JPH08138650A - Carbonaceous electrode plate for non-aqueous electrolyte secondary battery and secondary battery - Google Patents

Carbonaceous electrode plate for non-aqueous electrolyte secondary battery and secondary battery

Info

Publication number
JPH08138650A
JPH08138650A JP6268761A JP26876194A JPH08138650A JP H08138650 A JPH08138650 A JP H08138650A JP 6268761 A JP6268761 A JP 6268761A JP 26876194 A JP26876194 A JP 26876194A JP H08138650 A JPH08138650 A JP H08138650A
Authority
JP
Japan
Prior art keywords
secondary battery
electrode plate
carbonaceous
aqueous electrolyte
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6268761A
Other languages
Japanese (ja)
Inventor
Kenji Okuda
健二 奥田
Kazutoshi Haraguchi
和敏 原口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP6268761A priority Critical patent/JPH08138650A/en
Publication of JPH08138650A publication Critical patent/JPH08138650A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE: To improve the properties of a non-aqueous electrolyte secondary battery. CONSTITUTION: As to a carbonaceous sheet made of carbon fibers, etc.; a carbonaceous formed plate whose bulk density and porosity are graded from low to high and from high to low, respectively, toward inner side in the thickness direction is utilized as an electrode plate for a non-aqueous electrolyte secondary battery. The electrode capacity and the cycle characteristic can be improved by making the electrode plate have higher bulk density and lower porosity in the inner side and a lithium secondary battery with high power can be obtained by using the electrode plate as a negative electrode.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は炭素質成形体を用いた非
水電解液二次電池の負極に関するものである。さらに詳
しく言えば、非水電解液二次電池であるリチウム二次電
池の負極として有用な炭素質成形体を用いた二次電池の
負極に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a negative electrode for a non-aqueous electrolyte secondary battery using a carbonaceous molded body. More specifically, it relates to a negative electrode for a secondary battery using a carbonaceous molded body that is useful as a negative electrode for a lithium secondary battery that is a non-aqueous electrolyte secondary battery.

【0002】[0002]

【従来技術】負極活物質に金属リチウム、正極活物質に
金属カルコゲンや金属酸化物、電解液に非プロトン性有
機溶媒を用いたリチウム二次電池は、鉛電池やアルカリ
電池に比べ高エネルギー密度になることが期待されてい
る。しかし、充放電に伴うリチウムデンドライトの形成
や微粒子化は短絡、容量低下、サイクル特性の低下そし
て安全性に課題を残し、早期の実用化が望めない。
これらの課題を解決するためにアルミニウム、
鉛、あるいはカドミウムなどを含む可融性合金を用いる
電池が提案されている。この方法ではリチウムデンドラ
トは抑止できるがリチウム合金の存在がエネルギー密度
の低下をもたらし、またリチウム合金の微粉化がサイク
ル特性の向上を阻んでいる。
2. Description of the Related Art A lithium secondary battery using metallic lithium as a negative electrode active material, metal chalcogen or a metal oxide as a positive electrode active material, and an aprotic organic solvent as an electrolyte has a higher energy density than a lead battery or an alkaline battery. Is expected to become. However, formation of lithium dendrites and atomization due to charge and discharge leave short-circuiting, capacity reduction, deterioration of cycle characteristics, and safety issues, and early commercialization cannot be expected.
Aluminum to solve these problems,
A battery using a fusible alloy containing lead or cadmium has been proposed. With this method, lithium dendrites can be suppressed, but the presence of lithium alloys causes a decrease in energy density, and finely divided lithium alloys prevent improvement in cycle characteristics.

【0003】そこで近年、負極に炭素質材料を用いたリ
チウム二次電池の開発が進み、活発な研究開発が行われ
ている。リチウム二次電池の負極に炭素材料を用いる
と、充電時に炭素質材料の層間にリチウムが吸蔵され、
デンドライトは発生しない。炭素質材料としては例え
ば、黒鉛を用いるもの(特開昭58−192266)、
炭素繊維を用いるもの(特開昭60−054181)、
粒状コークスを用いるもの(特開平01−20436
1)、メソカーボンマイクロビーズを用いるもの(特開
平04−115458)、カーボンブラックを用いるも
の(特開平05−190170)、有機物焼成体を用い
るもの(WO93/10566)など数多くの炭素質材
料が提案されている。
Therefore, in recent years, a lithium secondary battery using a carbonaceous material for the negative electrode has been developed, and active research and development have been conducted. When a carbon material is used for the negative electrode of a lithium secondary battery, lithium is occluded between layers of the carbonaceous material during charging,
Dendrite does not occur. As the carbonaceous material, for example, one using graphite (Japanese Patent Application Laid-Open No. 58-192266),
Using carbon fiber (JP-A-60-054181),
Using granular coke (JP-A-01-20436)
1), a large number of carbonaceous materials such as those using mesocarbon microbeads (Japanese Patent Laid-Open No. 04-115458), those using carbon black (Japanese Patent Laid-Open No. 05-190170), and those using an organic calcined material (WO93 / 10566). Has been done.

【0004】一般に、炭素質材料を非水電解液二次電池
負極に用いた電極は、粉末状にした炭素質材料とポリエ
チレン、ポリプロピレン、あるいはポリテトラフルオロ
エチレンなどのバインダーを均一に混合し、加圧成形す
ることによって所定の形状に成形する方法や、粉末状に
した炭素質材料とバインダーを混合した電極合剤を溶剤
に分散させることによって得られた電極合剤スラリーを
電極集電体に均一な厚みに塗布し、乾燥させる方法によ
って得られる。負極に炭素質材料を使用する目的は、炭
素層間にリチウムをドープおよび脱ドープすることによ
って充放電を行わせることにある。
In general, an electrode using a carbonaceous material as a negative electrode for a non-aqueous electrolyte secondary battery is prepared by uniformly mixing a powdered carbonaceous material and a binder such as polyethylene, polypropylene or polytetrafluoroethylene, and adding the mixture. A method of forming into a predetermined shape by pressure molding, or an electrode mixture slurry obtained by dispersing an electrode mixture prepared by mixing a powdered carbonaceous material and a binder in a solvent, to obtain a uniform electrode current collector. It can be obtained by a method of applying to a desired thickness and drying. The purpose of using the carbonaceous material for the negative electrode is to charge and discharge by doping and dedoping lithium between carbon layers.

【0005】したがってバインダーの使用は負極容量の
向上を目指す観点からは、できるだけ少ない方が良い。
また炭素質材料の特徴である高い導電性がバインダーや
微量に含有した溶剤によって低下する問題点があり、過
電圧が増大して負極容量の低下を招いたり、発熱の原因
となる。これらの問題点を解決する方法として、炭素質
のみで構成した炭素質成形体が提案されている。例えば
炭素粉末と炭素質バインダーを用いて構成された電極を
用いる方法(特開平05−101818)、シート状の
炭素フィルムを用いる方法(特開平05−24288
0)自己燃結性を有する炭素材から成形・焼成する方法
(特開平05−299090)などがある。
Therefore, it is preferable that the amount of the binder used is as small as possible from the viewpoint of improving the capacity of the negative electrode.
Further, there is a problem that the high conductivity, which is a characteristic of the carbonaceous material, is lowered by the binder and the solvent contained in a trace amount, which causes an increase in overvoltage, which leads to a decrease in the negative electrode capacity and causes heat generation. As a method for solving these problems, a carbonaceous molded body composed only of carbonaceous matter has been proposed. For example, a method using an electrode composed of carbon powder and a carbonaceous binder (JP-A-05-101818) and a method using a sheet-like carbon film (JP-A-05-24288).
0) There is a method (Japanese Patent Laid-Open No. 05-299090) of molding and firing from a carbon material having self-burning property.

【0006】[0006]

【発明が解決しようとする課題】従来、気相または液相
での酸化により、ごく表層層を非晶質に改質する提案
(特開平06−020690)はあるが、負極の炭素質
電極板は全体として均質なものとして取扱われている。
本発明の目的は、厚み方向の性状分布に着目して負極容
量およびサイクル特性の改善を目指すものである。
Conventionally, there is a proposal (Japanese Unexamined Patent Publication No. 06-020690) for modifying the surface layer to an amorphous state by oxidation in a gas phase or a liquid phase, but a carbonaceous electrode plate for a negative electrode. Is treated as homogeneous as a whole.
An object of the present invention is to improve the negative electrode capacity and cycle characteristics by focusing on the property distribution in the thickness direction.

【0007】[0007]

【課題を解決するための手段】本発明は、炭素質成形体
の厚み方向の密度、および/または気孔率について、下
記の特徴を付与することにより、負極容量およびサイク
ル特性が改善されることを見い出したことに基づく。 (1)厚み方向に密度分布を持ち、内部が外表面部より
高密度である。 (2)厚み方向に気孔率分布を持ち、内部が外表面部よ
り低気孔率である。
According to the present invention, the negative electrode capacity and cycle characteristics are improved by giving the following characteristics to the density and / or porosity in the thickness direction of the carbonaceous molded body. Based on what I found. (1) It has a density distribution in the thickness direction, and the inside has a higher density than the outer surface portion. (2) It has a porosity distribution in the thickness direction, and the inside has a lower porosity than the outer surface portion.

【0008】すなわち、外表面部は負極としての性能を
発揮すると同時に、有機電解液を電極内部に浸透させる
働きをもち、内部の層はより多くのリチウムを炭素層間
にドープおよび脱ドープする役割を担うとともに、高導
電率の集電体としての働きをも行うもので、各々単独即
ち内層部分のみまたは表層部分のみで負極として用いた
場合よりも優れた負極になる。
That is, the outer surface portion has a function as a negative electrode and at the same time has a function of permeating the organic electrolyte into the electrode, and the inner layer plays a role of doping and dedoping more lithium between carbon layers. In addition to serving as a collector of high conductivity, it serves as a negative electrode superior to the case where each is used alone, that is, only the inner layer portion or only the surface layer portion is used as the negative electrode.

【0009】この特質を発揮するためには、特性の異な
る内部の層の厚みが、炭素質成形体の厚み全体の2〜9
0%、好ましくは5〜80%であるように選択する。2
%以下では、多くのリチウムを炭素層間にドープおよび
脱ドープする内部層の役割が果たせず、90%以上で
は、負極としての性能を発揮すると同時に、有機電解液
を電極内部に浸透させる働きをもつ外表面部の効果が少
ない。
In order to exert this characteristic, the thickness of the internal layers having different characteristics is 2 to 9 of the total thickness of the carbonaceous compact.
It is chosen to be 0%, preferably 5-80%. Two
% Or less, the role of the internal layer for doping and dedoping a large amount of lithium between the carbon layers cannot be fulfilled, and if 90% or more, the performance as a negative electrode is exhibited, and at the same time, the function of permeating the organic electrolyte into the electrode is exerted. There is little effect on the outer surface.

【0010】ここで、かかる内・外部の特性は明確な境
界をもって変化してもよく、また傾斜的に内部から外部
に向けて変化させてもよい。後者の場合、各層の厚みは
明確に分離できないが、特性値の最大/最小の変化比が
1.2以上、好ましくは1.5以上であることで特徴づ
けられる。
Here, the internal / external characteristics may be changed with a clear boundary, or may be changed from the internal to the external in a tilted manner. In the latter case, the thickness of each layer cannot be clearly separated, but is characterized by a maximum / minimum change ratio of characteristic values of 1.2 or more, preferably 1.5 or more.

【0011】上記の厚み方向に特性変化をつけた炭素質
成形体を得るためには、例えば炭素繊維に異なる樹脂量
を含浸したり、グラファイトや、リチウムと合金可能な
金属などを添加して得た性状の異なる均質なプリプレグ
を一枚または数枚用い、それらを目的に応じて一体化し
て成形した後、非酸化性雰囲気下で焼成する方法や、厚
み方向に樹脂および/または添加物(黒鉛、金属など)
の濃度が連続的に変化したプリプレグを重ね合わせて一
体化して成形した後、非酸化性雰囲気で焼成する方法な
どが考えられるが、厚み方向に上記の性状変化をつける
ことができるのであれば、炭素質負極の製法は特に限定
されない。
In order to obtain the above-mentioned carbonaceous molded article having characteristics changed in the thickness direction, for example, it is obtained by impregnating carbon fibers with different amounts of resin or adding graphite or a metal capable of alloying with lithium. Using one or several homogeneous prepregs with different properties, integrally molding them according to the purpose, firing them in a non-oxidizing atmosphere, and resin and / or additives (graphite in the thickness direction). , Metal, etc.)
After the prepregs having a continuously changed concentration of prepregs are integrally laminated and molded, a method of firing in a non-oxidizing atmosphere may be considered, but if the above property changes can be made in the thickness direction, The method for producing the carbonaceous negative electrode is not particularly limited.

【0012】本発明における炭素質成形体の厚みとして
は、非水系電解液のイオン伝達性の低さを電解液との接
触面積を大きくして補うために、薄くすることが望まし
いが、あまり薄いと、正・負極を隔離するために使用さ
れるセパレーターの数が多くなりすぎ、その占有体積が
大きくなることから、通常100〜500μの厚みで使
用される。また炭素質成形体として厚みを上述の値にす
るために、例えば炭素繊維はあらかじめペーパー状とし
ておくことが有利である。またバインダーで成形してな
る従来の負極よりも体積基準で活物質をより多く担持さ
せるために、本発明における炭素質成形体の平均嵩密度
は高い方が良く、0.5g/cm3 以上、好ましくは
1.0g/cm3 以上のものが用いられる。一方、厚み
方向に分布をもつ密度や気孔率は、優れた電池特性をも
つように外表面部が内部より低密度および/または高気
孔率であることを必須とする。特に分布の程度について
は各特性の最大/最小の比が1.2以上、好ましくは
1.5以上であることが必要である。この比が1.2未
満では特性の違いによる性能改善効果が低い。
The thickness of the carbonaceous molded body in the present invention is preferably thin in order to compensate for the low ion conductivity of the non-aqueous electrolytic solution by increasing the contact area with the electrolytic solution, but it is too thin. Since the number of separators used to separate the positive and negative electrodes becomes too large and the occupied volume thereof becomes large, the thickness is usually 100 to 500 μm. Further, in order to make the thickness of the carbonaceous molded body the above-mentioned value, it is advantageous to preliminarily make the carbon fiber into a paper shape, for example. Further, in order to support a larger amount of active material on a volume basis than a conventional negative electrode formed by a binder, the carbonaceous molded body of the present invention preferably has a high average bulk density, and is 0.5 g / cm 3 or more, It is preferably 1.0 g / cm 3 or more. On the other hand, with respect to the density and porosity having a distribution in the thickness direction, it is essential that the outer surface portion has a lower density and / or a higher porosity than the inside so as to have excellent battery characteristics. Especially regarding the degree of distribution, it is necessary that the maximum / minimum ratio of each characteristic is 1.2 or more, preferably 1.5 or more. If this ratio is less than 1.2, the performance improving effect due to the difference in characteristics is low.

【0013】本発明における炭素質成形体の構成成分と
しては、炭素繊維、樹脂炭化物、天然・人造黒鉛、メソ
カーボンマイクロビーズ、コークスなどの炭素材や黒鉛
材、および/または各種リチウム合金などの金属が使用
されうる。ここで炭素繊維とはPAN系炭素繊維や、等
方性、異方性ピッチを原料とするピッチ系炭素繊維、フ
ェノール樹脂やセルロースなどを焼成して得られる炭素
繊維、炭化水素を気相成長させて得られる気相成長炭素
繊維などが使用される。また樹脂炭化物としては、例え
ばフェノール樹脂、エポキシ樹脂、イミド樹脂、ポリエ
ステル樹脂、メラミン樹脂、尿素樹脂、ビニルエステル
樹脂、フルフリルアルコール樹脂の熱硬化性樹脂、およ
びこれらの混合物、コールタールピッチ、原油分解ピッ
チおよび縮合多環水素化合物や多環複素環化合物などの
熱分解ピッチを焼成したものが用いられる。
The constituents of the carbonaceous molded article in the present invention include carbon fibers, resin carbide, natural / artificial graphite, mesocarbon microbeads, carbon materials such as coke and graphite materials, and / or metals such as various lithium alloys. Can be used. Here, the carbon fibers include PAN-based carbon fibers, pitch-based carbon fibers made of isotropic and anisotropic pitch as raw materials, carbon fibers obtained by firing phenol resin, cellulose, etc., and vapor-phase growth of hydrocarbons. The vapor-grown carbon fiber obtained by the above is used. Examples of the resin carbide include thermosetting resins such as phenol resin, epoxy resin, imide resin, polyester resin, melamine resin, urea resin, vinyl ester resin, furfuryl alcohol resin, and mixtures thereof, coal tar pitch, crude oil decomposition. Pitch and fused polycyclic hydrogen compound, polycyclic heterocyclic compound, or the like pyrolyzed pitch is used after firing.

【0014】炭素質成形体を得るための焼成は、真空、
窒素あるいはアルゴンの非酸化性雰囲気下、焼成温度を
800℃以上とするのが好ましい。ただし非水電解液二
次電池の負極としての性能が最適となるよう、焼成温度
は用いる原料組成に応じて選択できる。
The firing for obtaining the carbonaceous compact is performed by vacuum,
The firing temperature is preferably 800 ° C. or higher in a non-oxidizing atmosphere of nitrogen or argon. However, the firing temperature can be selected according to the raw material composition used so that the performance as the negative electrode of the non-aqueous electrolyte secondary battery is optimized.

【0015】尚、この明細書において、本発明の電極板
は、二次電池の負極として主として説明されているが、
所望により正極として使用されることや、一次電池に使
用されることも妨げられない。
In this specification, the electrode plate of the present invention is mainly described as a negative electrode of a secondary battery.
It can be used as a positive electrode or used in a primary battery as desired.

【0016】[0016]

【発明の効果】厚み方向に密度分布、気孔率分布を持
ち、内部が外表面部より高嵩密度、低気孔率である炭素
質成形体からなる非水電解液二次電池用電極板は、外表
面部が負極としての性能を発揮すると同時に、有機電解
液を電極内部に浸透させる働きをもち、内部の層はより
多くのリチウムを炭素層間にドープおよび脱ドープする
役割を担うとともに、高導電率の集電体としての働きも
行うもので、高密度のものまたは低密度のものを各々単
独、即ち全体として均一な嵩密度のものを負極として用
いた場合よりも優れた負極になる。
EFFECT OF THE INVENTION An electrode plate for a non-aqueous electrolyte secondary battery, which has a density distribution and a porosity distribution in the thickness direction, and the inside of which is a carbonaceous compact having a higher bulk density and a lower porosity than the outer surface, At the same time that the outer surface functions as a negative electrode, it has the function of permeating the organic electrolyte into the electrode, and the inner layer plays the role of doping and dedoping more lithium between the carbon layers, and also has high conductivity. It also functions as a current collector of the ratio, and is a negative electrode superior to the case where each of the high density one and the low density one, that is, the one having the uniform bulk density as a whole is used as the negative electrode.

【0017】[0017]

【実施例】以下、本発明の実施例について説明する。な
お実施例および比較例で使用した炭素繊維およびマトリ
ックス樹脂は本発明の有効性を証明するものであり、使
用する材料を限定するものではない。
Embodiments of the present invention will be described below. The carbon fibers and matrix resins used in the examples and comparative examples prove the effectiveness of the present invention, and do not limit the materials used.

【0018】実施例1 等方性ピッチを原料とする曲状炭素繊維ペーパー、ドナ
カーボS−253(商品名、ドナック社製 繊維径13
μm、目付30g/m2 )にフェノール樹脂フェノライ
トJ−325(商品名、大日本インキ化学工業社製)を
含浸、乾燥して、樹脂含有率74重量%と84重量%の
プリプレグを得た。樹脂含有率84重量%のプリプレグ
を加熱圧縮成形して得られた成形体の両側に、樹脂含有
率74重量%のプリプレグを積層し、加熱圧縮成形して
得られた成形体をアルゴン雰囲気下で2400℃に焼成
し、厚みが181μm、密度が1.12g/cm3 の炭
素質成形体を得た。ここで、樹脂含有率74重量%のプ
リプレグを用いた両外表面部の厚みは各63μmで、密
度はともに0.93g/cm3 であった。一方、樹脂含
有率84重量%のプリプレグを用いた内部層の厚みは5
5μmで、密度は1.24g/cm3 であった。これら
の値から内部層の厚みの割合は30%になる。
Example 1 DonaCarbo S-253 (trade name, manufactured by Donac Co., fiber diameter 13)
μm, basis weight 30 g / m 2 ) was impregnated with phenol resin Phenolite J-325 (trade name, manufactured by Dainippon Ink and Chemicals Co., Ltd.) and dried to obtain prepregs having a resin content of 74% by weight and 84% by weight. . A prepreg having a resin content of 84% by weight was heat-compressed and molded, and a prepreg having a resin content of 74% by weight was laminated on both sides of the molded body, and the molded body obtained by heat-compression molding was subjected to an argon atmosphere. It was fired at 2400 ° C. to obtain a carbonaceous compact having a thickness of 181 μm and a density of 1.12 g / cm 3 . Here, the thickness of both outer surface portions using a prepreg having a resin content of 74% by weight was 63 μm and the density was 0.93 g / cm 3 . On the other hand, the thickness of the inner layer using a prepreg with a resin content of 84% by weight is 5
At 5 μm, the density was 1.24 g / cm 3 . From these values, the ratio of the thickness of the inner layer is 30%.

【0019】この炭素質成形体を15mm×25mmに
切り出して作用極として、リチウムを対極、参照極とす
る3極セル中にて充放電サイクル試験を25℃で行っ
た。電解液は1mol・dm-3−LiClO4/EC−D
EC(体積比1:1)を用いた。カットオフを0−2.
5Vとして50mA/g−carbonで測定した。そ
の時の放電容量を図1にて示す。
This carbonaceous compact was cut into a size of 15 mm × 25 mm, and a charge / discharge cycle test was carried out at 25 ° C. in a 3-electrode cell using lithium as a counter electrode and a reference electrode as a working electrode. The electrolyte is 1 mol.dm -3 -LiClO 4 / EC-D
EC (volume ratio 1: 1) was used. Cut off 0-2.
It was measured at 50 mA / g-carbon as 5V. The discharge capacity at that time is shown in FIG.

【0020】実施例2 等方性ピッチを原料とする曲状炭素繊維ペーパー、ドナ
カーボS−253(商品名、ドナック社製 繊維径13
μm、目付30g/m2 )をステンレスの金網の上に載
せ、上面からフェノール樹脂フェノライトJ−325
(商品名、大日本インキ化学工業社製)に人造黒鉛SG
P−1(商品名、エスイーシー社製)を25重量%添加
した樹脂を均一に塗布乾燥してプリプレグを得た。樹脂
は上面から下面に向かって流れ落ち、ペーパー全体に浸
透したが、黒鉛はフェルト上面に留まった。このプリプ
レグを140℃で30分間乾燥後、2プライを樹脂塗布
面を内側にして加熱圧縮成形した。得られた成形体の樹
脂含有率は65重量%であり、黒鉛含有率は15重量%
であった。該成形体をアルゴン雰囲気下で2400℃に
焼成し、厚みが148μm、密度が1.11g/cm3
の炭素質成形体を得た。電子顕微鏡にて、断面を観察し
たところ、黒鉛塗布層の領域は、17〜23μmであ
り、黒鉛含有の内部層の厚みの割合は、11〜16%に
なった。
Example 2 Curved carbon fiber paper made from isotropic pitch, Donacarb S-253 (trade name, fiber diameter 13 manufactured by Donac)
μm, basis weight 30 g / m 2 ) is placed on a stainless wire mesh, and phenol resin Phenolite J-325 is attached from above.
(Product name, manufactured by Dainippon Ink and Chemicals, Inc.) artificial graphite SG
A resin containing 25% by weight of P-1 (trade name, manufactured by SCC) was uniformly applied and dried to obtain a prepreg. The resin flowed down from the top to the bottom and penetrated the entire paper, while the graphite remained on the felt top. This prepreg was dried at 140 ° C. for 30 minutes, and then two plies were heat compression molded with the resin-coated surface inside. The resin content of the obtained molded product was 65% by weight, and the graphite content was 15% by weight.
Met. The molded body was fired at 2400 ° C. under an argon atmosphere to have a thickness of 148 μm and a density of 1.11 g / cm 3.
To obtain a carbonaceous compact. When the cross section was observed with an electron microscope, the area of the graphite coating layer was 17 to 23 μm, and the ratio of the thickness of the graphite-containing inner layer was 11 to 16%.

【0021】この炭素質成形体を15mm×25mmに
切り出して作用極として、実施例1と同様にして充放電
サイクル試験を25℃で行った。その時の放電容量を図
2に示す。
This carbonaceous molded body was cut out into a size of 15 mm × 25 mm and used as a working electrode, and a charge / discharge cycle test was conducted at 25 ° C. in the same manner as in Example 1. The discharge capacity at that time is shown in FIG.

【0022】実施例3 実施例1と同様にして、樹脂含有率74重量%と84重
量%のプリプレグを得た。樹脂含有率84重量%のプリ
プレグの両側に、樹脂含有率74重量%のプリプレグを
積層し、加熱圧縮成形して得られた成形体をアルゴン雰
囲気下で2400℃に焼成し、厚みが176μm、密度
が1.16g/cm3 の炭素質成形体を得た。この成形
体をエポキシ樹脂で固めた後、鋭利に切断した断面の電
子顕微鏡写真を撮影し、その平面的空隙率から気孔率分
布を求めた。外表面が最も気孔率が高く、厚み方向中心
部が最も低く、その気孔率の最大/最小の比は1.36
であった。
Example 3 In the same manner as in Example 1, a prepreg having a resin content of 74% by weight and 84% by weight was obtained. A prepreg with a resin content of 84% by weight was laminated on both sides of the prepreg with a resin content of 84% by weight, and a molded body obtained by heat compression molding was fired at 2400 ° C. under an argon atmosphere to have a thickness of 176 μm and a density. Of 1.16 g / cm 3 was obtained. After the molded body was hardened with an epoxy resin, an electron micrograph of a cross section cut sharply was taken, and the porosity distribution was determined from the planar porosity. The outer surface has the highest porosity and the center in the thickness direction is lowest, and the maximum / minimum ratio of the porosities is 1.36.
Met.

【0023】この炭素質成形体を15mm×25mmに
切り出して作用極として、実施例1と同様にして充放電
サイクル試験を25℃で行った。その時の放電容量を図
3にて示す。
This carbonaceous molded body was cut into a size of 15 mm × 25 mm and used as a working electrode, and a charge / discharge cycle test was conducted at 25 ° C. in the same manner as in Example 1. The discharge capacity at that time is shown in FIG.

【0024】比較例1 実施例1と同様にして、樹脂含有率81重量%のプリプ
レグを得た。このプリプレグ3プライを圧縮成形して得
られた成形体の樹脂含有率は75重量%であり、該成形
体をアルゴン雰囲気下で2400℃に焼成し、厚みが1
70μm、密度が1.11g/cm3 の炭素質成形体を
得た。
Comparative Example 1 In the same manner as in Example 1, a prepreg having a resin content of 81% by weight was obtained. The resin content of the molded body obtained by compression molding the prepreg 3 ply is 75% by weight, and the molded body is baked at 2400 ° C. in an argon atmosphere to have a thickness of 1%.
A carbonaceous compact having a thickness of 70 μm and a density of 1.11 g / cm 3 was obtained.

【0025】この炭素質成形体を15mm×25mmに
切り出して作用極として、実施例1と同様にして充放電
サイクル試験を25℃で行った。その時の放電容量を図
1に併せてて示す。
This carbonaceous compact was cut into a size of 15 mm × 25 mm and used as a working electrode, and a charge / discharge cycle test was conducted at 25 ° C. in the same manner as in Example 1. The discharge capacity at that time is also shown in FIG.

【0026】比較例2 樹脂を均質に含浸すること以外は実施例2と同様にし
て、プリプレグを得た。このプリプレグ2プライを加熱
圧縮成形して得られた成形体は、黒鉛を含むものの、厚
み方向には均質で、その樹脂含有率は55重量%であ
り、黒鉛含有率は21重量%であった。該成形体をアル
ゴン雰囲気下で2400℃に焼成し、厚みが141μ
m、密度が1.15g/cm3 の炭素質成形体を得た。
Comparative Example 2 A prepreg was obtained in the same manner as in Example 2 except that the resin was uniformly impregnated. The molded body obtained by subjecting the prepreg 2 ply to heat compression molding contained graphite, but was homogeneous in the thickness direction, the resin content was 55% by weight, and the graphite content was 21% by weight. . The molded body was fired at 2400 ° C. under an argon atmosphere to have a thickness of 141 μm.
Thus, a carbonaceous compact having m and a density of 1.15 g / cm 3 was obtained.

【0027】この炭素質成形体を15mm×25mmに
切り出して作用極として、実施例1と同様にして充放電
サイクル試験を25℃で行った。その時の放電容量を図
2に併せて示す。
This carbonaceous compact was cut into a size of 15 mm × 25 mm and used as a working electrode, and a charge / discharge cycle test was conducted at 25 ° C. in the same manner as in Example 1. The discharge capacity at that time is also shown in FIG.

【0028】比較例3 実施例1と同様にして樹脂含有率77重量%と81重量
%のプリプレグを得た。樹脂含有率81重量%のプリプ
レグの両側に、樹脂含有率77重量%のプリプレグを積
層し、加熱圧縮成形して得られた成形体をアルゴン雰囲
気下で2400℃に焼成し、厚みが179μm、密度が
1.13g/cm3 の炭素質成形体を得た。この成形体
をエポキシ樹脂で固めた後、鋭利に切断した断面の電子
顕微鏡写真を撮影し、その平面的空隙率から気孔率分布
を求めた。外表面が最も気孔率が高く、厚み方向中心部
が最も低いが、その差はあまり大きくなく、気孔率の最
大/最小の比は1.09であった。
Comparative Example 3 In the same manner as in Example 1, a prepreg having a resin content of 77% by weight and 81% by weight was obtained. A prepreg with a resin content of 77% by weight was laminated on both sides of a prepreg with a resin content of 81% by weight, and the molded body obtained by heat compression molding was fired at 2400 ° C. under an argon atmosphere to have a thickness of 179 μm and a density. Of 1.13 g / cm 3 was obtained. After the molded body was hardened with an epoxy resin, an electron micrograph of a cross section cut sharply was taken, and the porosity distribution was determined from the planar porosity. The outer surface had the highest porosity and the central portion in the thickness direction had the lowest, but the difference was not so large, and the maximum / minimum porosity ratio was 1.09.

【0029】この炭素質成形体を15mm×25mmに
切り出して作用極として、実施例1と同様にして充放電
サイクル試験を25℃で行った。その時の放電容量を図
3に併せて示す。
This carbonaceous molded body was cut into a size of 15 mm × 25 mm and used as a working electrode, and a charge / discharge cycle test was conducted at 25 ° C. in the same manner as in Example 1. The discharge capacity at that time is also shown in FIG.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1および比較例1の25℃における充放
電サイクルと放電容量の関係を対比的に説明するもの
で、夫々を横軸、縦軸とするグラフである。
FIG. 1 is a graph for comparatively explaining the relationship between the charge / discharge cycle at 25 ° C. and the discharge capacity in Example 1 and Comparative Example 1, and is a graph with the horizontal axis and the vertical axis, respectively.

【図2】実施例2および比較例2に関する図1同様のグ
ラフである。
2 is a graph similar to FIG. 1 for Example 2 and Comparative Example 2. FIG.

【図3】実施例3および比較例3に関する図1同様のグ
ラフである。
3 is a graph similar to FIG. 1 for Example 3 and Comparative Example 3. FIG.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 シートの厚み方向に密度分布を持ち、内
部が外表面部より高密度であるシート状炭素質成形体か
らなる非水電解液二次電池用炭素質電極板。
1. A carbonaceous electrode plate for a non-aqueous electrolyte secondary battery, comprising a sheet-like carbonaceous molded body having a density distribution in the thickness direction of the sheet and having a higher density inside than an outer surface portion.
【請求項2】 シートの厚み方向に気孔率分布を持ち、
内部が外表面部より低気孔率であるシート状炭素質成形
体からなる非水電解液二次電池用炭素質電極板。
2. Porosity distribution in the thickness direction of the sheet,
A carbonaceous electrode plate for a non-aqueous electrolyte secondary battery, which comprises a sheet-like carbonaceous molded body having a lower porosity inside than an outer surface portion.
【請求項3】 外表面層とは特性の異なる内部層の厚み
が、炭素質成形体シート全体の2〜90%、好ましくは
5〜80%である請求項1または2記載の電極板。
3. The electrode plate according to claim 1, wherein the thickness of the inner layer having different properties from the outer surface layer is 2 to 90%, preferably 5 to 80% of the entire carbonaceous molded sheet.
【請求項4】 内部から外表面部の厚み方向の特性変化
が連続的である請求項1または2記載の電極板。
4. The electrode plate according to claim 1, wherein the characteristic change from the inside to the outside surface in the thickness direction is continuous.
【請求項5】 特性値の最大/最小の比が1.2以上、
好ましくは1.5以上である請求項1〜4のいずれか1
つに記載の電極板。
5. The maximum / minimum ratio of characteristic values is 1.2 or more,
It is preferably 1.5 or more, and any one of claims 1 to 4.
The electrode plate described in 1.
【請求項6】 特性が嵩密度または気孔率である請求項
3、4または5項記載の電極板。
6. The electrode plate according to claim 3, 4 or 5, wherein the characteristic is bulk density or porosity.
【請求項7】 シートの厚み方向に炭素材、黒鉛材、お
よび/または金属の含有量分布を持つ請求項1〜6のい
ずれか1つに記載の電極板。
7. The electrode plate according to claim 1, having a carbon material, a graphite material, and / or a metal content distribution in the thickness direction of the sheet.
【請求項8】 請求項1〜7のいずれか1つに記載の炭
素質電極板を用いた非水電解液二次電池。
8. A non-aqueous electrolyte secondary battery using the carbonaceous electrode plate according to claim 1.
【請求項9】 炭素質電極板をリチウム二次電池の負極
として用いた請求項記載の非水電解液二次電池。
9. The non-aqueous electrolyte secondary battery according to claim 1, wherein the carbonaceous electrode plate is used as a negative electrode of the lithium secondary battery.
JP6268761A 1994-11-01 1994-11-01 Carbonaceous electrode plate for non-aqueous electrolyte secondary battery and secondary battery Pending JPH08138650A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6268761A JPH08138650A (en) 1994-11-01 1994-11-01 Carbonaceous electrode plate for non-aqueous electrolyte secondary battery and secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6268761A JPH08138650A (en) 1994-11-01 1994-11-01 Carbonaceous electrode plate for non-aqueous electrolyte secondary battery and secondary battery

Publications (1)

Publication Number Publication Date
JPH08138650A true JPH08138650A (en) 1996-05-31

Family

ID=17462961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6268761A Pending JPH08138650A (en) 1994-11-01 1994-11-01 Carbonaceous electrode plate for non-aqueous electrolyte secondary battery and secondary battery

Country Status (1)

Country Link
JP (1) JPH08138650A (en)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002151055A (en) * 2000-08-28 2002-05-24 Nissan Motor Co Ltd Lithium ion secondary battery
JP2003077463A (en) * 2001-09-05 2003-03-14 Mitsubishi Chemicals Corp Lithium secondary battery and its manufacturing method
WO2006010894A1 (en) * 2004-07-27 2006-02-02 Oxis Energy Limited Improvements relating to electrode structures in batteries
JP2006100280A (en) * 2000-10-20 2006-04-13 Massachusetts Inst Of Technol <Mit> Reticulated and controlled porosity battery structure
KR100682862B1 (en) * 2005-01-11 2007-02-15 삼성에스디아이 주식회사 Electrode for electrochemical cell, manufacturing method thereof, and electrochemical cell containing the electrode
JP2007214038A (en) * 2006-02-10 2007-08-23 Toyota Motor Corp Nonaqueous secondary battery, electrode, method of manufacturing nonaqueous secondary battery, and method of manufacturing electrode
JP2007220454A (en) * 2006-02-16 2007-08-30 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2007258086A (en) * 2006-03-24 2007-10-04 Dainippon Printing Co Ltd Nonaqueous electrolytic solution secondary battery, and electrode plate therefor and its manufacturing method
JP2008251249A (en) * 2007-03-29 2008-10-16 Tdk Corp Anode and lithium ion secondary battery
US7695861B2 (en) 2005-03-22 2010-04-13 Oxis Energy Limited Lithium sulphide battery and method of producing the same
JP2010245024A (en) * 2009-03-16 2010-10-28 Toyota Motor Corp All solid-state secondary battery
US8647769B2 (en) 2005-09-26 2014-02-11 Oxis Energy Limited Lithium-sulphur battery with high specific energy
US8679684B2 (en) 2004-12-02 2014-03-25 Oxis Energy, Ltd. Electrolyte for lithium-sulphur batteries and lithium-sulphur batteries using the same
US8999571B2 (en) 2007-05-25 2015-04-07 Massachusetts Institute Of Technology Batteries and electrodes for use thereof
US9065093B2 (en) 2011-04-07 2015-06-23 Massachusetts Institute Of Technology Controlled porosity in electrodes
US9196929B2 (en) 2005-01-18 2015-11-24 Oxis Energy Limited Electrolyte compositions for batteries using sulphur or sulphur compounds
US9219271B2 (en) 2004-07-27 2015-12-22 Oxis Energy Limited Battery electrode structure
JP2016058247A (en) * 2014-09-10 2016-04-21 凸版印刷株式会社 Electrode for lithium ion secondary battery and lithium ion secondary battery
US9893387B2 (en) 2013-03-25 2018-02-13 Oxis Energy Limited Method of charging a lithium-sulphur cell
US9899705B2 (en) 2013-12-17 2018-02-20 Oxis Energy Limited Electrolyte for a lithium-sulphur cell
US9935343B2 (en) 2013-03-25 2018-04-03 Oxis Energy Limited Method of cycling a lithium-sulphur cell
US10020533B2 (en) 2013-08-15 2018-07-10 Oxis Energy Limited Laminated lithium-sulphur cell
US10038223B2 (en) 2013-03-25 2018-07-31 Oxis Energy Limited Method of charging a lithium-sulphur cell
US10305108B2 (en) 2014-03-31 2019-05-28 Nec Energy Devices, Ltd. Graphite-based active material, negative electrode, and lithium ion secondary battery
US10461316B2 (en) 2012-02-17 2019-10-29 Oxis Energy Limited Reinforced metal foil electrode
US10569480B2 (en) 2014-10-03 2020-02-25 Massachusetts Institute Of Technology Pore orientation using magnetic fields
US10675819B2 (en) 2014-10-03 2020-06-09 Massachusetts Institute Of Technology Magnetic field alignment of emulsions to produce porous articles
US10714751B2 (en) 2015-09-30 2020-07-14 Envision Aesc Energy Devices, Ltd. Negative electrode for lithium ion secondary battery and lithium ion secondary battery
US10811728B2 (en) 2014-05-30 2020-10-20 Oxis Energy Ltd. Lithium-sulphur cell
US11658283B2 (en) 2017-03-31 2023-05-23 Murata Manufacturing Co., Ltd. Lithium ion secondary battery

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002151055A (en) * 2000-08-28 2002-05-24 Nissan Motor Co Ltd Lithium ion secondary battery
JP4626105B2 (en) * 2000-08-28 2011-02-02 日産自動車株式会社 Lithium ion secondary battery
KR101249133B1 (en) * 2000-10-20 2013-04-02 매사츄세츠 인스티튜트 오브 테크놀러지 Bipolar device
JP2006100280A (en) * 2000-10-20 2006-04-13 Massachusetts Inst Of Technol <Mit> Reticulated and controlled porosity battery structure
JP2003077463A (en) * 2001-09-05 2003-03-14 Mitsubishi Chemicals Corp Lithium secondary battery and its manufacturing method
JP2008508672A (en) * 2004-07-27 2008-03-21 オクシス・エナジー・リミテッド Improvements to electrode structures in batteries
US9219271B2 (en) 2004-07-27 2015-12-22 Oxis Energy Limited Battery electrode structure
WO2006010894A1 (en) * 2004-07-27 2006-02-02 Oxis Energy Limited Improvements relating to electrode structures in batteries
US8679684B2 (en) 2004-12-02 2014-03-25 Oxis Energy, Ltd. Electrolyte for lithium-sulphur batteries and lithium-sulphur batteries using the same
KR100682862B1 (en) * 2005-01-11 2007-02-15 삼성에스디아이 주식회사 Electrode for electrochemical cell, manufacturing method thereof, and electrochemical cell containing the electrode
US9196929B2 (en) 2005-01-18 2015-11-24 Oxis Energy Limited Electrolyte compositions for batteries using sulphur or sulphur compounds
US7695861B2 (en) 2005-03-22 2010-04-13 Oxis Energy Limited Lithium sulphide battery and method of producing the same
US8361652B2 (en) 2005-03-22 2013-01-29 Oxis Energy Limited Lithium sulphide battery and method of producing the same
US8647769B2 (en) 2005-09-26 2014-02-11 Oxis Energy Limited Lithium-sulphur battery with high specific energy
JP2007214038A (en) * 2006-02-10 2007-08-23 Toyota Motor Corp Nonaqueous secondary battery, electrode, method of manufacturing nonaqueous secondary battery, and method of manufacturing electrode
JP2007220454A (en) * 2006-02-16 2007-08-30 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2007258086A (en) * 2006-03-24 2007-10-04 Dainippon Printing Co Ltd Nonaqueous electrolytic solution secondary battery, and electrode plate therefor and its manufacturing method
JP2008251249A (en) * 2007-03-29 2008-10-16 Tdk Corp Anode and lithium ion secondary battery
US8034483B2 (en) 2007-03-29 2011-10-11 Tdk Corporation Anode and lithium-ion secondary battery
JP4665930B2 (en) * 2007-03-29 2011-04-06 Tdk株式会社 Anode and lithium ion secondary battery
US8999571B2 (en) 2007-05-25 2015-04-07 Massachusetts Institute Of Technology Batteries and electrodes for use thereof
JP2010245024A (en) * 2009-03-16 2010-10-28 Toyota Motor Corp All solid-state secondary battery
US9065093B2 (en) 2011-04-07 2015-06-23 Massachusetts Institute Of Technology Controlled porosity in electrodes
US10164242B2 (en) 2011-04-07 2018-12-25 Massachusetts Institute Of Technology Controlled porosity in electrodes
US10461316B2 (en) 2012-02-17 2019-10-29 Oxis Energy Limited Reinforced metal foil electrode
US9935343B2 (en) 2013-03-25 2018-04-03 Oxis Energy Limited Method of cycling a lithium-sulphur cell
US10038223B2 (en) 2013-03-25 2018-07-31 Oxis Energy Limited Method of charging a lithium-sulphur cell
US9893387B2 (en) 2013-03-25 2018-02-13 Oxis Energy Limited Method of charging a lithium-sulphur cell
US10020533B2 (en) 2013-08-15 2018-07-10 Oxis Energy Limited Laminated lithium-sulphur cell
US9899705B2 (en) 2013-12-17 2018-02-20 Oxis Energy Limited Electrolyte for a lithium-sulphur cell
US10305108B2 (en) 2014-03-31 2019-05-28 Nec Energy Devices, Ltd. Graphite-based active material, negative electrode, and lithium ion secondary battery
US10811728B2 (en) 2014-05-30 2020-10-20 Oxis Energy Ltd. Lithium-sulphur cell
JP2016058247A (en) * 2014-09-10 2016-04-21 凸版印刷株式会社 Electrode for lithium ion secondary battery and lithium ion secondary battery
US10569480B2 (en) 2014-10-03 2020-02-25 Massachusetts Institute Of Technology Pore orientation using magnetic fields
US10675819B2 (en) 2014-10-03 2020-06-09 Massachusetts Institute Of Technology Magnetic field alignment of emulsions to produce porous articles
US10714751B2 (en) 2015-09-30 2020-07-14 Envision Aesc Energy Devices, Ltd. Negative electrode for lithium ion secondary battery and lithium ion secondary battery
US11658283B2 (en) 2017-03-31 2023-05-23 Murata Manufacturing Co., Ltd. Lithium ion secondary battery

Similar Documents

Publication Publication Date Title
JPH08138650A (en) Carbonaceous electrode plate for non-aqueous electrolyte secondary battery and secondary battery
Brückner et al. Carbon‐based anodes for lithium sulfur full cells with high cycle stability
KR101267874B1 (en) Negative electrode material for nonacqueous electrolyte secondary battery of high input/output current, method for producing the same and battery employing negative electrode material
EP0848435B1 (en) Lithium battery and production method thereof
JP3258246B2 (en) Densified carbon for electrochemical cells
US6027833A (en) Nonaqueous electrolyte secondary cell
JP3262704B2 (en) Carbon electrode for non-aqueous secondary battery, method for producing the same, and non-aqueous secondary battery using the same
KR101105877B1 (en) Anode active material for lithium secondary batteries and Method of preparing for the same and Lithium secondary batteries using the same
US20220393171A1 (en) Graphite anode material, anode, lithium ion battery and preparation method thereof
JP4081621B2 (en) Negative electrode carbon material for lithium secondary battery and lithium secondary battery
KR20240016426A (en) Lithium-ion battery electrode, method of manufacturing the same, and lithium-ion battery
JP3841611B2 (en) Graphite particles for negative electrode of non-aqueous secondary battery
JP2001345100A (en) Carbonaceous particles for negative electrode of lithium secondary cell, preparation process thereof, negative electrode for lithium secondary cell and lithium secondary cell
JP3435731B2 (en) Non-aqueous electrolyte secondary battery
US5750287A (en) Organic electrolytic cell
EP3997750A1 (en) A lithium-ion cell comprising three-dimensional current collectors and a method of manufacturing electrodes for this cell
JP2015230915A (en) Negative electrode for nonaqueous lithium type power-storage device, and nonaqueous lithium type power-storage device arranged by using thereof
JP2001229917A (en) Method of producing negative electrode
JP2001085016A (en) Non-aqueous electrolyte battery
JPH08138651A (en) Carbonaceous electrode plate for non-aqueous electrolyte secondary battery and secondary battery
JPH08153512A (en) Electrode structure and battery
JPH07302735A (en) Electric double layer capacitor
JP3310695B2 (en) Carbon electrode and lithium secondary battery using the same
CN117497729B (en) Three-dimensional porous titanium-antimony doped hard carbon composite material and preparation method thereof
JP3365642B2 (en) Anode body of nickel-hydride battery