JPH08139401A - Modulation system of optical transmission equipment and optical communication system using the same - Google Patents

Modulation system of optical transmission equipment and optical communication system using the same

Info

Publication number
JPH08139401A
JPH08139401A JP6293898A JP29389894A JPH08139401A JP H08139401 A JPH08139401 A JP H08139401A JP 6293898 A JP6293898 A JP 6293898A JP 29389894 A JP29389894 A JP 29389894A JP H08139401 A JPH08139401 A JP H08139401A
Authority
JP
Japan
Prior art keywords
wavelength
modulation
optical transmission
wavelengths
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6293898A
Other languages
Japanese (ja)
Inventor
Tamayo Hiroki
珠代 広木
Toshihiko Onouchi
敏彦 尾内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP6293898A priority Critical patent/JPH08139401A/en
Publication of JPH08139401A publication Critical patent/JPH08139401A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To realize modulation by applying a small current wherein the extinction ratio is large, and the spectrum spread is small. CONSTITUTION: In a semiconductor laser 1 provided with a plurality of electrodes, a reflector having reflection spectrum characteristics in which a plurality of high reflection peaks exist periodically on both sides of a center wavelength is installed. The oscillation wavelength is modulated between two wavelengths λ1 , and λ0 , by controlling and modulating injection currents into a plurality of the electrodes, in the manner in which switching is executed between two different longitudinal modes. The modulated light is passed a wavelength filter 2 having the function which selects only one wavelength out of the two wavelengths. Thereby a signal 6 which is subjected to intensity modulation is sent out, and detected in the receiving side by using a photodiode.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光ローカルエリアネッ
トワーク(LAN)システムなどの光通信システムに用
いられる光伝送装置の変調方式及びこれを用いた光通信
方式に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a modulation system of an optical transmission device used in an optical communication system such as an optical local area network (LAN) system and an optical communication system using the same.

【0002】[0002]

【従来の技術】図7に本発明の従来例を示す。従来、半
導体レーザを直接変調するには、バイアス電流を注入し
て、それに変調電流を重畳してレーザの光出力を変調す
る方法が取られている。この場合、高速変調を行なうと
多モード発振となる。これを改善した分布帰還型(DF
B)や分布反射型(DBR)などの動的単一モードレー
ザは、多モード発振によるスペクトル広がりは解消さ
れ、スペクトル幅は1つの発振モードの幅になる。しか
し、動的単一モードレーザでも、直接変調ではレーザ内
のキャリア密度の大きな変動が生じ、チャーピングが生
じてスペクトル幅が広がり、結果的に伝送帯域を制限し
てしまうことになる。また、波長多重通信を行なう場
合、多重度を制限してしまうことになる。逆に、スペク
トル幅を狭くする為に、変調電流を小さくすると、十分
な消光比が得られず、伝送距離を制限してしまうことに
なる。
2. Description of the Related Art FIG. 7 shows a conventional example of the present invention. Conventionally, in order to directly modulate the semiconductor laser, a method of injecting a bias current and superimposing the modulation current on the bias current to modulate the optical output of the laser has been adopted. In this case, high-speed modulation results in multimode oscillation. Distributed feedback type (DF
In the dynamic single mode laser such as B) or distributed reflection type (DBR), the spectrum broadening due to multimode oscillation is eliminated, and the spectrum width becomes the width of one oscillation mode. However, even in a dynamic single-mode laser, direct modulation causes a large variation in carrier density in the laser, which causes chirping to broaden the spectrum width and consequently limits the transmission band. Also, when performing wavelength division multiplexing communication, the degree of multiplexing is limited. On the contrary, if the modulation current is made small in order to narrow the spectrum width, a sufficient extinction ratio cannot be obtained and the transmission distance will be limited.

【0003】[0003]

【発明が解決しようとする課題】以上の様に、従来の動
的単一モード半導体レーザの直接変調方式では、チャー
ピングによりスペクトル幅が広がり、伝送帯域幅や伝送
距離、波長多重時のチャネル数などが制限されてしまう
という問題点があった。
As described above, in the conventional direct modulation system of the dynamic single mode semiconductor laser, the spectrum width is widened by the chirping, the transmission bandwidth, the transmission distance, and the number of channels at the time of wavelength multiplexing. There was a problem that such things were restricted.

【0004】よって、本発明の目的は、微小な電流で消
光比の大きい、スペクトル広がりの小さい変調を実現す
る光伝送装置、光伝送装置の変調方式及びこれを用いた
光通信方式を提供することにある。
Therefore, an object of the present invention is to provide an optical transmission device which realizes modulation with a large extinction ratio and a small spectrum spread by a minute current, a modulation system of the optical transmission device, and an optical communication system using the same. It is in.

【0005】[0005]

【課題を解決するための手段】本発明は、サンプルド・
グレーティングないし超周期構造回折格子で構成される
反射器などを備えた半導体レーザにおいて、注入電流で
縦モードをスイッチングし、レーザの出力側に波長フィ
ルタを設けることにより、微小な電流で消光比の大き
い、スペクトル広がりの小さい変調を実現するものであ
る。
The present invention provides a sampled
In a semiconductor laser equipped with a reflector composed of a grating or a super-periodic structure diffraction grating, the longitudinal mode is switched by the injection current and a wavelength filter is provided on the output side of the laser, so that the extinction ratio is large with a small current. , Which realizes modulation with a small spectrum spread.

【0006】詳細には、本発明の光伝送装置の変調方式
は、或る波長を中心として、その両側に複数の高反射ピ
ークが周期的に存在する反射スペクトル特性を有する反
射器を備え、複数の電極を有する半導体レーザにおい
て、複数の電極への注入電流を、異なる2つの縦モード
間でスイッチングを行なう様に制御、変調することによ
り、発振波長を2波長の間で変調し、該2波長のうち1
波長のみを選択する機能を有する波長フィルタを透過さ
せることにより、強度変調された信号を送り出すことを
特徴とする。
More specifically, the modulation method of the optical transmission apparatus of the present invention is provided with a reflector having a reflection spectrum characteristic in which a plurality of high reflection peaks are periodically present on both sides of a certain wavelength as a center. In a semiconductor laser having electrodes, the injection currents to the plurality of electrodes are controlled and modulated so as to perform switching between two different longitudinal modes, so that the oscillation wavelength is modulated between the two wavelengths. Out of 1
It is characterized in that an intensity-modulated signal is sent out by transmitting a wavelength filter having a function of selecting only a wavelength.

【0007】前記反射器は、回折格子が存在する領域と
存在しない領域が、或る周期で繰り返される構成であっ
たり、回折格子のピッチや位相が連続的に変化する領域
が、或る周期で繰り返される構成であったりする。
The reflector has a structure in which a region where the diffraction grating exists and a region where the diffraction grating does not exist are repeated in a certain cycle, or a region in which the pitch and the phase of the diffraction grating change continuously in a certain cycle. It may be a repeated structure.

【0008】また、本発明の光通信方式は、上記光伝送
装置の変調方式において、2つの縦モードのうち送出す
る方の波長を可変にし、該2つの縦モード間でスイッチ
ングを行なう様に注入電流を変調し、受信側で波長フィ
ルタを用いて任意の波長の信号を検出することを特徴と
する。
Further, in the optical communication system of the present invention, in the modulation system of the above-mentioned optical transmission device, the wavelength of the one of the two longitudinal modes to be transmitted is made variable and injection is performed so as to perform switching between the two longitudinal modes. It is characterized in that a current is modulated and a signal of an arbitrary wavelength is detected on the receiving side by using a wavelength filter.

【0009】また、本発明の波長多重光通信方式は、上
記光通信方式において、光伝送装置と受信側の波長フィ
ルタを複数用いて通信を行なうことを特徴とする。
Further, the wavelength division multiplexing optical communication system of the present invention is characterized in that in the above optical communication system, a plurality of optical transmission devices and a plurality of wavelength filters on the receiving side are used for communication.

【0010】また、本発明の光伝送装置は、或る波長を
中心として、その両側に複数の高反射ピークが周期的に
存在する反射スペクトル特性を有する反射器を備え、複
数の電極を有する半導体レーザと波長フィルタを有し、
複数の電極への注入電流を、異なる2つの縦モード間で
スイッチングを行なう様に制御、変調することにより、
半導体レーザの発振波長を2波長の間で変調し、該2波
長のうち1波長のみを選択する機能を有する前記波長フ
ィルタを透過させることにより、強度変調された信号を
送り出すことを特徴とする。
Further, the optical transmission device of the present invention comprises a semiconductor having a plurality of electrodes, which is provided with a reflector having a reflection spectrum characteristic in which a plurality of high reflection peaks periodically exist on both sides of a certain wavelength. Has a laser and a wavelength filter,
By controlling and modulating the injection current to multiple electrodes so as to switch between two different longitudinal modes,
It is characterized in that the oscillation wavelength of the semiconductor laser is modulated between two wavelengths, and the wavelength-modulated filter having a function of selecting only one of the two wavelengths is transmitted to transmit an intensity-modulated signal.

【0011】[0011]

【実施例1】本実施例の構成を図1に、本実施例に用い
るレーザの特性を図2に示す。近年、波長可変レーザの
可変幅を拡大する為、複数の反射ピークを有し、回折格
子の構成によりその反射ピーク波長の間隔を任意に設計
できる反射器を備えた半導体レーザが提案されている。
例えば、サンプルド・グレーティング(V.Jayar
aman Appl.Phys.Lett.,60(1
9),1992(p.2321))、超周期構造回折格
子(狩野他、信学技法、OQE92ー131、1992
(p.39))などにより構成された反射器を有するD
FBあるいはDBRレーザである。
Embodiment 1 FIG. 1 shows the structure of this embodiment, and FIG. 2 shows the characteristics of the laser used in this embodiment. In recent years, in order to expand the variable width of a wavelength tunable laser, a semiconductor laser has been proposed which has a plurality of reflection peaks and is provided with a reflector that can arbitrarily design the intervals of the reflection peak wavelengths by the structure of a diffraction grating.
For example, sampled grating (V. Jayar
aman Appl. Phys. Lett. , 60 (1
9), 1992 (p.2321)), super-periodic structure diffraction grating (Kano et al., IEEJ, OQE 92-131, 1992).
(P.39)) having a reflector constituted by
FB or DBR laser.

【0012】本実施例に用いられるレーザは、反射器が
サンプルド・グレーティングで構成される2電極DFB
レーザである。サンプルド・グレーティングの構成を図
2(a)に示す。サンプルド・グレーティングでは図の
ように回折格子が存在する部分と存在しない部分が或る
周期(サンプリング周期長Z0)で繰り返される。反射
器の特性を図2(b)に示す。サンプルド・グレーティ
ングにより構成される反射器の反射ピークの波長間隔Δ
λは、サンプリング周期長Z0によって次の様に決ま
る。 Δλ=λ2/2μg0 ここで、μgはモード群屈折率(mode group
index)である。従って、サンプリング周期長Z
0を選ぶことにより、任意の反射ピークの波長間隔を有
する反射器を作製することが可能となる。
The laser used in this embodiment is a two-electrode DFB whose reflector is a sampled grating.
Laser. The structure of the sampled grating is shown in FIG. In the sampled grating, a portion where the diffraction grating exists and a portion where the diffraction grating does not exist are repeated at a certain period (sampling period length Z 0 ) as shown in the figure. The characteristics of the reflector are shown in FIG. Wavelength interval Δ of the reflection peak of the reflector composed of sampled grating
λ is determined by the sampling cycle length Z 0 as follows. Δλ = λ 2 / 2μ g Z 0 where μ g is the mode group refractive index (mode group)
index). Therefore, the sampling cycle length Z
By selecting 0 , it becomes possible to manufacture a reflector having an arbitrary reflection peak wavelength interval.

【0013】この半導体レーザは、2つの領域の夫々の
反射器の反射ピーク波長の間隔を僅かにずらし、夫々に
電流注入して屈折率を変化させることにより1つの縦モ
ードを選択する。反射ピーク波長の間隔が僅かに異なる
為、バーニア効果により僅かな電流変化で次々と別の縦
モードを選択することができ、大きな波長変化が得られ
る。1つの縦モードを選択した後、注入電流を制御する
ことで発振波長を微調することができる。
This semiconductor laser selects one longitudinal mode by slightly shifting the interval between the reflection peak wavelengths of the reflectors in the two regions and injecting a current into each to change the refractive index. Since the intervals of the reflection peak wavelengths are slightly different, different longitudinal modes can be selected one after another by a slight current change due to the vernier effect, and a large wavelength change can be obtained. The oscillation wavelength can be finely adjusted by controlling the injection current after selecting one longitudinal mode.

【0014】本実施例では、反射ピーク間隔が夫々10
nmと11nmになるように設計した。本実施例のレー
ザの片側の領域の電極への注入電流Iを変えていった場
合のIと発振波長λの関係を図2(c)に示す。λはI
に対して離散的に変化し、縦モードが次のモード移る時
に約10nmの波長跳びを生ずる。
In the present embodiment, the reflection peak intervals are 10 each.
It was designed to be nm and 11 nm. FIG. 2C shows the relationship between I and the oscillation wavelength λ when the injection current I to the electrode in one region of the laser of this embodiment is changed. λ is I
The wavelength jump is about 10 nm when the longitudinal mode shifts to the next mode.

【0015】図3に、レーザの変調方法を示す。半導体
レーザの片側の電極にバイアス電流10を注入し、変調
電流ΔI=(11ー10)を重責することにより、出力光
は波長λ1とλ0の間で変調される。この出力光をλ1
λ0の波長間隔に応じた波長フィルタ(半値幅10nm
程度)でλ1のみを透過させることにより、パワーが
1、0の信号として取り出すことが出来る。
FIG. 3 shows a laser modulation method. Injecting a bias current 1 0 to one electrode of the semiconductor laser, by heavy responsibility the modulation current [Delta] I = (1 1 -1 0), the output light is modulated between a wavelength lambda 1 and lambda 0. This output light is converted into a wavelength filter (half-value width of 10 nm) according to the wavelength interval between λ 1 and λ 0.
By transmitting only λ 1 at a level of about 1 ), it is possible to extract a signal with power of 1,0.

【0016】通常のレーザにも複数の縦モードが存在す
るが、実際的な構造では縦モード間隔は数Åと狭く、波
長フィルタで消光比よく分離するのが難しい。また、こ
の場合、縦モードのスイッチングを行なうと縦モードが
近接している為、複数の縦モード間で競合が生じ、雑音
が発生するなど不安定になる。また、DFBあるいはD
BRレーザでも、同様に複数のモードを選択することが
出来るが、やはりモード間隔が数Åと狭く、波長フィル
タで消光比よく分離するのが難しい。
A normal laser also has a plurality of longitudinal modes, but in a practical structure, the longitudinal mode interval is as narrow as several Å, and it is difficult to separate with a wavelength filter with a high extinction ratio. Further, in this case, when the vertical modes are switched, since the vertical modes are close to each other, competition occurs between a plurality of vertical modes, and noise is generated, which causes instability. Also, DFB or D
Even with a BR laser, a plurality of modes can be selected in the same manner, but the mode interval is also as narrow as several Å, and it is difficult to separate with a wavelength filter at a high extinction ratio.

【0017】図1に、実施例1の構成図を示す。図2
(c)のような特性を持つ半導体レーザ1の一方の領域
に注入する注入電流を図3の方法で変調し、発振波長を
波長λ1とλ0の間で変調する。この光7を、フィルタ特
性8を持つ波長フィルタ2を用いてλ1のみを透過させ
ることにより、パワーが1、0の信号6とする。波長フ
ィルタ2を透過した光6を、レンズ3を用いてファイバ
4に結合させ、伝送した後、フォトダイオード5で信号
を検出する。
FIG. 1 shows a block diagram of the first embodiment. Figure 2
The injection current injected into one region of the semiconductor laser 1 having the characteristics as shown in (c) is modulated by the method shown in FIG. 3, and the oscillation wavelength is modulated between wavelengths λ 1 and λ 0 . This light 7 is converted into a signal 6 having a power of 1 and 0 by transmitting only λ 1 using the wavelength filter 2 having the filter characteristic 8. The light 6 transmitted through the wavelength filter 2 is coupled to the fiber 4 using the lens 3 and transmitted, and then the signal is detected by the photodiode 5.

【0018】本実施例の波長フィルタ2は、10nm離
れた光を分離するので、誘電体多層膜フィルタなどの比
較的透過バンド幅の広いフィルタを用いることが出来
る。しかし前述のように、波長間隔は回折格子のサンプ
リング周期長Z0により選べるので、システムの形態に
より、波長間隔Δλを設計し、それにしたがって波長フ
ィルタ2を選択することになる。
Since the wavelength filter 2 of this embodiment separates light separated by 10 nm, it is possible to use a filter having a relatively wide transmission band width such as a dielectric multilayer film filter. However, as described above, since the wavelength interval can be selected by the sampling period length Z 0 of the diffraction grating, the wavelength interval Δλ is designed according to the form of the system, and the wavelength filter 2 is selected accordingly.

【0019】本実施例では、微小な電流で波長スイッチ
ングを行なえる。従って、レーザ内のキャリア密度の変
動が少なく、チャーピングが抑制され、発振のスペクト
ルの広がりを小さくすることが出来、高速の変調を行な
うことが可能となる。また、Δλ=(λ1−λ0)は回折
格子のサンプリング周期長Z0により設計可能なので、
広く選ぶことが出来、λ1とλ0のパワーを分離すること
が容易である。その結果、容易に、消光比の高く、スペ
クトル幅が小さく、高速の変調を行なうことが可能とな
る。
In this embodiment, wavelength switching can be performed with a minute current. Therefore, the carrier density in the laser does not fluctuate much, chirping is suppressed, the spread of the oscillation spectrum can be reduced, and high-speed modulation can be performed. Further, since Δλ = (λ 1 −λ 0 ) can be designed by the sampling period length Z 0 of the diffraction grating,
A wide choice can be made and it is easy to separate the powers of λ 1 and λ 0 . As a result, it becomes possible to easily perform high-speed modulation with a high extinction ratio and a small spectrum width.

【0020】[0020]

【実施例2】本実施例で用いる波長可変レーザは、実施
例1で用いたレーザと同様の特性を持つレーザである。
Second Embodiment The wavelength tunable laser used in this embodiment has the same characteristics as the laser used in the first embodiment.

【0021】図5に、レーザの変調方法を示す。実施例
1と同様に、半導体レーザ1の片側の電極にバイアス電
流10を注入し、信号1として、変調電流ΔI=(I1
0)で変調することにより、出力光は波長λ1とλ0
間で変調された信号となる。同様に、半導体レーザ1に
バイアス電流10を注入し、信号2として、変調電流Δ
I=(12−10)で変調することにより、出力光は波長
λ2とλ0の間で変調された信号となる。この様に、変調
電流を変えることにより、出力光の波長を変えることが
出来る。この出力光をλ1とλ0の波長間隔に応じた波長
フィルタ(半値幅10nm程度)でλ0をカットするこ
とにより、パワーが1、0の信号として取り出すことが
出来る。
FIG. 5 shows a laser modulation method. As in Example 1, the bias current 1 0 is injected into one side of the electrode of the semiconductor laser 1, as signal 1, the modulation current [Delta] I = (I 1 -
By modulating with 1 0 ), the output light becomes a signal modulated between wavelengths λ 1 and λ 0 . Similarly, by injecting a bias current 1 0 to the semiconductor laser 1, as the signal 2, the modulation current Δ
By modulating with I = (1 2 -1 0) , the output light is modulated signals between the wavelength lambda 2 and lambda 0. In this way, the wavelength of the output light can be changed by changing the modulation current. By cutting λ 0 of this output light with a wavelength filter (half-value width of about 10 nm) according to the wavelength interval between λ 1 and λ 0 , it is possible to extract a signal with power of 1.0.

【0022】図4に、実施例2の構成図を示す。図2
(c)のような特性を持つ半導体レーザ1を図5の方法
により変調電流(In−I0)で変調し、出力光を、波長
λ0とλnの間で変調された信号7’(信号n)とする。
この光7’をフィルタ特性8’を持つ波長フィルタ2を
用いてλnのみを透過させることにより、パワーが1、
0の信号6’とする。波長フィルタ2を透過した光は、
レンズ3を用いてファイバ4を伝送させた後、分岐器1
0でn個に分配する。分配された光は特性12を有する
受信フィルタ11で波長λnのみを透過させることによ
り、パワーが1、0の信号6’となる。
FIG. 4 shows a block diagram of the second embodiment. Figure 2
The semiconductor laser 1 having the characteristics as shown in FIG. 5C is modulated by the modulation current (I n −I 0 ) by the method of FIG. 5, and the output light is a signal 7 ′ modulated between wavelengths λ 0 and λ n. (Signal n).
By transmitting only this λ n to this light 7 ′ using the wavelength filter 2 having the filter characteristic 8 ′, the power is 1,
0 signal 6 '. The light transmitted through the wavelength filter 2 is
After transmitting the fiber 4 using the lens 3, the branch 1
0 is distributed to n pieces. The distributed light becomes a signal 6'having a power of 1 and 0 by transmitting only the wavelength λ n by the reception filter 11 having the characteristic 12.

【0023】この場合の受信フィルタ11は、1Å程度
しか離れていない波長を分離する為、透過バンド幅の小
さい波長フィルタが必要である。例えば、DFBフィル
タ、ファブリペローフィルタ、マッハツェンダ型フィル
タなどである。受信フィルタ11を透過した光はフォト
ダイオード5で受光し、信号6’を検出する。
In this case, the reception filter 11 separates wavelengths separated by only about 1Å, so that a wavelength filter having a small transmission bandwidth is required. For example, it is a DFB filter, a Fabry-Perot filter, a Mach-Zehnder type filter, or the like. The light transmitted through the reception filter 11 is received by the photodiode 5 and the signal 6'is detected.

【0024】さらに、波長フィルタ11を同調機能を有
する可変フィルタにすることにより、受信側で自由にチ
ャンネルを選択することが出来る。
Further, by making the wavelength filter 11 a variable filter having a tuning function, the channel can be freely selected on the receiving side.

【0025】本実施例でも、微小な電流で変調を行なえ
る為、キャリヤ密度の変動が小さく、チャーピングが抑
制され、スペクトル広がりを抑えることが出来、高速の
変調を行なうことが出来る。また、スペクトル広がりが
小さい為、波長毎に、異なる信号を割り当てる場合に
も、波長数を多く取ることが出来、また、消光比の良好
な信号が得られる。その結果、容易に、消光比の高く、
しかも高速通信を行なうことが可能となる。
Also in this embodiment, since modulation can be performed with a minute current, carrier density fluctuation is small, chirping is suppressed, spectrum spread can be suppressed, and high-speed modulation can be performed. Further, since the spectrum spread is small, a large number of wavelengths can be taken even when different signals are assigned for each wavelength, and a signal with a good extinction ratio can be obtained. As a result, the extinction ratio is high,
Moreover, high-speed communication can be performed.

【0026】[0026]

【実施例3】本実施例で用いる波長可変レーザは、実施
例2で用いたレーザと同様の特性を持つレーザである。
本実施例は、実施例2の変調方法を波長多重通信に適用
したものである。
Third Embodiment The wavelength tunable laser used in this embodiment has the same characteristics as the laser used in the second embodiment.
In the present embodiment, the modulation method of the second embodiment is applied to wavelength division multiplexing communication.

【0027】レーザの変調方法は実施例2と同様であ
る。半導体レーザ(LD1)1の片側の電極にバイアス
電流10を注入し、信号Iとして、変調電流ΔI=(I1
−I0)で変調することにより、出力光は波長λ1とλ0
の間で変調された信号となる。半導体レーザ(LD2)
1にバイアス電流10を注入し、信号2として、変調電
流ΔI=(I2−I0)で変調することにより、出力光は
波長λ2とλ0の間で変調された信号となる。この様に、
変調電流を変えることにより、出力光の波長を変えるこ
とが出来る。
The laser modulation method is the same as that in the second embodiment. Injecting a bias current 1 0 to one electrode of the semiconductor laser (LD1) 1, as a signal I, the modulation current [Delta] I = (I 1
By modulating with −I 0 ), the output light has wavelengths λ 1 and λ 0.
It becomes a signal modulated between. Semiconductor laser (LD2)
Injecting a bias current 1 0 to 1, as the signal 2, by modulating the modulation current ΔI = (I 2 -I 0) , the output light is modulated signals between the wavelength lambda 2 and lambda 0. Like this
The wavelength of output light can be changed by changing the modulation current.

【0028】図6に、実施例3の構成を示す。図2
(c)のような特性を持つ半導体レーザ(LD1)1を
図5の方法により変調電流(I1−I0)で変調し、出力
光を波長λ0とλ1の間で変調された信号7’(信号1)
とする。LD2も同様に変調電流(I2−I0)で変調
し、出力光を波長λ0とλ2の間で変調された信号7’
(信号2)とする。LDnまで同様に波長λ0とλnの間
で変調された信号7’((信号n)とする。信号1から
信号nまでを合波器9を用いて合波し、フィルタ特性
8’を持つ波長フィルタ2でλ0をカットし、フィイバ
4を伝送させた後、分岐器10でn個に分配する。分配
された光は受信フィルタ(Fn)11で波長λnのみを
透過させることにより、パワーが1、0の信号6’とな
る。
FIG. 6 shows the configuration of the third embodiment. Figure 2
A signal obtained by modulating a semiconductor laser (LD1) 1 having the characteristics as shown in (c) with a modulation current (I 1 -I 0 ) by the method of FIG. 5 and modulating output light between wavelengths λ 0 and λ 1. 7 '(Signal 1)
And Similarly, the LD2 is also modulated by the modulation current (I 2 −I 0 ), and the output light is a signal 7 ′ modulated between wavelengths λ 0 and λ 2.
(Signal 2). Similarly, let LDn be a signal 7 ′ ((signal n) that is modulated between wavelengths λ 0 and λ n . Signals 1 to n are multiplexed using a multiplexer 9 to obtain a filter characteristic 8 ′. Λ 0 is cut by the wavelength filter 2 which it has, and the fiber 4 is transmitted, and then it is divided into n pieces by the branching device 10. The distributed light is transmitted by the reception filter (Fn) 11 only at the wavelength λ n. , A signal 6'having a power of 1, 0.

【0029】この場合の受信フィルタ11は、実施例2
と同様、1Å程度しか離れていない波長を分離するた
め、透過バンド幅の小さい特性12を持つ様な波長フィ
ルタが必要である。受信フィルタ11を透過した光6’
をフォトダイオード5で受光し、信号を検出する。
The reception filter 11 in this case is the same as the second embodiment.
Similarly to the above, in order to separate wavelengths separated by only about 1Å, a wavelength filter having a characteristic 12 with a small transmission bandwidth is required. Light 6'transmitted through the reception filter 11
Is received by the photodiode 5 and a signal is detected.

【0030】本実施例では、各レーザ1の発振波長が可
変であるので、受信側を自由に選択することができる。
さらに、波長フィルタ11を可変にすることにより、送
信側と受信側とで相互に自由に相手を選ぶことが出来
る。
In this embodiment, since the oscillation wavelength of each laser 1 is variable, the receiving side can be freely selected.
Furthermore, by making the wavelength filter 11 variable, the transmission side and the reception side can freely select each other.

【0031】本実施例でも、微小な電流で変調を行なえ
る為、キャリ密度の変動が小さく、チャーピングが制御
され、スペクトル広がりを抑えることが出来、高速の変
調を行なうことが出来る。また、スペクトル広がりが小
さい為、波長多重した場合にも消光比の良好な信号が得
られる。その結果、容易に、消光比の高く、しかも高速
な波長多重通信を行なうことが可能となる。
Also in the present embodiment, since the modulation can be performed with a minute current, the variation of the carry density is small, the chirping is controlled, the spectrum spread can be suppressed, and the high speed modulation can be performed. Further, since the spectrum spread is small, a signal with a good extinction ratio can be obtained even when wavelength division multiplexing is performed. As a result, it becomes possible to easily perform high-speed WDM communication with a high extinction ratio.

【0032】[0032]

【発明の効果】本発明は以上説明した様に構成されてい
るので、以下に記載する様な効果を奏する。 1.微小な電流で変調を行なえる為、チャーピングが抑
制され、スペクトル広がりが抑えられ、また高速な変調
が容易に実現できる。 2.微小な電流で変調を行なうにもかかわらず、良好な
消光比が容易に得られる。 3.スペクトル幅の広がりを抑えられる為、波長多重時
にも良好な消光比が得られる。
Since the present invention is configured as described above, it has the following effects. 1. Since modulation can be performed with a minute current, chirping is suppressed, spectrum spread is suppressed, and high-speed modulation can be easily realized. 2. A good extinction ratio can be easily obtained despite modulation with a minute current. 3. Since the spread of the spectrum width can be suppressed, a good extinction ratio can be obtained even at the time of wavelength multiplexing.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1の構成図である。FIG. 1 is a configuration diagram of a first embodiment.

【図2】実施例1に用いるレーザの反射器の構成及び反
射特性、レーザの電流−波長特性を示す図である。
FIG. 2 is a diagram showing a configuration and a reflection characteristic of a reflector of a laser used in Example 1, and a current-wavelength characteristic of the laser.

【図3】実施例1のレーザの変調方法を説明する図であ
る。
FIG. 3 is a diagram illustrating a laser modulation method according to the first embodiment.

【図4】実施例2の構成図である。FIG. 4 is a configuration diagram of a second embodiment.

【図5】実施例2のレーザの変調方法を説明する図であ
る。
FIG. 5 is a diagram illustrating a laser modulation method according to a second embodiment.

【図6】実施例3の構成図である。FIG. 6 is a configuration diagram of a third embodiment.

【図7】従来例を説明する図である。FIG. 7 is a diagram illustrating a conventional example.

【符号の説明】[Explanation of symbols]

1 半導体レーザ 2 波長フィルタ 3 レンズ 4 光ファイバ 5 フォトダイオード 6、6’ 波長フィルタ透過後の信号 7、7’ レーザからの光 8、8’ フィルタ特性 9 合波器 10 分岐器 11 受信フィルタ 12 受信フィルタの特性 1 Semiconductor Laser 2 Wavelength Filter 3 Lens 4 Optical Fiber 5 Photodiode 6, 6'Signal After Passing Wavelength Filter 7, 7'Light from Laser 8, 8'Filter Characteristic 9 Multiplexer 10 Brancher 11 Reception Filter 12 Reception Filter characteristics

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H04B 10/04 10/06 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location H04B 10/04 10/06

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 或る波長を中心として、その両側に複数
の高反射ピークが周期的に存在する反射スペクトル特性
を有する反射器を備え、複数の電極を有する半導体レー
ザにおいて、複数の電極への注入電流を、異なる2つの
縦モード間でスイッチングを行なう様に制御、変調する
ことにより、発振波長を2波長の間で変調し、該2波長
のうち1波長のみを選択する機能を有する波長フィルタ
を透過させることにより、強度変調された信号を送り出
すことを特徴とする光伝送装置の変調方式。
1. A semiconductor laser having a plurality of electrodes, comprising a reflector having a reflection spectrum characteristic in which a plurality of high reflection peaks are periodically present on both sides of a certain wavelength as a center, and a semiconductor laser having a plurality of electrodes is provided. A wavelength filter having a function of modulating and oscillating an injection current between two wavelengths by controlling and modulating the injected current so as to perform switching between two different longitudinal modes, and selecting only one of the two wavelengths. A modulation system for an optical transmission device, which transmits an intensity-modulated signal by transmitting light.
【請求項2】 前記反射器は、回折格子が存在する領域
と存在しない領域が、或る周期で繰り返される構成であ
ることを特徴とする請求項1記載の光伝送装置の変調方
式。
2. The modulation system for an optical transmission device according to claim 1, wherein the reflector has a structure in which a region where the diffraction grating exists and a region where the diffraction grating does not exist are repeated in a certain cycle.
【請求項3】 前記反射器は、回折格子のピッチや位相
が連続的に変化する領域が、或る周期で繰り返される構
成であることを特徴とする請求項1記載の光伝送装置の
変調方式。
3. The modulation system for an optical transmission device according to claim 1, wherein the reflector has a structure in which regions in which a pitch and a phase of a diffraction grating continuously change are repeated in a certain cycle. .
【請求項4】 請求項1の光伝送装置の変調方式におい
て、2つの縦モードのうち送出する方の波長を可変に
し、該2つの縦モード間でスイッチングを行なう様に注
入電流を変調し、受信側で波長フィルタを用いて任意の
波長の信号を検出することを特徴とする光通信方式。
4. The modulation method for an optical transmission device according to claim 1, wherein a wavelength of one of two longitudinal modes to be transmitted is made variable, and an injection current is modulated so as to perform switching between the two longitudinal modes, An optical communication system characterized by detecting a signal of an arbitrary wavelength using a wavelength filter on the receiving side.
【請求項5】 請求項4の光通信方式において、光伝送
装置と受信側の波長フィルタを複数用いて通信を行なう
ことを特徴とする波長多重光通信方式。
5. The wavelength division multiplexing optical communication system according to claim 4, wherein communication is performed by using a plurality of wavelength filters on the optical transmission device and the receiving side.
JP6293898A 1994-11-02 1994-11-02 Modulation system of optical transmission equipment and optical communication system using the same Pending JPH08139401A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6293898A JPH08139401A (en) 1994-11-02 1994-11-02 Modulation system of optical transmission equipment and optical communication system using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6293898A JPH08139401A (en) 1994-11-02 1994-11-02 Modulation system of optical transmission equipment and optical communication system using the same

Publications (1)

Publication Number Publication Date
JPH08139401A true JPH08139401A (en) 1996-05-31

Family

ID=17800588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6293898A Pending JPH08139401A (en) 1994-11-02 1994-11-02 Modulation system of optical transmission equipment and optical communication system using the same

Country Status (1)

Country Link
JP (1) JPH08139401A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005093498A (en) * 2003-09-12 2005-04-07 Fujitsu Ltd Tunable laser
WO2009001861A1 (en) * 2007-06-25 2008-12-31 Nippon Telegraph And Telephone Corporation Optical modulation signal generation device and optical modulation signal generation method
US7697578B2 (en) 2006-08-31 2010-04-13 Nec Corporation Wavelength variable laser

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005093498A (en) * 2003-09-12 2005-04-07 Fujitsu Ltd Tunable laser
US7697578B2 (en) 2006-08-31 2010-04-13 Nec Corporation Wavelength variable laser
WO2009001861A1 (en) * 2007-06-25 2008-12-31 Nippon Telegraph And Telephone Corporation Optical modulation signal generation device and optical modulation signal generation method
JPWO2009001861A1 (en) * 2007-06-25 2010-08-26 日本電信電話株式会社 Optical modulation signal generation apparatus and optical modulation signal generation method
US8306433B2 (en) 2007-06-25 2012-11-06 Nippon Telegraph And Telephone Corporation Optical modulation signal generating device and optical modulation signal generating method

Similar Documents

Publication Publication Date Title
US8792788B2 (en) Tunable multi-wavelength optical transmitter and transceiver for optical communications based on wavelength division multiplexing
Hill Wavelength domain optical network techniques
Durhuus et al. All optical wavelength conversion by SOA's in a Mach-Zehnder configuration
US8831051B2 (en) Tunable multi-wavelength semiconductor laser array for optical communications based on wavelength division multiplexing
US5351317A (en) Interferometric tunable optical filter
US6822980B2 (en) Tunable semiconductor laser with integrated wideband reflector
US5757832A (en) Optical semiconductor device, driving method therefor and light source and opitcal communication system using the same
JP2001127377A (en) Optical transmitter and apparatus therefor
JPH06232844A (en) Optical semiconductor device, optical communicating system using the same and optical communication system
JPH06103778B2 (en) Optical device including semiconductor distributed feedback laser and method of driving the same
EP0591863B1 (en) Optical receiver, optical semiconductor apparatus, and optical communication system utilizing the same
US5862165A (en) Variable wavelength light source using a laser, wavelength control method, optical communication system and optical communication method
JPH08139401A (en) Modulation system of optical transmission equipment and optical communication system using the same
JP2001284705A (en) Wavelength multiplex method, wavelength variable method and optical transmitter
JP3246703B2 (en) Semiconductor laser capable of polarization modulation and optical communication system using the same
JP3287443B2 (en) Semiconductor laser capable of polarization modulation and optical communication system using the same
KR100460670B1 (en) An Optical Wavelength Converting Apparatus base on XGM for High Extinction Ratio
JPH08172243A (en) Optical transmitter and its modulating system
JPH04168416A (en) Light variable wavelength filter
US5809047A (en) Method for driving a wavelength changeable light source apparatus, such a wavelength changeable light source apparatus and an optical communication system using the same
JPH07307705A (en) Optical communication system
Kaminow FSK with direct detection in optical FDM networks
JPH02183588A (en) Semiconductor light emitting device
JPH07263815A (en) Optical semiconductor device, optical communication system using it and optical communication system
JPH08172244A (en) Optical transmitter and its modulating system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050824

A131 Notification of reasons for refusal

Effective date: 20050915

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20051111

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060704

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090721

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090721

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090721

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20100721

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120721

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120721

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20130721