JPH08138743A - Nonaqeuous electrolyte secondary battery - Google Patents

Nonaqeuous electrolyte secondary battery

Info

Publication number
JPH08138743A
JPH08138743A JP6279120A JP27912094A JPH08138743A JP H08138743 A JPH08138743 A JP H08138743A JP 6279120 A JP6279120 A JP 6279120A JP 27912094 A JP27912094 A JP 27912094A JP H08138743 A JPH08138743 A JP H08138743A
Authority
JP
Japan
Prior art keywords
negative electrode
lithium
carbonate
battery
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6279120A
Other languages
Japanese (ja)
Inventor
Kaoru Inoue
薫 井上
Yoshiyuki Ozaki
義幸 尾崎
Hide Koshina
秀 越名
Teruyoshi Morita
彰克 守田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP6279120A priority Critical patent/JPH08138743A/en
Publication of JPH08138743A publication Critical patent/JPH08138743A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE: To provide a nonaqueous electrolyte secondary battery, preventing the heating of deposited lithium and excellent in safety, by adding carbonate, such as alkaline metal, alkaline earth metal, and transition metal, to a negative electrode having the active material of a lithium ion. CONSTITUTION: In a nonaqueous electrolyte secondary battery, the following are used: a positive electrode, composed of a lithium-containing metallic oxide, and a negative electrode, composed of material having the active material of a lithium ion, e.g. carbon material, etc., capable of reversibly intercalating/ deintercalating lithium. At that time, carbonate of one kind or more of alkaline metal carbonate, alkaline earth metal carbonate, and transition metal carbonate is added to the negative electrode. This. carbonate is preferably e.g. Na2 CO3 or Li2 CO3 , and the added quantity is preferably 1-10wt.% of the negative electrode. Consequently, metallic lithium, dendritically deposited on the negative electrode, reacts to an ion carbonate to form insoluble Li2 CO3 coating to increase the safety of the battery.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、非水電解液二次電池
の、とくにその極板上に析出したリチウムの発火を防止
できる負極を提供するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention provides a negative electrode which can prevent ignition of lithium deposited on a non-aqueous electrolyte secondary battery, especially on its electrode plate.

【0002】[0002]

【従来の技術】近年、AV機器あるいはパソコン等の電
子機器のポータブル化、コードレス化が急速に進んでお
り、これらの駆動用電源として小型、軽量で高エネルギ
ー密度を有する二次電池への要求が高い。この中でリチ
ウムを活物質とする負極を用いた非水電解液二次電池は
とりわけ高電圧、高エネルギー密度を有する電池として
期待が大きい。従来、この電池には負極にリチウム金
属、正極に二酸化マンガンや五酸化バナジウムが用いら
れ、3V級の電池が実現されていた。
2. Description of the Related Art In recent years, portable and cordless AV devices or electronic devices such as personal computers have been rapidly developed, and there has been a demand for a small size, lightweight secondary battery having a high energy density as a power source for driving these devices. high. Among them, non-aqueous electrolyte secondary batteries using a negative electrode containing lithium as an active material are particularly expected as batteries having high voltage and high energy density. Conventionally, a lithium metal is used for the negative electrode and manganese dioxide or vanadium pentoxide is used for the positive electrode in this battery, and a 3V class battery has been realized.

【0003】ところが、負極にリチウム金属を用いた場
合には、充電時に負極上にリチウムが樹枝状(デンドラ
イト状)に析出し、このデンドライト状リチウムによっ
て電池の内部短絡が発生して電池の発熱、発火が起こっ
ていた。
However, when lithium metal is used for the negative electrode, lithium is deposited in a dendritic form (dendritic form) on the negative electrode during charging, and this dendrite-like lithium causes an internal short circuit in the battery, resulting in heat generation of the battery. There was a fire.

【0004】また、電池が高温下に置かれた場合にはリ
チウムがデンドライト状に析出した負極と電解液とが化
学反応を起こして電池が発熱し、熱暴走状態となって発
火に至る可能性があり、電池の安全性確保に問題があっ
た。
Further, when the battery is placed at a high temperature, there is a possibility that the negative electrode on which lithium is deposited in the form of dendrite and the electrolytic solution cause a chemical reaction to heat the battery, resulting in a thermal runaway state and ignition. There was a problem in ensuring the safety of the battery.

【0005】リチウムが負極上でデンドライト状に析出
することを防止するために、負極に炭素材料を用いこの
炭素材料の層間にインターカレートおよびデインターカ
レートさせるものが提案されている。
In order to prevent lithium from dendrite-like deposition on the negative electrode, it has been proposed to use a carbon material for the negative electrode and intercalate and deintercalate between the layers of this carbon material.

【0006】この負極では充電時にリチウムが炭素の層
間にインターカレートされるために、極板上でリチウム
がデンドライト状に析出することは原理的に起こらず、
デンドライト状の金属リチウムと電解液との化学反応に
よる発熱は生じない。
In this negative electrode, lithium is intercalated between carbon layers during charging, so that lithium is not dendrite-like deposited on the electrode plate in principle.
No heat is generated by the chemical reaction between the dendrite-like metallic lithium and the electrolytic solution.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、リチウ
ムを可逆的にインターカレートおよびデインターカレー
トし得る炭素材料を負極に用いた場合でも、充放電サイ
クルを繰り返すにつれ徐々に負極の劣化が始まるので充
電時における負極のリチウム受入れ性は低下してくる。
つまり、サイクル寿命末期においては負極の炭素材料の
層間にリチウムが容易にインターカレートしなくなるの
で、負極表面上で金属リチウムがデンドライト状に析出
するようになる。そして、このようなサイクル寿命末期
の電池が高温下に置かれた場合にはデンドライト状に析
出したリチウム金属と電解液とが化学反応を起こして電
池が発熱し、さらに熱暴走状態となって電池が発火して
いた。
However, even when a carbon material capable of reversibly intercalating and deintercalating lithium is used for the negative electrode, the deterioration of the negative electrode gradually begins as the charging / discharging cycle is repeated. The lithium acceptability of the negative electrode during charging decreases.
That is, at the end of the cycle life, lithium is not easily intercalated between the layers of the carbon material of the negative electrode, so that metallic lithium is deposited in the form of dendrite on the surface of the negative electrode. When such a battery at the end of the cycle life is placed under high temperature, the lithium metal deposited in the dendrite state and the electrolytic solution cause a chemical reaction to generate heat in the battery, which further causes a thermal runaway condition. Was ignited.

【0008】本発明はこのような課題を解決するもので
あり、負極上でデンドライト状に析出したリチウムが高
温時などに電解液と化学反応を起こして発熱することを
防止することができ、安全性に優れた非水電解液二次電
池を提供するものである。
The present invention is intended to solve such a problem, and it is possible to prevent lithium dendrite-like deposited on the negative electrode from causing a chemical reaction with the electrolytic solution at a high temperature to generate heat. A non-aqueous electrolyte secondary battery having excellent properties is provided.

【0009】[0009]

【課題を解決するための手段】本発明はリチウムイオン
を活物質とする負極と、非水電解液と、リチウム含有金
属酸化物からなる正極とを備えた非水電解液二次電池に
おいて、上記負極にアルカリ金属炭酸塩、アルカリ土類
金属炭酸塩、遷移金属炭酸塩よりなる群から選ばれる少
なくとも一種の炭酸塩を添加したことを特徴とする。さ
らには、上記炭酸塩を負極の重量に対して1%から10
%の割合で添加したものである。さらには、負極にNa
2CO3、Li2CO3のうち少なくとも一種を添加したこ
とを特徴とする。さらには、負極に添加するNa2
3、Li2CO3のうち少なくとも一種が負極の重量に
対して1%〜10%としたものである。
The present invention provides a non-aqueous electrolyte secondary battery comprising a negative electrode using lithium ions as an active material, a non-aqueous electrolyte, and a positive electrode comprising a lithium-containing metal oxide. At least one carbonate selected from the group consisting of alkali metal carbonates, alkaline earth metal carbonates and transition metal carbonates is added to the negative electrode. Furthermore, the above-mentioned carbonate is used in an amount of 1% to 10% based on the weight of the negative electrode.
% Added. Furthermore, Na is used for the negative electrode.
At least one of 2 CO 3 and Li 2 CO 3 is added. Furthermore, Na 2 C added to the negative electrode
At least one of O 3 and Li 2 CO 3 is 1% to 10% of the weight of the negative electrode.

【0010】負極には、リチウムイオンを活物質とする
材料、例えば、リチウムを可逆的にインターカレート/
デインターカレートすることが可能な炭素材料などが用
いられる。
For the negative electrode, a material having lithium ions as an active material, such as lithium, is reversibly intercalated /
A carbon material that can be deintercalated is used.

【0011】[0011]

【作用】デンドライト状に析出した金属リチウムは、電
解液に接している表面が電解液に対して化学的に活性な
状態であり、高温下では電解液と容易に発熱反応する。
これに対して本発明では負極に炭酸塩を添加しているの
でデンドライト状に析出した金属リチウムの表面は前記
炭酸塩の炭酸イオン(CO3 2-)と反応し、デンドライ
ト状リチウムの表面にLi2CO3の被膜が形成される。
このLi2CO3は電解液に対してほとんど不溶であり、
また熱安定性も高いことから、リチウムと電解液との反
応を抑制する被膜として機能し、電池の安全性を高める
ことができる。析出した金属リチウムと炭酸塩との反応
はイオン交換反応であり、リチウムの酸化還元電位は最
も低いことから、リチウムイオン以外の陽イオンを含む
炭酸塩、例えばNa2CO3とは容易にイオン交換反応す
る。また、Li2CO3の場合には、濃度勾配によって炭
酸イオンは容易に金属リチウム中に拡散し、表面にLi
2CO3の被膜が形成される。
The metal lithium deposited in the dendrite form has a surface in contact with the electrolytic solution that is chemically active with respect to the electrolytic solution, and easily reacts exothermically with the electrolytic solution at high temperatures.
On the other hand, in the present invention, since the carbonate is added to the negative electrode, the surface of the metallic lithium deposited in the dendrite form reacts with the carbonate ion (CO 3 2− ) of the carbonate, and the surface of the dendrite-like lithium becomes Li. A film of 2 CO 3 is formed.
This Li 2 CO 3 is almost insoluble in the electrolytic solution,
Further, since it has high thermal stability, it can function as a film that suppresses the reaction between lithium and the electrolytic solution, and can enhance the safety of the battery. The reaction between the precipitated metal lithium and the carbonate is an ion exchange reaction, and since the redox potential of lithium is the lowest, it is easy to perform an ion exchange with a carbonate containing a cation other than lithium ion, for example, Na 2 CO 3. react. Further, in the case of Li 2 CO 3, the carbonate ion easily diffuses into metallic lithium due to the concentration gradient, and Li 2 CO 3 is deposited on the surface.
A film of 2 CO 3 is formed.

【0012】非水電解液二次電池の内部にLi2CO3
添加する技術は、特開平1−286263号公報、特開
平4−329268号公報に記載されている。
Techniques for adding Li 2 CO 3 to the inside of a non-aqueous electrolyte secondary battery are described in JP-A-1-286263 and JP-A-4-329268.

【0013】特開平1−286263号公報には、電解
液中にLi2CO3を添加することが示されているが、電
解液中に溶解できるLi2CO3の量は極めて微量である
ために本発明の目的である負極を覆うのに充分なLi2
CO3の被膜を形成することができない。
Japanese Patent Laid-Open No. 1-286263 discloses adding Li 2 CO 3 to the electrolytic solution, but the amount of Li 2 CO 3 that can be dissolved in the electrolytic solution is extremely small. Sufficient Li 2 to cover the negative electrode which is the object of the present invention.
A CO 3 film cannot be formed.

【0014】また、特開平4−329268号公報には
安全弁を備えた非水電解液二次電池において正極にLi
2CO3を添加して電池の過充電時に正極の電位が高くな
った際に正極に添加したLi2CO3を電気化学的に分解
して炭酸ガスを放出することによって電池内圧を高くし
て安全性を作動させて電池が過充電されることを防ぐも
のである。したがって、本発明のようにサイクル寿命末
期に負極に析出するリチウムの表面に被膜を形成させる
という作用はないものである。
Further, in Japanese Patent Application Laid-Open No. 4-329268, in a non-aqueous electrolyte secondary battery equipped with a safety valve, Li is used as a positive electrode.
By increasing the internal pressure of the battery by releasing Li 2 CO 3 was added to the positive electrode when the potential of the positive electrode is increased during overcharging of the battery by adding 2 CO 3 electrochemically decomposed to carbon dioxide The safety is activated to prevent the battery from being overcharged. Therefore, unlike the present invention, there is no action of forming a film on the surface of lithium deposited on the negative electrode at the end of the cycle life.

【0015】[0015]

【実施例】以下、本発明の実施例を図面を参照しながら
説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0016】(実施例1)図1に本実施例で用いた円筒
形電池の縦断面図を示す。図において、1は耐有機電解
液性のステンレス鋼板を加工した電池ケース、2は安全
弁を設けた封口板、3は絶縁パッキングを示す。4は極
板群であり、正極および負極がセパレータを介して渦巻
状に巻回されたものでケース1内に収納されている。そ
して上記正極からは正極リード5が引き出されて封口板
2に接続され、負極からは負極リード6が引き出されて
電池ケース1の底部に接続されている。7は絶縁リング
で極板群4の上下部にそれぞれ設けられている。以下
正、負極板等について詳しく説明する。
(Embodiment 1) FIG. 1 is a vertical sectional view of a cylindrical battery used in this embodiment. In the figure, 1 is a battery case formed by processing an organic electrolyte resistant stainless steel plate, 2 is a sealing plate provided with a safety valve, and 3 is an insulating packing. Reference numeral 4 denotes an electrode plate group, which is formed by spirally winding a positive electrode and a negative electrode via a separator and is housed in the case 1. A positive electrode lead 5 is drawn out from the positive electrode and connected to the sealing plate 2, and a negative electrode lead 6 is drawn out from the negative electrode and connected to the bottom of the battery case 1. Insulating rings 7 are provided on the upper and lower portions of the electrode plate group 4, respectively. The positive and negative electrode plates will be described in detail below.

【0017】正極は、Li2CO3とCo34とを混合
し、900℃で10時間焼成して合成したLiCoO2
の粉末100重量部に、アセチレンブラック3重量部、
フッ素樹脂系結着剤7重量部を混合し、カルボキシメチ
ルセルロース水溶液に懸濁させてペースト状にした。こ
のペーストを厚さ0.03mmのアルミ箔の両面に塗着
し、乾燥後圧延して厚さ0.18mm、幅37mm、長
さ240mmの正極板とした。
The positive electrode was prepared by mixing Li 2 CO 3 and Co 3 O 4 and firing at 900 ° C. for 10 hours to synthesize LiCoO 2.
3 parts by weight of acetylene black,
7 parts by weight of a fluororesin binder was mixed and suspended in a carboxymethyl cellulose aqueous solution to form a paste. This paste was applied on both sides of an aluminum foil having a thickness of 0.03 mm, dried and rolled to obtain a positive electrode plate having a thickness of 0.18 mm, a width of 37 mm and a length of 240 mm.

【0018】負極はメソフェーズ小球体を2800℃の
高温で黒鉛化したもの(以下メソフェーズ黒鉛と称す)
を用いた。このメソフェーズ黒鉛100重量部にスチレ
ン/ブタジエンゴム3重量部を混合した後、Na2CO3
をメソフェーズ黒鉛の重量に対して0.5%、1%、5
%、10%、15%混合し、カルボキシメチルセルロー
ス水溶液に懸濁させてペースト状にした。そしてこのペ
ーストを厚さ0.02mmの銅箔の両面に塗着し、乾燥
後圧延して、厚さ0.20mm、幅39mm、長さ26
0mmの負極板とした。
The negative electrode is obtained by graphitizing mesophase spheres at a high temperature of 2800 ° C. (hereinafter referred to as mesophase graphite).
Was used. After mixing 3 parts by weight of styrene / butadiene rubber with 100 parts by weight of this mesophase graphite, Na 2 CO 3
0.5%, 1%, 5 with respect to the weight of mesophase graphite
%, 10% and 15% were mixed and suspended in a carboxymethylcellulose aqueous solution to form a paste. Then, this paste is applied to both sides of a copper foil having a thickness of 0.02 mm, dried and rolled to have a thickness of 0.20 mm, a width of 39 mm, and a length of 26.
The negative electrode plate was 0 mm.

【0019】そして、正極板にはアルミニウム製、負極
板にはニッケル製のリードをそれぞれ取り付け、厚さ
0.025mm、幅45mm、長さ730mmのポリプ
ロピレン製セパレータを介して渦巻状に巻回して極板群
を構成し、これを直径14.0mm、高さ50mmの電
池ケースに納入した。電解液にはECとDECとMPと
を30:50:20の体積比で混合した溶媒に1モル/
リットルのLiPF6を溶解したものを用い、これを注
液した後封口し、本発明の電池Aとした。
Then, a lead made of aluminum is attached to the positive electrode plate and a lead made of nickel is attached to the negative electrode plate, and the electrode is wound in a spiral shape through a polypropylene separator having a thickness of 0.025 mm, a width of 45 mm and a length of 730 mm. A plate group was constructed and delivered to a battery case having a diameter of 14.0 mm and a height of 50 mm. The electrolytic solution was prepared by mixing EC, DEC and MP in a volume ratio of 30:50:20 in a solvent of 1 mol / mol.
A solution prepared by dissolving 1 liter of LiPF 6 was used, which was poured and then sealed to obtain a battery A of the invention.

【0020】(実施例2)メソフェーズ黒鉛100重量
部にスチレン/ブタジエンゴム3重量部を混合した後、
Li2CO3をメソフェーズ黒鉛の重量に対して0.5
%、1%、5%、10%、15%混合し、カルボキシメ
チルセルロース水溶液に懸濁させてペースト状にした以
外は(実施例1)と同様の電池を構成し、これを本発明
の電池Bとした。
Example 2 After mixing 3 parts by weight of styrene / butadiene rubber with 100 parts by weight of mesophase graphite,
Li 2 CO 3 is 0.5 based on the weight of the mesophase graphite.
%, 1%, 5%, 10%, 15% were mixed, and a battery similar to that of (Example 1) was constructed except that it was suspended in an aqueous solution of carboxymethyl cellulose to form a paste. And

【0021】(比較例)メソフェーズ黒鉛100重量部
にスチレン/ブタジエンゴム3重量部を混合し、カルボ
キシメチルセルロース水溶液に懸濁させてペースト状に
した。そして、このペーストを厚さ0.02mmの銅箔
の両面に塗着し、乾燥後圧延して、厚さ0.20mm、
幅39mm、長さ260mmの負極板とした以外は(実
施例1)と同様の電池を構成し、これを比較の電池Cと
した。
Comparative Example 100 parts by weight of mesophase graphite was mixed with 3 parts by weight of styrene / butadiene rubber, and the mixture was suspended in an aqueous carboxymethylcellulose solution to form a paste. Then, this paste is applied to both surfaces of a copper foil having a thickness of 0.02 mm, dried and rolled to a thickness of 0.20 mm,
A battery similar to that of (Example 1) was constructed except that a negative electrode plate having a width of 39 mm and a length of 260 mm was used, and this was used as a comparative battery C.

【0022】次に、本発明の電池A、Bと比較の電池C
を各2セルずつ用意して充放電サイクル寿命試験を行っ
た。充放電条件は20℃において充電は充電電圧4.1
V、充電時間2時間の定電圧充電を行い、制限電流を3
50mAとし、放電は放電電流500mA、放電終止電
圧3.0Vの定電流放電を行った。そして、それぞれ1
0サイクル目の放電容量を初期容量とし、初期容量の半
分以下の容量に劣化した時点をサイクル寿命末期として
充電状態でサイクル試験を中止した。サイクル寿命末期
の電池の2個のうち1セルは分解し、負極板の表面状態
を観察して、金属リチウムの析出の有無を調べた。もう
一方の電池はUL規格による加熱試験(室温から毎分5
℃で165℃まで昇温し、165℃で10分間維持)を
行い、発火の有無を調べた。初期容量、サイクル寿命末
期における電池の負極上への金属リチウムの析出の有
無、加熱試験による発火の有無の結果を(表1)に示
す。
Next, the batteries A and B of the present invention and the comparative battery C
Each 2 cells were prepared and a charge / discharge cycle life test was conducted. Charge / discharge conditions are 20 ° C and charge is 4.1
V, charging time 2 hours constant voltage charging, limit current 3
The discharge was carried out at a constant current of 50 mA and a discharge current of 500 mA and a discharge end voltage of 3.0 V. And each one
The discharge capacity at the 0th cycle was defined as the initial capacity, and the point at which the capacity deteriorated to half or less of the initial capacity was regarded as the end of cycle life, and the cycle test was stopped in the charged state. One of two cells at the end of the cycle life was disassembled, and the surface condition of the negative electrode plate was observed to examine whether metal lithium was deposited. The other battery is a UL standard heating test (5 minutes from room temperature
The temperature was raised to 165 ° C. at a temperature of 165 ° C. and the temperature was maintained at 165 ° C. for 10 minutes), and the presence or absence of ignition was examined. The results of the initial capacity, the presence or absence of metal lithium deposition on the negative electrode of the battery at the end of the cycle life, and the presence or absence of ignition in the heating test are shown in (Table 1).

【0023】[0023]

【表1】 [Table 1]

【0024】(表1)に示したように、各電池のサイク
ル寿命末期には負極上への金属リチウムの析出が確認さ
れた。加熱試験の結果、比較の電池Cは金属リチウムと
電解液が反応して発火したが、本発明の電池Aにおいて
Na2CO3を1%、5%、10%、15%添加した場合
には前記反応を防止することができ発火しなかった。し
かし、Na2CO3を15%添加した場合には初期容量は
低下した。
As shown in (Table 1), it was confirmed that metallic lithium was deposited on the negative electrode at the end of the cycle life of each battery. As a result of the heating test, the comparative battery C ignited due to the reaction between the lithium metal and the electrolytic solution, but when Na 2 CO 3 was added at 1%, 5%, 10% and 15% in the battery A of the present invention, The reaction could be prevented and no ignition occurred. However, when Na 2 CO 3 was added by 15%, the initial capacity decreased.

【0025】以上の結果より、負極にNa2CO3を1%
以上10%以下添加することによって、電池容量を低下
させることなくサイクル寿命末期における電池の熱安定
性を向上させることができた。
From the above results, 1% of Na 2 CO 3 was added to the negative electrode.
By adding 10% or less, the thermal stability of the battery at the end of the cycle life could be improved without reducing the battery capacity.

【0026】同様に負極にLi2COを1%以上10
%以下添加することによって電池容量を低下させること
なくサイクル寿命末期における電池の熱安定性を向上さ
せることができた。
Similarly, 1% or more of Li 2 CO 3 is added to the negative electrode 10
%, It was possible to improve the thermal stability of the battery at the end of the cycle life without reducing the battery capacity.

【0027】なお、本実施例では炭酸イオンの供給源と
してNa2CO3、Li2CO3を用いた場合について説明
したが、他のアルカリ金属炭酸塩、アルカリ土類金属炭
酸塩、遷移金属炭酸塩の少なくとも一種の炭酸塩を用い
ても同様な結果が得られた。
In this embodiment, the case where Na 2 CO 3 and Li 2 CO 3 are used as the carbonate ion supply source has been described, but other alkali metal carbonates, alkaline earth metal carbonates, transition metal carbonates are used. Similar results were obtained with at least one carbonate salt.

【0028】また、本実施例では正極にはLiCoO2
を用いたが、他のリチウム含有金属酸化物を用いた場合
も同様な効果が得られた。
In this embodiment, the positive electrode is made of LiCoO 2
However, similar effects were obtained when other lithium-containing metal oxides were used.

【0029】[0029]

【発明の効果】以上のように本発明では、負極にアルカ
リ金属炭酸塩、アルカリ土類金属炭酸塩、遷移金属炭酸
塩のうちの少なくとも一種の炭酸塩を用いているので、
負極上に析出した金属リチウムと炭酸イオンが反応して
被膜を形成し、金属リチウムと電解液との反応を防止し
て電池の安全性を高めることができる。
As described above, in the present invention, at least one carbonate selected from the group consisting of alkali metal carbonates, alkaline earth metal carbonates and transition metal carbonates is used for the negative electrode.
Metal lithium deposited on the negative electrode reacts with carbonate ions to form a film, which prevents the reaction between the metal lithium and the electrolytic solution to enhance the safety of the battery.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の円筒形電池の縦断面図FIG. 1 is a longitudinal sectional view of a cylindrical battery of the present invention.

【符号の説明】[Explanation of symbols]

1 電池ケース 2 封口板 3 絶縁パッキング 4 極板群 5 正極リード 6 負極リード 7 絶縁リング 1 Battery Case 2 Sealing Plate 3 Insulation Packing 4 Electrode Plate Group 5 Positive Electrode Lead 6 Negative Electrode Lead 7 Insulation Ring

───────────────────────────────────────────────────── フロントページの続き (72)発明者 守田 彰克 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Akikatsu Morita 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】正極と、リチウムイオンを活物質とする負
極と、非水電解液を用いる非水電解液二次電池におい
て、負極にアルカリ金属炭酸塩、アルカリ土類金属炭酸
塩、遷移金属炭酸塩よりなる群から選ばれる少なくとも
一種の炭酸塩を添加したことを特徴とする非水電解液二
次電池。
1. A non-aqueous electrolyte secondary battery using a positive electrode, a negative electrode using lithium ions as an active material, and a non-aqueous electrolyte, wherein the negative electrode is an alkali metal carbonate, an alkaline earth metal carbonate, or a transition metal carbonate. A non-aqueous electrolyte secondary battery comprising at least one carbonate selected from the group consisting of salts.
【請求項2】負極に添加する炭酸塩が、負極の重量に対
して1%〜10%であることを特徴とする請求項1記載
の非水電解液二次電池。
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the carbonate added to the negative electrode is 1% to 10% with respect to the weight of the negative electrode.
【請求項3】正極と、リチウムイオンを活物質とする負
極と、非水電解液を用いる非水電解液二次電池におい
て、負極にNa2CO3、Li2CO3のうち少なくとも1
種を添加したことを特徴とする非水電解液二次電池。
3. A non-aqueous electrolyte secondary battery using a positive electrode, a negative electrode using lithium ions as an active material, and a non-aqueous electrolyte, wherein at least one of Na 2 CO 3 and Li 2 CO 3 is used as the negative electrode.
A non-aqueous electrolyte secondary battery comprising a seed.
【請求項4】負極に添加するNa2CO3、Li2CO3
うち少なくとも1種が負極の重量に対して1%〜10%
であることを特徴とする請求項3記載の非水電解液二次
電池。
4. At least one of Na 2 CO 3 and Li 2 CO 3 added to the negative electrode is 1% to 10% with respect to the weight of the negative electrode.
The non-aqueous electrolyte secondary battery according to claim 3, wherein
JP6279120A 1994-11-14 1994-11-14 Nonaqeuous electrolyte secondary battery Pending JPH08138743A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6279120A JPH08138743A (en) 1994-11-14 1994-11-14 Nonaqeuous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6279120A JPH08138743A (en) 1994-11-14 1994-11-14 Nonaqeuous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPH08138743A true JPH08138743A (en) 1996-05-31

Family

ID=17606715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6279120A Pending JPH08138743A (en) 1994-11-14 1994-11-14 Nonaqeuous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH08138743A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10233208A (en) * 1996-12-20 1998-09-02 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2001176500A (en) * 1999-12-08 2001-06-29 Samsung Sdi Co Ltd Negative electrode active material slurry composition for lithium secondary battery, and method of manufacturing negative electrode using the same
JP2009170287A (en) * 2008-01-17 2009-07-30 Mitsubishi Chemicals Corp Electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same
WO2015025417A1 (en) * 2013-08-23 2015-02-26 株式会社日立製作所 Negative electrode material and lithium ion secondary battery using same
JP2018060692A (en) * 2016-10-05 2018-04-12 旭化成株式会社 Nonaqueous secondary battery
WO2020175362A1 (en) 2019-02-28 2020-09-03 パナソニック株式会社 Slurry for non-aqueous electrolyte secondary cell, method for manufacturing slurry for non-aqueous electrolyte secondary cell, electrode for non-aqueous electrolyte secondary cell, and non-aqueous electrolyte secondary cell

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06140077A (en) * 1992-09-11 1994-05-20 Mitsubishi Electric Corp Electrochemical element, lithium secondary battery and set battery and manufacture thereof
JPH07235297A (en) * 1993-12-27 1995-09-05 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06140077A (en) * 1992-09-11 1994-05-20 Mitsubishi Electric Corp Electrochemical element, lithium secondary battery and set battery and manufacture thereof
JPH07235297A (en) * 1993-12-27 1995-09-05 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10233208A (en) * 1996-12-20 1998-09-02 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2001176500A (en) * 1999-12-08 2001-06-29 Samsung Sdi Co Ltd Negative electrode active material slurry composition for lithium secondary battery, and method of manufacturing negative electrode using the same
JP2009170287A (en) * 2008-01-17 2009-07-30 Mitsubishi Chemicals Corp Electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same
WO2015025417A1 (en) * 2013-08-23 2015-02-26 株式会社日立製作所 Negative electrode material and lithium ion secondary battery using same
JP2018060692A (en) * 2016-10-05 2018-04-12 旭化成株式会社 Nonaqueous secondary battery
WO2020175362A1 (en) 2019-02-28 2020-09-03 パナソニック株式会社 Slurry for non-aqueous electrolyte secondary cell, method for manufacturing slurry for non-aqueous electrolyte secondary cell, electrode for non-aqueous electrolyte secondary cell, and non-aqueous electrolyte secondary cell

Similar Documents

Publication Publication Date Title
CA2196493C (en) Additives for improving cycle life of non-aqueous rechargeable lithium batteries
JPH10255839A (en) Nonaqueous electrolyte secondary battery
JP4507284B2 (en) Non-aqueous electrolyte secondary battery
JP5082198B2 (en) Lithium ion secondary battery
JPH117944A (en) Nonaqueous electrolyte secondary battery
JP3440638B2 (en) Non-aqueous electrolyte secondary battery
EP0838096B1 (en) Lithium cobalt oxide cathodic active material and secondary battery using the same
JP3003431B2 (en) Non-aqueous electrolyte secondary battery
JP3512846B2 (en) Non-aqueous electrolyte battery
JP2000021452A (en) Nonaqueous electrolyte secondary battery
JPH11120993A (en) Nonaqueous electrolyte secondary battery
JPH08138743A (en) Nonaqeuous electrolyte secondary battery
JPH09129241A (en) Nonaqueous electrolytic secondary battery
JPH08180864A (en) Nonaqueous electrolytic secondary battery
JPH04329269A (en) Nonaqueous electrolyte secondary battery
JP3456771B2 (en) Non-aqueous electrolyte secondary battery
JP3232953B2 (en) Non-aqueous electrolyte secondary battery
JP4581157B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
JPH05174872A (en) Nonaqueous electrolyte secondary battery
JP3424419B2 (en) Method for producing negative electrode carbon material for non-aqueous electrolyte secondary battery
JP3468956B2 (en) Non-aqueous electrolyte secondary battery
JP3008638B2 (en) Non-aqueous electrolyte secondary battery and its negative electrode active material
JP3010973B2 (en) Non-aqueous electrolyte secondary battery
JP3043175B2 (en) Lithium secondary battery
JPH09245798A (en) Lithium secondary battery