptical device, and electronic appliance
JP2005166742A (en) * 2003-11-28 2005-06-23 Tdk Corp Method of manufacturing laminate and method of manufacturing organic field effect transistor
JP4736318B2 (en) * 2003-11-28 2011-07-27 Tdk株式会社 Manufacturing method of laminated body and manufacturing method of organic field effect transistor
JP2007179804A (en) * 2005-12-27 2007-07-12 Fujikura Ltd Oxide superconductive conductor, and its manufacturing method
JP4732162B2 (en) * 2005-12-27 2011-07-27 株式会社フジクラ Oxide superconducting conductor and manufacturing method thereof
JP2019165242A (en) * 2012-12-31 2019-09-26 サンエディソン・セミコンダクター・リミテッドSunEdison Semiconductor Limited Equipment for applying stress to semiconductor substrate
JP2016503238A (en) * 2012-12-31 2016-02-01 サンエディソン・セミコンダクター・リミテッドSunEdison Semiconductor Limited Equipment for applying stress to semiconductor substrates
JP2018117130A (en) * 2012-12-31 2018-07-26 サンエディソン・セミコンダクター・リミテッドSunEdison Semiconductor Limited Device for applying stress to semiconductor substrate
US10361097B2 (en) 2012-12-31 2019-07-23 Globalwafers Co., Ltd. Apparatus for stressing semiconductor substrates
JP2021044562A (en) * 2012-12-31 2021-03-18 グローバルウェーハズ カンパニー リミテッドGlobalWafers Co.,Ltd. Apparatus for stressing semiconductor substrates
US11276582B2 (en) 2012-12-31 2022-03-15 Globalwafers Co., Ltd. Apparatus for stressing semiconductor substrates
US11276583B2 (en) 2012-12-31 2022-03-15 Globalwafers Co., Ltd. Apparatus for stressing semiconductor substrates
US11282715B2 (en) 2012-12-31 2022-03-22 Globalwafers Co., Ltd. Apparatus for stressing semiconductor substrates
US11764071B2 (en) 2012-12-31 2023-09-19 Globalwafers Co., Ltd. Apparatus for stressing semiconductor substrates
JP2014154355A (en) * 2013-02-08 2014-08-25 Furukawa Electric Co Ltd:The Oxide film formation method and cvd apparatus
JP2015098411A (en) * 2013-11-19 2015-05-28 古河機械金属株式会社 Method and apparatus for manufacturing nitride semiconductor substrate

Similar Documents

Publication Publication Date Title
US4830984A (en) Method for heteroepitaxial growth using tensioning layer on rear substrate surface
EP0798773B1 (en) Method of evaluating and method and apparatus for thermally processing semiconductor wafer
US6514835B1 (en) Stress control of thin films by mechanical deformation of wafer substrate
TWI342041B (en) A method of producing a complex structure by assembling stressed structures
JP2006281766A (en) Structure and method for thermal stress compensation
Shieu et al. Control of the mechanical properties of metal-ceramic interfaces through interfacial reactions
JPH08176798A (en) Production of functional thin film
JPH10158829A (en) Production of assembly of sputtering target
US20010009169A1 (en) Ti-Ni-based shape-memory alloy and method of manufacturing same
US6778315B2 (en) Micro mirror structure with flat reflective coating
JPH04221058A (en) Metal epitaxial growth method and metal-metal structure
KR20170097056A (en) Composite substrate, method for forming nanocarbon film, and nanocarbon film
EP0962548A2 (en) Method for deposition of a stressed film
JP2751261B2 (en) Semiconductor substrate bonding method
JPH03250615A (en) Manufacture of bonded wafer
US20040018392A1 (en) Method of increasing mechanical properties of semiconductor substrates
Prószyński et al. Stress modification in gold metal thin films during thermal annealing
Wuttig et al. Stress-Induced Martensite in NiTi Corrugated Films
US20240018643A1 (en) Nanotwinned nickel films with high strength and ductility
JP2000317896A (en) Manufacture of thin film plane structure
JPH08195333A (en) Strainless bonding method for monocrystalline silicon laminate structure
US20220285151A1 (en) Single crystal semiconductor structure and method of manufacturing the same
JPH0373950A (en) Manufacture of mask for exposing
JP3230162B2 (en) Vapor phase growth equipment
Jackson et al. Determination of stress distribution in III–V single crystal layers for heterogeneous integration applications