JPH08158917A - Method and device for controlling air fuel ratio for internal combustion engine - Google Patents

Method and device for controlling air fuel ratio for internal combustion engine

Info

Publication number
JPH08158917A
JPH08158917A JP30585694A JP30585694A JPH08158917A JP H08158917 A JPH08158917 A JP H08158917A JP 30585694 A JP30585694 A JP 30585694A JP 30585694 A JP30585694 A JP 30585694A JP H08158917 A JPH08158917 A JP H08158917A
Authority
JP
Japan
Prior art keywords
oxygen sensor
internal combustion
combustion engine
control
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30585694A
Other languages
Japanese (ja)
Inventor
Toru Matsui
徹 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP30585694A priority Critical patent/JPH08158917A/en
Publication of JPH08158917A publication Critical patent/JPH08158917A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1439Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
    • F02D41/1441Plural sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9495Controlling the catalytic process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/146Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

PURPOSE: To provide a method and device for controlling air fuel ratio for internal combustion engine capable of achieving a desired NOx removal rate by the same control even if a ternary catalyst different in various characteristics is used. CONSTITUTION: An NOx concentration measured by an NOx sensor 50 which is set on the downstream side of a ternary catalyst provided in the exhaust path 10 of an internal combustion engine 5 is compared with a specified value and, when the NOx concentration exceeds the specified value, a target control value Vs of a sub oxygen sensor 14 is changed to the fuel rich side.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、排気ラインに三元触媒
を介装し、該三元触媒の上流側にはメイン酸素センサを
設け、下流側にサブ酸素センサを設けた内燃機関、例え
ばガスエンジンの空燃比制御に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an internal combustion engine in which a three-way catalyst is provided in an exhaust line, a main oxygen sensor is provided on the upstream side of the three-way catalyst, and a sub oxygen sensor is provided on the downstream side. The present invention relates to air-fuel ratio control of a gas engine.

【0002】[0002]

【従来の技術】その様なガスエンジンのシステムが図3
で示されている。図3において、矢印Aで示す空気が空
気供給通路1から供給され、矢印Bで示すガスがガス供
給通路2から供給される。そして、空気AとガスBとは
ミキサ3により混合され、混合気は、混合気体供給通路
4を介してガスエンジン5に供給される。ここで、ガス
供給通路2からはバイパス通路6が分岐しており、バイ
パス通路6はミキサ3をバイパスして通路4に合流して
いる。そして、バイパス通路6のガス流量はバイパス弁
7の開度に依存している。なお、符号8はスロットル
弁、符号9は負荷センサを示している。
2. Description of the Related Art Such a gas engine system is shown in FIG.
Indicated by. In FIG. 3, air indicated by arrow A is supplied from the air supply passage 1, and gas indicated by arrow B is supplied from the gas supply passage 2. Then, the air A and the gas B are mixed by the mixer 3, and the mixed gas is supplied to the gas engine 5 via the mixed gas supply passage 4. Here, a bypass passage 6 is branched from the gas supply passage 2, and the bypass passage 6 merges with the passage 4 by bypassing the mixer 3. The gas flow rate in the bypass passage 6 depends on the opening degree of the bypass valve 7. Reference numeral 8 indicates a throttle valve, and reference numeral 9 indicates a load sensor.

【0003】ガスエンジン5の排気ガスは、排気通路1
0により排出され、該通路10には三元触媒12が介装
されている。そして、三元触媒12の上流側にはメイン
酸素センサ13が設けられ、下流側にはサブ酸素センサ
14が設けられている。ここで、符号15はガスエンジ
ン5の回転数を検出する回転センサを示している。
Exhaust gas from the gas engine 5 is exhausted through the exhaust passage 1.
0, and a three-way catalyst 12 is inserted in the passage 10. A main oxygen sensor 13 is provided on the upstream side of the three-way catalyst 12, and a sub oxygen sensor 14 is provided on the downstream side. Here, reference numeral 15 indicates a rotation sensor that detects the rotation speed of the gas engine 5.

【0004】負荷センサ9、メイン酸素センサ13、サ
ブ酸素センサ14、回転センサ15の検出結果(センサ
出力)は、それぞれラインL1、L2、L3、L4を介
して制御手段(コントロールユニット)30に送られ
る。制御手段30においては、これ等の検出結果に基づ
いて、ガスエンジン5に供給される混合気すなわち燃料
気体における空燃比を最適なものとするべく、バイパス
弁7の開度を決定し、ラインL5を介して、バイパス弁
7の作動用アクチュエータ16の作動信号を出力するの
である。
The detection results (sensor output) of the load sensor 9, the main oxygen sensor 13, the sub oxygen sensor 14, and the rotation sensor 15 are sent to control means (control unit) 30 via lines L1, L2, L3, and L4, respectively. To be The control means 30 determines the opening degree of the bypass valve 7 based on these detection results so as to optimize the air-fuel ratio in the air-fuel mixture supplied to the gas engine 5, that is, the fuel gas, and the line L5. The operation signal of the actuator 16 for operating the bypass valve 7 is output via the.

【0005】排気ガス浄化用の触媒の上流と下流にそれ
ぞれ酸素センサを配設したダブル酸素センサシステムが
従来から提案されている。このシステムは、上流側にあ
るメイン酸素センサの出力信号に基づいて空燃比をフィ
ードバック制御するに当り、下流側にあるサブ酸素セン
サの出力信号に基づいて制御定数(積分定数、スキップ
量、遅延時間等)を補正することにより、メイン酸素セ
ンサの特性変化および触媒劣化時における触媒の空燃比
特性変化等による空燃比制御性の低下を防止するための
ものである。
Conventionally, a double oxygen sensor system has been proposed in which oxygen sensors are arranged upstream and downstream of a catalyst for purifying exhaust gas. This system performs feedback control of the air-fuel ratio based on the output signal of the main oxygen sensor on the upstream side, and the control constants (integral constant, skip amount, delay time) on the basis of the output signal of the sub oxygen sensor on the downstream side. Etc.) to prevent the deterioration of the air-fuel ratio controllability due to the characteristic change of the main oxygen sensor and the air-fuel ratio characteristic change of the catalyst when the catalyst deteriorates.

【0006】その際、サブ酸素センサの制御目標電圧に
おける空燃比は、触媒のウインドウにおける空燃比と一
致するので、サブ酸素センサによる補正は、サブ酸素セ
ンサの出力電圧が制御目標電圧を維持できるように実行
される。
At this time, since the air-fuel ratio at the control target voltage of the sub oxygen sensor matches the air fuel ratio at the window of the catalyst, the correction by the sub oxygen sensor is performed so that the output voltage of the sub oxygen sensor can maintain the control target voltage. To be executed.

【0007】図3において、負荷センサ9の出力はライ
ンL1を介して負荷演算手段32へ送られる。そして、
メイン酸素センサ13の出力は、ラインL2を介して空
燃比補正量演算手段36へ送られる。また、サブ酸素セ
ンサ14の出力は、ラインL3を介して制御定数演算手
段38に送られ、回転センサ15の出力は、ラインL4
を介して、回転数演算手段40に送られる。
In FIG. 3, the output of the load sensor 9 is sent to the load calculating means 32 via the line L1. And
The output of the main oxygen sensor 13 is sent to the air-fuel ratio correction amount calculation means 36 via the line L2. The output of the sub oxygen sensor 14 is sent to the control constant computing means 38 via the line L3, and the output of the rotation sensor 15 is sent to the line L4.
Is sent to the rotation speed calculation means 40 via.

【0008】負荷演算手段32、空燃比補正量演算手段
36及び回転数演算手段40の演算処理の結果は、バイ
パスガス量演算手段42に出力される。該手段42にお
いては、ガスエンジン5の空燃比が触媒に対して最適に
なる様なバイパスガス流量が計算され、その結果は空燃
比調整手段44に出力される。そして、計算されたバイ
パスガス量に対応するバイパス弁7の開度が作動信号と
して、ラインL5を介してアクチュエータ16へ出力さ
れる。この際に、制御定数演算手段38の出力が空燃比
補正量演算手段36へ送出されるので、サブ酸素センサ
14の出力もバイパス弁7の開度を決定する演算処理に
使用される訳である。
The results of the calculation processing of the load calculation means 32, the air-fuel ratio correction amount calculation means 36, and the rotation speed calculation means 40 are output to the bypass gas amount calculation means 42. In the means 42, the bypass gas flow rate is calculated so that the air-fuel ratio of the gas engine 5 becomes optimum for the catalyst, and the result is output to the air-fuel ratio adjusting means 44. Then, the opening degree of the bypass valve 7 corresponding to the calculated amount of bypass gas is output to the actuator 16 via the line L5 as an operation signal. At this time, since the output of the control constant calculation means 38 is sent to the air-fuel ratio correction amount calculation means 36, the output of the sub oxygen sensor 14 is also used for the calculation processing for determining the opening degree of the bypass valve 7. .

【0009】例えば、ガスエンジンで三元触媒を用いた
場合、触媒の劣化にともない図−4で示すように触媒ウ
インドウが燃料リッチ側にシフトする。この際、サブ酸
素センサの出力も触媒の劣化に合せ燃料リッチ側へシフ
トするため、上述のようなダブル酸素センサシステムを
用い、サブ酸素センサの出力電圧が制御目標電圧(V
s)となるよう空気比を制御することで、触媒劣化時の
ウインドウシフトに対応している。
For example, when a three-way catalyst is used in a gas engine, the catalyst window shifts to the fuel rich side as shown in FIG. 4 as the catalyst deteriorates. At this time, since the output of the sub oxygen sensor also shifts to the fuel rich side in accordance with the deterioration of the catalyst, the output voltage of the sub oxygen sensor is set to the control target voltage (V
By controlling the air ratio so as to be s), it is possible to cope with the window shift at the time of catalyst deterioration.

【0010】[0010]

【発明が解決しようとする課題】しかし、三元触媒の種
類ごとに触媒成分が違う、使用されるエンジン、運転条
件の違いにより触媒の使用条件が違う、等の理由で三元
触媒の劣化パターンはそれぞれの触媒で違いが生じる。
(劣化時における空燃比に対する酸化窒素(以下「NO
x」と記載する)浄化率、一酸化炭素(以下「CO」と
記載する)浄化率、炭化水素浄化率特性は全ての三元触
媒において同一とはならない。)よって、触媒ウインド
ウに対するサブ酸素センサの空燃比特性も、図−5で示
すように触媒毎に違いが生じる。そこで、サブ酸素セン
サの出力電圧が、制御目標電圧(Vs)となるよう空燃
比制御を行っても、それぞれの触媒によってNOx、C
Oの浄化率に違いが生じる。
However, the deterioration pattern of the three-way catalyst is different because the catalyst component differs depending on the type of the three-way catalyst, the operating condition of the catalyst varies depending on the engine used and the operating conditions. Makes a difference in each catalyst.
(Nitrogen oxide (hereinafter referred to as “NO
The purification rate (described as “x”), the carbon monoxide (hereinafter referred to as “CO”) purification rate, and the hydrocarbon purification rate characteristics are not the same in all three-way catalysts. Therefore, the air-fuel ratio characteristic of the sub oxygen sensor with respect to the catalyst window also differs for each catalyst as shown in FIG. Therefore, even if the air-fuel ratio control is performed so that the output voltage of the sub oxygen sensor becomes the control target voltage (Vs), NOx and C
A difference occurs in the purification rate of O 2.

【0011】ここで、コージェネレーション用ガスエン
ジンのように非常に高いNOx浄化性能が求められてい
る場合には、上記の差が大きな問題となり、触媒によっ
ては目標NOx浄化率の得られる空燃比より燃料リーン
側で運転されるため、目標NOx浄化性能が得られない
場合が存在する。
Here, when a very high NOx purification performance is required as in the case of a gas engine for cogeneration, the above difference becomes a serious problem, and depending on the catalyst, the air-fuel ratio that gives the target NOx purification rate may be obtained. Since the operation is performed on the fuel lean side, there are cases where the target NOx purification performance cannot be obtained.

【0012】そこで所望のNOx浄化率を達成するた
め、NOxセンサを設け、その出力のみに基づいて制御
を行うことも考えられる。しかし、NOxセンサは計測
のための反応速度(レスポンス)が非常に遅く、しかも
使用温度に制限があるため、ガスエンジンの様な内燃機
関の制御には不適当である。
Therefore, in order to achieve a desired NOx purification rate, it may be possible to provide a NOx sensor and perform control based only on the output thereof. However, since the NOx sensor has a very slow reaction speed (response) for measurement and has a limited operating temperature, it is not suitable for controlling an internal combustion engine such as a gas engine.

【0013】本発明は上述したような従来技術の問題点
に鑑みて提案されたもので、各種特性の異なる三元触媒
を用いても同一制御にて所望のNOx浄化率を達成する
ことが出来る様な内燃機関の空燃比制御方法及び装置の
提供を目的としている。
The present invention has been proposed in view of the problems of the prior art as described above, and it is possible to achieve a desired NOx purification rate by the same control even when using a three-way catalyst having various characteristics. It is an object of the present invention to provide an air-fuel ratio control method and device for such an internal combustion engine.

【0014】[0014]

【課題を解決するための手段】本発明の内燃機関の空燃
比制御方法は、内燃機関の排気通路に介装された三元触
媒の上流側に設置されたメイン酸素センサによる計測結
果を入力する工程と、三元触媒の下流側に設置されたサ
ブ酸素センサによる計測結果を入力する工程とを含む内
燃機関の制御方法において、三元触媒下流側に設置され
た酸化窒素センサ(NOxセンサ)により計測された酸
化窒素濃度(NOx濃度)を入力する工程と、該酸化窒
素濃度を所定値(或いは基準濃度)とを比較する比較工
程と、酸化窒素濃度が所定値を越えた場合にサブ酸素セ
ンサの制御目標値を燃料リッチ側に変化させる工程、と
を含んでいる。
According to the air-fuel ratio control method of an internal combustion engine of the present invention, the measurement result by a main oxygen sensor installed upstream of a three-way catalyst interposed in the exhaust passage of the internal combustion engine is input. In a method of controlling an internal combustion engine, which includes a step and a step of inputting a measurement result by a sub-oxygen sensor installed on the downstream side of the three-way catalyst, a nitrogen oxide sensor (NOx sensor) installed on the downstream side of the three-way catalyst A step of inputting the measured nitric oxide concentration (NOx concentration), a comparing step of comparing the nitric oxide concentration with a predetermined value (or a reference concentration), and a sub oxygen sensor when the nitric oxide concentration exceeds a predetermined value. And a step of changing the control target value of 1 to the fuel rich side.

【0015】また本発明の内燃機関の空燃比制御装置
は、内燃機関の排気通路に三元触媒を介装し、三元触媒
の上流側に設けられたメイン酸素センサ及び下流側に設
けられたサブ酸素センサからの出力信号が送出される内
燃機関の制御装置において、三元触媒下流側に設けられ
て酸化窒素濃度を検出する酸化窒素センサと、該酸化窒
素濃度と所定値とを比較する比較手段と、酸化窒素濃度
が所定値を越えた場合にサブ酸素センサの制御目標値を
燃料リッチ側に変化させる制御目標値演算手段、とを備
えている。
Further, the air-fuel ratio control system for an internal combustion engine of the present invention has a three-way catalyst interposed in the exhaust passage of the internal combustion engine, and is provided on the main oxygen sensor upstream of the three-way catalyst and on the downstream side. In a control device for an internal combustion engine to which an output signal from a sub-oxygen sensor is sent, a comparison is made between a nitric oxide sensor provided downstream of a three-way catalyst for detecting the nitric oxide concentration and the nitric oxide concentration and a predetermined value. Means and control target value calculation means for changing the control target value of the sub oxygen sensor to the fuel rich side when the nitric oxide concentration exceeds a predetermined value.

【0016】[0016]

【作用】上述したような構成を具備する本発明によれ
ば、サブ酸素センサによるフィードバック制御成立(安
定)後、触媒下流側のNOx濃度を所定値(或いは基準
となるNOx濃度の値)と比較し、NOx濃度が所定値
を越えた場合に前記サブ酸素センサの制御目標値を燃料
リッチ側に変化させている。ここで、サブ酸素センサに
よるフィードバック制御成立(安定)までは、従来より
提案されているダブルO2 センサシステムと同一の制御
を行う(サブフィードバック成立(安定):サブ酸素セ
ンサ出力電圧が、制御目標電圧を所定回数横切った状
態)。そしてNOx濃度が所定値以下になるまで、上記
制御を繰返している。そして本発明では、NOxを直接
測定して空燃比制御を行っているので、劣化特性がそれ
ぞれ異なる三元触媒を用いても制御が可能なのである。
According to the present invention having the above-mentioned structure, after the feedback control by the sub oxygen sensor is established (stabilized), the NOx concentration on the downstream side of the catalyst is compared with a predetermined value (or a reference NOx concentration value). However, when the NOx concentration exceeds a predetermined value, the control target value of the sub oxygen sensor is changed to the fuel rich side. Here, until the feedback control by the sub oxygen sensor is established (stable), the same control as that of the conventionally proposed double O 2 sensor system is performed (sub feedback established (stable): sub oxygen sensor output voltage is the control target). Voltage is crossed a specified number of times). Then, the above control is repeated until the NOx concentration becomes equal to or lower than the predetermined value. Further, in the present invention, since NOx is directly measured and the air-fuel ratio control is performed, the control can be performed even by using three-way catalysts having different deterioration characteristics.

【0017】ここで、NOx濃度の計測手段であるNO
xセンサは、上述した様に、レスポンスが遅いという問
題を有している。しかしながらサブ酸素センサによるフ
ィードバック制御は、制御成立(安定)まで、ある程度
の時間を有するため、サブ酸素センサフィードバック制
御成立(安定)までの時間>NOxセンサのレスポンス
となり、NOxセンサのレスポンスが遅いことは、内燃
機関(ガスエンジン)の運転制御には何等悪影響を及ぼ
さないのである。
Here, NO, which is means for measuring the NOx concentration,
As described above, the x sensor has a problem that the response is slow. However, since the feedback control by the sub oxygen sensor has some time until the control is established (stabilized), the time until the sub oxygen sensor feedback control is established (stabilized)> the response of the NOx sensor, and the response of the NOx sensor is slow. The operation control of the internal combustion engine (gas engine) is not adversely affected.

【0018】つまり、内燃機関(ガスエンジン)の主た
る空燃比制御においてはサブ酸素センサの出力を用いて
いるので、NOxセンサのレスポンスの悪さはサブ酸素
センサのフィードバッグが成立(安定)するまでの時間
に吸収される。これに加えて、ダブルO2 センサシステ
ムによる空燃比制御は極めて安定した制御であるため、
制御不能状態への暴走は防止される。そして、これ等に
起因して、空燃比制御においてハンチングを生じること
も無い。
That is, since the output of the sub oxygen sensor is used in the main air-fuel ratio control of the internal combustion engine (gas engine), the poor response of the NOx sensor depends on the feed bag of the sub oxygen sensor being established (stabilized). Absorbed in time. In addition to this, since the air-fuel ratio control by the double O 2 sensor system is extremely stable control,
Runaway to an uncontrollable state is prevented. Due to these factors, hunting does not occur in the air-fuel ratio control.

【0019】コージェネレーションにおいてガスエンジ
ンが用いられる場合、三元触媒〜排ガス排出口までの距
離は長く、また途中に熱交換器等の装置を有するため、
三元触媒〜排ガス排出口までの排ガス煙道にはさまざま
な温度領域が存在する。そこで、NOxセンサに適した
温度領域にNOxセンサを取付けることで、NOxセン
サの温度制御を簡単なものとすることができる。この
際、三元触媒〜NOxセンサの距離が長くなった場合、
上述したようにサブ酸素センサによるフィードバック成
立(安定)までの時間に、距離の長さによる応答遅れ時
間が吸収されてしまうため、制御上問題を起こすことは
ない。
When a gas engine is used in cogeneration, the distance from the three-way catalyst to the exhaust gas outlet is long, and a device such as a heat exchanger is provided on the way,
There are various temperature regions in the exhaust gas flue from the three-way catalyst to the exhaust gas outlet. Therefore, by mounting the NOx sensor in a temperature range suitable for the NOx sensor, the temperature control of the NOx sensor can be simplified. At this time, if the distance between the three-way catalyst and the NOx sensor becomes long,
As described above, since the response delay time due to the length of the distance is absorbed in the time until the feedback is established (stabilized) by the sub oxygen sensor, there is no problem in control.

【0020】本発明によれば、燃料リッチ側への移行
は、三元触媒下流側のサブ酸素センサによる制御が安定
するまで行われない。そのため、空燃比が燃料リッチ側
へ大きくずれることによるCOや触媒新品時におけるN
3 の様なNOx以外の成分の排出も抑えられる。
According to the present invention, the transition to the fuel rich side is not performed until the control by the sub oxygen sensor on the downstream side of the three-way catalyst becomes stable. Therefore, due to the large deviation of the air-fuel ratio toward the fuel rich side, CO and N
Emissions of components other than NOx such as H 3 are also suppressed.

【0021】[0021]

【実施例】以下、主として図1及び図2を参照しつつ、
本発明の実施例について説明する。ここで、図面におい
て同一の部材については同一の参照符号を付して説明し
てある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, referring mainly to FIGS. 1 and 2,
Examples of the present invention will be described. Here, in the drawings, the same members are described with the same reference numerals.

【0022】図1において、負荷センサ9の出力はライ
ンL1を介して負荷演算手段32へ送られ、メイン酸素
センサ13の出力はラインL2を介して空燃比補正量演
算手段36へ送られる。そして、サブ酸素センサ14の
出力はラインL3を介して制御定数演算手段38に送ら
れ、回転センサ15の出力はラインL4を介して回転数
演算手段40に送られる。
In FIG. 1, the output of the load sensor 9 is sent to the load calculating means 32 via the line L1, and the output of the main oxygen sensor 13 is sent to the air-fuel ratio correction amount calculating means 36 via the line L2. The output of the sub oxygen sensor 14 is sent to the control constant computing means 38 via the line L3, and the output of the rotation sensor 15 is sent to the rotation speed computing means 40 via the line L4.

【0023】図3で示す従来技術と同様に、負荷演算手
段32、空燃比補正量演算手段36及び回転数演算手段
40の演算処理の結果は、バイパスガス量演算手段42
に出力される。そして、ガスエンジン5の空燃比が触媒
に対して最適になる様なバイパスガス流量が計算され、
その結果は空燃比調整手段44に出力され、該計算され
たバイパスガス量に対応するバイパス弁7の開度が作動
信号として、ラインL5を介してアクチュエータ16へ
出力される。
Similar to the prior art shown in FIG. 3, the result of the calculation processing of the load calculation means 32, the air-fuel ratio correction amount calculation means 36 and the rotation speed calculation means 40 is the bypass gas amount calculation means 42.
Is output to Then, the bypass gas flow rate is calculated so that the air-fuel ratio of the gas engine 5 becomes optimum for the catalyst,
The result is output to the air-fuel ratio adjusting means 44, and the opening degree of the bypass valve 7 corresponding to the calculated bypass gas amount is output to the actuator 16 via the line L5 as an operation signal.

【0024】ここで、図1で示す本発明の実施例では、
三元触媒12の下流側に、より具体的には三元触媒12
から出てくる排気ガスの温度による影響が最低限に抑え
ることが可能である位置、にはNOxセンサ50が設け
られている。このNOxセンサ50による計測結果、す
なわち三元触媒12下流側のNOx濃度は、ラインL8
を介して比較手段52に送られ、比較手段52及び制御
目標値演算手段54により所定の処理が為された後に、
その処理結果である制御目標値が制御定数演算手段38
に送られる。なお、この「所定の処理」に介しては、図
2を参照して後述する。
Here, in the embodiment of the present invention shown in FIG.
Downstream of the three-way catalyst 12, more specifically, the three-way catalyst 12
The NOx sensor 50 is provided at a position where the influence of the temperature of the exhaust gas emitted from the vehicle can be minimized. The measurement result by the NOx sensor 50, that is, the NOx concentration on the downstream side of the three-way catalyst 12 is the line L8.
Is sent to the comparison means 52 through the comparison means 52, and after the predetermined processing is performed by the comparison means 52 and the control target value calculation means 54,
The control target value which is the processing result is the control constant calculation means 38.
Sent to The "predetermined process" will be described later with reference to FIG.

【0025】この様に、この際に、サブフィードバック
補正値及びNOx濃度を考慮した制御目標値が制御定数
演算手段38に入力され、その出力が空燃比補正量演算
手段36へ送出されるので、サブ酸素センサ14及びN
Oxセンサ50の出力もバイパス弁7の開度を決定する
演算処理に使用されるのである。
As described above, at this time, the control target value in consideration of the sub-feedback correction value and the NOx concentration is input to the control constant calculating means 38, and the output thereof is sent to the air-fuel ratio correction amount calculating means 36. Sub oxygen sensor 14 and N
The output of the Ox sensor 50 is also used in the arithmetic processing for determining the opening degree of the bypass valve 7.

【0026】次に図2をも参照して、上述した「所定の
処理」、すなわち比較手段52及び制御目標値演算手段
54における処理について説明する。
Next, the "predetermined processing", that is, the processing in the comparing means 52 and the control target value calculating means 54 will be described with reference to FIG.

【0027】先ず、メインフィードバックが成立(メイ
ン酸素センサの活性化)したか否か判断する(ステップ
S1)。メインフィードバックが成立したならば(ステ
ップS1がYes)、サブフィードバックが成立或いは
安定したか(サブ酸素センサの出力が制御目標値を所定
回数横切る)否か判断する(ステップS2)。
First, it is judged whether or not the main feedback is established (the main oxygen sensor is activated) (step S1). If the main feedback is established (Yes in step S1), it is determined whether or not the sub feedback is established or stabilized (the output of the sub oxygen sensor crosses the control target value a predetermined number of times) (step S2).

【0028】サブフィードバックが成立(或いは安定)
したならば(ステップS2がYes)、NOxセンサ5
0が計測した(三元触媒12下流側の)NOx濃度を読
み込む(ステップS3)。そして比較手段52におい
て、読み込まれたNOx濃度と所定値(サブ酸素センサ
制御目標値を変更する必要が無い場合におけるNOx濃
度の臨界値:ケース・バイ・ケースで設定される)とを
比較する(ステップS4)。
Sub-feedback is established (or stable)
If yes (step S2 is Yes), the NOx sensor 5
The NOx concentration (downstream of the three-way catalyst 12) measured by 0 is read (step S3). Then, the comparing means 52 compares the read NOx concentration with a predetermined value (the critical value of the NOx concentration when it is not necessary to change the sub oxygen sensor control target value: set on a case-by-case basis) ( Step S4).

【0029】三元触媒下流側のNOx濃度が所定値より
も低い場合には(ステップS4がNo)、サブ酸素セン
サ制御目標値はそのままにして、メイン酸素センサ及び
サブ酸素センサの出力に基づく通常の制御を行う(ステ
ップS5:ステップS4がNoのループ。その際、サブ
酸素センサの出力が制御目標値を所定回横切る毎に、N
Ox値の読み込み(ステップS4)、比較(ステップS
5)を行う)。三元触媒下流側のNOx濃度が所定値よ
りも高い場合には(ステップS4がYes)、サブ酸素
センサ制御目標値(符号「Vs」で示す)を変更し(ス
テップS6)、サブフィードバックが成立或いは安定す
るのを待って(ステップS2)、再び制御を繰り返す。
When the NOx concentration on the downstream side of the three-way catalyst is lower than the predetermined value (No in step S4), the sub-oxygen sensor control target value is left unchanged, and the normal value based on the outputs of the main oxygen sensor and the sub-oxygen sensor is used. (Step S5: Step S4 is a No loop. At this time, N is returned every time the output of the sub oxygen sensor crosses the control target value a predetermined number of times.
Reading Ox value (step S4), comparison (step S4)
5)). When the NOx concentration on the downstream side of the three-way catalyst is higher than the predetermined value (Yes in step S4), the sub oxygen sensor control target value (indicated by reference sign "Vs") is changed (step S6), and sub feedback is established. Alternatively, after waiting for stabilization (step S2), the control is repeated again.

【0030】図2において、サブ酸素センサ制御目標値
Vsは Vs=b+nc (n=1,2,3・・・) なる式で表現されている。
In FIG. 2, the sub oxygen sensor control target value Vs is expressed by the following equation: Vs = b + nc (n = 1, 2, 3 ...).

【0031】ステップS6においてサブ酸素センサ制御
目標値Vsを変化したことにより、制御は燃料リッチ側
へ移行するので、NOx濃度の増加に対応することが可
能となるのである。また、NOx濃度は基本的にNOx
センサ50により検出されるので、個々の三元触媒12
における劣化特性等が均一でなくても対応することが出
来る。
By changing the sub oxygen sensor control target value Vs in step S6, the control shifts to the fuel rich side, so that it is possible to cope with the increase in the NOx concentration. The NOx concentration is basically NOx.
As detected by the sensor 50, the individual three-way catalyst 12
It is possible to deal with the case where the deterioration characteristics and the like are not uniform.

【0032】なお、図示の実施例はあくまでも例示であ
り、本発明は図示した以外に種々の変更或いは変形が可
能である旨を付記する。
It should be noted that the illustrated embodiment is merely an example, and the present invention can be modified or modified in various ways other than the illustrated embodiment.

【0033】[0033]

【発明の効果】以上説明した本発明の作用効果を以下に
列挙する。 (1) 劣化特性が異なる三元触媒を用いても制御が可
能である。 (2) メイン及びサブ酸素センサを用いた制御の長所
と、NOxセンサを用いた制御の長所とを組み合わせる
ことが出来る。 (3) NOxセンサのレスポンスの遅さによる悪影響
が無い。 (4) NOxセンサの取付位置に起因するレスポンス
の遅さによる悪影響も無い。 (5) 酸素センサによる空燃比制御が極めて安定した
制御である事に起因して、制御不能状態への暴走が防止
される。 (6) 空燃比制御においてハンチングを生じることも
無い。 (7) NOxセンサに適した温度領域に設置すること
でNOxセンサの温度制御を簡単なものとすることがで
きる。 (8) NOxセンサ及び酸素センサ以外の特別なセン
サを用いること無く、COやNH3 等のNOx以外の成
分の排出が抑えられる。
The effects of the present invention described above are listed below. (1) Control is possible even when using a three-way catalyst with different deterioration characteristics. (2) The advantages of the control using the main and sub oxygen sensors and the advantages of the control using the NOx sensor can be combined. (3) There is no adverse effect due to the slow response of the NOx sensor. (4) There is no adverse effect due to the slow response due to the mounting position of the NOx sensor. (5) Due to the fact that the air-fuel ratio control by the oxygen sensor is extremely stable control, a runaway to an uncontrollable state is prevented. (6) Hunting does not occur in the air-fuel ratio control. (7) The temperature control of the NOx sensor can be simplified by installing it in a temperature range suitable for the NOx sensor. (8) Emission of components other than NOx such as CO and NH 3 can be suppressed without using special sensors other than the NOx sensor and the oxygen sensor.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の1実施例を示すブロック図。FIG. 1 is a block diagram showing an embodiment of the present invention.

【図2】図1の実施例における制御フローチャートを示
す図。
FIG. 2 is a diagram showing a control flowchart in the embodiment of FIG.

【図3】従来技術を示すブロック図。FIG. 3 is a block diagram showing a conventional technique.

【図4】同一触媒の劣化による特性の変化を示す特性
図。
FIG. 4 is a characteristic diagram showing changes in characteristics due to deterioration of the same catalyst.

【図5】異種触媒の劣化特性のずれを示す特性図。FIG. 5 is a characteristic diagram showing a deviation of deterioration characteristics of different kinds of catalysts.

【符号の説明】[Explanation of symbols]

A・・・空気 1・・・空気供給通路 B・・・ガス 2・・・ガス供給通路 3・・・ミキサ 4・・・混合気供給通路 5・・・ガスエンジン 6・・・バイパス通路 7・・・バイパス弁 8・・・スロットル弁 9・・・負荷センサ 10・・・排気通路 12・・・三元触媒 13・・・メイン酸素センサ 14・・・サブ酸素センサ 15・・・回転センサ L1、L2、L3、L4、L5・・・ライン 16・・・作動用アクチュエータ16 30・・・制御手段(コントロールユニット) 32・・・負荷演算手段 36・・・空燃比補正量演算手段 38・・・制御定数演算手段 40・・・回転数演算手段 42・・・バイパスガス量演算手段 44・・・空燃比調整手段 50・・・窒素酸化物センサ(NOxセンサ) 52・・・比較手段 54・・・制御目標値演算手段 A ... Air 1 ... Air supply passage B ... Gas 2 ... Gas supply passage 3 ... Mixer 4 ... Mixture supply passage 5 ... Gas engine 6 ... Bypass passage 7 ... Bypass valve 8 ... Throttle valve 9 ... Load sensor 10 ... Exhaust passage 12 ... Three-way catalyst 13 ... Main oxygen sensor 14 ... Sub oxygen sensor 15 ... Rotation sensor L1, L2, L3, L4, L5 ... Line 16 ... Actuating actuator 16 30 ... Control means (control unit) 32 ... Load calculation means 36 ... Air-fuel ratio correction amount calculation means 38. .. Control constant calculation means 40 ... Rotation speed calculation means 42 ... Bypass gas amount calculation means 44 ... Air-fuel ratio adjustment means 50 ... Nitrogen oxide sensor (NOx sensor) 52 ... Comparison means 54 ... Control Target value calculating means

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 内燃機関の排気通路に介装された三元触
媒の上流側に設置されたメイン酸素センサによる計測結
果を入力する工程と、三元触媒の下流側に設置されたサ
ブ酸素センサによる計測結果を入力する工程とを含む内
燃機関の制御方法において、三元触媒下流側に設置され
た酸化窒素センサにより計測された酸化窒素濃度を入力
する工程と、該酸化窒素濃度を所定値とを比較する比較
工程と、酸化窒素濃度が所定値を越えた場合にサブ酸素
センサの制御目標値を燃料リッチ側に変化させる工程、
とを含む事を特徴とする内燃機関の空燃比制御方法。
1. A step of inputting a measurement result by a main oxygen sensor installed upstream of a three-way catalyst installed in an exhaust passage of an internal combustion engine, and a sub oxygen sensor installed downstream of the three-way catalyst. In a method of controlling an internal combustion engine, which comprises a step of inputting a measurement result by the step of inputting a nitric oxide concentration measured by a nitric oxide sensor installed on the downstream side of the three-way catalyst, and the nitric oxide concentration being a predetermined value. And a step of changing the control target value of the sub oxygen sensor to the fuel rich side when the nitric oxide concentration exceeds a predetermined value,
An air-fuel ratio control method for an internal combustion engine, comprising:
【請求項2】 内燃機関の排気通路に三元触媒を介装
し、三元触媒の上流側に設けられたメイン酸素センサ及
び下流側に設けられたサブ酸素センサからの出力信号が
送出される内燃機関の制御装置において、三元触媒下流
側に設けられて酸化窒素濃度を検出する酸化窒素センサ
と、該酸化窒素濃度と所定値とを比較する比較手段と、
酸化窒素濃度が所定値を越えた場合にサブ酸素センサの
制御目標値を燃料リッチ側に変化させる制御目標値演算
手段、とを備えたことを特徴とする内燃機関の制御装
置。
2. A three-way catalyst is provided in an exhaust passage of an internal combustion engine, and output signals from a main oxygen sensor provided upstream of the three-way catalyst and a sub oxygen sensor provided downstream thereof are transmitted. In a control device for an internal combustion engine, a nitric oxide sensor provided on the downstream side of the three-way catalyst to detect the nitric oxide concentration, and a comparing means for comparing the nitric oxide concentration with a predetermined value,
A control target value calculating means for changing the control target value of the sub oxygen sensor to the fuel rich side when the nitric oxide concentration exceeds a predetermined value, and a control device for an internal combustion engine.
JP30585694A 1994-12-09 1994-12-09 Method and device for controlling air fuel ratio for internal combustion engine Pending JPH08158917A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30585694A JPH08158917A (en) 1994-12-09 1994-12-09 Method and device for controlling air fuel ratio for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30585694A JPH08158917A (en) 1994-12-09 1994-12-09 Method and device for controlling air fuel ratio for internal combustion engine

Publications (1)

Publication Number Publication Date
JPH08158917A true JPH08158917A (en) 1996-06-18

Family

ID=17950188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30585694A Pending JPH08158917A (en) 1994-12-09 1994-12-09 Method and device for controlling air fuel ratio for internal combustion engine

Country Status (1)

Country Link
JP (1) JPH08158917A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0814248A2 (en) * 1996-06-21 1997-12-29 Ngk Insulators, Ltd. Method of controlling an engine exhaust gas system and method of detecting deterioration of catalyst/adsorbing means
EP1087119A1 (en) * 1999-04-06 2001-03-28 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Exhaust emission control device of internal combustion engines
JP2001140684A (en) * 1999-11-12 2001-05-22 Honda Motor Co Ltd Air-fuel ratio controlling device for internal combustion engine
EP1134396A1 (en) * 2000-03-17 2001-09-19 Ford Global Technologies, Inc., A subsidiary of Ford Motor Company Method and apparatus for measuring lean-burn engine emissions
US6311480B1 (en) 1999-03-29 2001-11-06 Toyota Jidosha Kabushiki Kaisha Emission control apparatus for internal combustion engine
WO2003056160A1 (en) * 2001-12-21 2003-07-10 Robert Bosch Gmbh Method for operating an internal combustion engine and internal combustion engine
WO2003078816A1 (en) * 2002-03-16 2003-09-25 Innecken Elektrotechnik Gmbh & Co. Kg Method and device for monitoring and regulating the operation of an internal combustion engine with reduced nox emissions
KR100405689B1 (en) * 2001-03-13 2003-11-14 기아자동차주식회사 The equipment of decreasing exhaust fumes using nox sensor and the method thereof
KR100673720B1 (en) * 2004-06-24 2007-01-24 미츠비시덴키 가부시키가이샤 Air-fuel ratio control apparatus for an internal combustion engine
JP2008051462A (en) * 2006-08-28 2008-03-06 Sanyo Electric Co Ltd Air-conditioning/power generation system and control method of air-conditioning/power generation system
WO2008111639A1 (en) 2007-03-13 2008-09-18 Toyota Jidosha Kabushiki Kaisha Device for judging deterioration of catalyst
JP2009103061A (en) * 2007-10-24 2009-05-14 Toyota Motor Corp Air-fuel ratio control device for internal combustion engine
US9790873B2 (en) 2010-05-28 2017-10-17 Toyota Jidosha Kabushiki Kaisha Air-fuel ratio control apparatus for an internal combustion engine

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0814248A3 (en) * 1996-06-21 1999-10-06 Ngk Insulators, Ltd. Method of controlling an engine exhaust gas system and method of detecting deterioration of catalyst/adsorbing means
EP0814248A2 (en) * 1996-06-21 1997-12-29 Ngk Insulators, Ltd. Method of controlling an engine exhaust gas system and method of detecting deterioration of catalyst/adsorbing means
US6311480B1 (en) 1999-03-29 2001-11-06 Toyota Jidosha Kabushiki Kaisha Emission control apparatus for internal combustion engine
EP1087119A1 (en) * 1999-04-06 2001-03-28 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Exhaust emission control device of internal combustion engines
EP1087119A4 (en) * 1999-04-06 2003-04-02 Mitsubishi Motors Corp Exhaust emission control device of internal combustion engines
JP2001140684A (en) * 1999-11-12 2001-05-22 Honda Motor Co Ltd Air-fuel ratio controlling device for internal combustion engine
EP1134396A1 (en) * 2000-03-17 2001-09-19 Ford Global Technologies, Inc., A subsidiary of Ford Motor Company Method and apparatus for measuring lean-burn engine emissions
KR100405689B1 (en) * 2001-03-13 2003-11-14 기아자동차주식회사 The equipment of decreasing exhaust fumes using nox sensor and the method thereof
WO2003056160A1 (en) * 2001-12-21 2003-07-10 Robert Bosch Gmbh Method for operating an internal combustion engine and internal combustion engine
WO2003078816A1 (en) * 2002-03-16 2003-09-25 Innecken Elektrotechnik Gmbh & Co. Kg Method and device for monitoring and regulating the operation of an internal combustion engine with reduced nox emissions
KR100673720B1 (en) * 2004-06-24 2007-01-24 미츠비시덴키 가부시키가이샤 Air-fuel ratio control apparatus for an internal combustion engine
JP2008051462A (en) * 2006-08-28 2008-03-06 Sanyo Electric Co Ltd Air-conditioning/power generation system and control method of air-conditioning/power generation system
WO2008111639A1 (en) 2007-03-13 2008-09-18 Toyota Jidosha Kabushiki Kaisha Device for judging deterioration of catalyst
US8033168B2 (en) 2007-03-13 2011-10-11 Toyota Jidosha Kabushiki Kaisha Catalyst deterioration judgment device
JP2009103061A (en) * 2007-10-24 2009-05-14 Toyota Motor Corp Air-fuel ratio control device for internal combustion engine
US8249793B2 (en) 2007-10-24 2012-08-21 Toyota Jidosha Kabushiki Kaisha Air-fuel ratio control apparatus and air-fuel ratio control method for internal combustion engine
US9790873B2 (en) 2010-05-28 2017-10-17 Toyota Jidosha Kabushiki Kaisha Air-fuel ratio control apparatus for an internal combustion engine

Similar Documents

Publication Publication Date Title
US4240389A (en) Air-fuel ratio control device for an internal combustion engine
US20050072139A1 (en) Air-fuel ratio controller for internal-combustion engine
JPH08158917A (en) Method and device for controlling air fuel ratio for internal combustion engine
US6253542B1 (en) Air-fuel ratio feedback control
JP2006083796A (en) Air fuel ratio controller for internal combustion engine
JP2996043B2 (en) Air-fuel ratio control device for internal combustion engine
US7100364B2 (en) Open loop fuel controller
US8020369B2 (en) Expanded mixture control for reducing exhaust-gas emissions
JPH066913B2 (en) Air-fuel ratio controller for internal combustion engine
JP3195034B2 (en) Engine exhaust sensor deterioration detection device
JP3052642B2 (en) Air-fuel ratio control device for internal combustion engine
JP3939026B2 (en) Three-way catalyst oxygen storage control device
JP4155662B2 (en) Three-way catalyst oxygen storage control device
JP4032840B2 (en) Exhaust gas purification device for internal combustion engine
JPH05113116A (en) Exhaust emission control device of internal combustion engine
JP2006125252A (en) Air-fuel ratio control device of internal combustion engine
JPH0642387A (en) Air-fuel ratio control device for internal combustion engine
JPH0689686B2 (en) Air-fuel ratio controller for engine
JPH01113565A (en) Air-fuel ratio control device for spark-ignition engine
JP2639157B2 (en) Exhaust gas purification device for internal combustion engine
JPH07109918A (en) Catalysis degradation diagnosing device for internal combustion engine
JP2917431B2 (en) Exhaust gas purification device for internal combustion engine
JPH06280547A (en) Catalyst deterioration detecting device
JPH0533632A (en) Deterioration judging method of three way catalyst
JPH05149172A (en) Air-fuel ratio control device for internal combustion engine