JPH08136218A - Method for automatically measuring and analyzing three-dimensional coordinates - Google Patents

Method for automatically measuring and analyzing three-dimensional coordinates

Info

Publication number
JPH08136218A
JPH08136218A JP27254194A JP27254194A JPH08136218A JP H08136218 A JPH08136218 A JP H08136218A JP 27254194 A JP27254194 A JP 27254194A JP 27254194 A JP27254194 A JP 27254194A JP H08136218 A JPH08136218 A JP H08136218A
Authority
JP
Japan
Prior art keywords
target
measurement
measuring
point
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27254194A
Other languages
Japanese (ja)
Other versions
JP3210817B2 (en
Inventor
Yuji Otomo
友 雄 二 大
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP27254194A priority Critical patent/JP3210817B2/en
Publication of JPH08136218A publication Critical patent/JPH08136218A/en
Application granted granted Critical
Publication of JP3210817B2 publication Critical patent/JP3210817B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Image Analysis (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)
  • Image Processing (AREA)

Abstract

PURPOSE: To provide an automatic measuring and analyzing method, which measures the three-dimensional shape of a large structure or the like in high accuracy and at high efficiency. CONSTITUTION: The main body of a measuring instrument 1 has a CCD camera, which collimates many targets 6 on an object to be measured 10 and can be, driven by a motor. An image processing device 2 analyzes the target images picked up with the CCD camera. A three-dimensional measuring system performs the setting of measuring conditions, coordinate conversion and analysis. These parts are used, and the designed dimensional values or the coordinate value of the object to be measured 10, which are inputted into the above described system, undergo coordinate conversion. The CCD camera is driven, the targets 6 are automatically tracked and the three-dimensional coordinates are automatically measured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、土木,建築構造物なら
びに船舶等の大型構造物およびそれを構成する製作部材
の計測とその計測値の解析を行う三次元座標自動計測解
析システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a three-dimensional coordinate automatic measurement / analysis system for measuring large-scale structures such as civil engineering, building structures and ships, and manufacturing members constituting the structures, and analyzing the measured values.

【0002】[0002]

【従来の技術】橋梁,建築鉄骨,船舶,その他大型鋼構
造物は、工場にて鋼板等の部品を組立、溶接して複数の
部材ブロックに分割製作したものを、建設現場ないし船
台に移送し、そこでボルトまたは溶接により接合して建
造される。従来は、ブロックの製作完了後建設現場への
移送に先だって工場またはヤードで現物合わせで仮組立
を行って組立状態の確認を行い、現地における接合に支
障が生じないようにしてきた。しかし近年、鋼構造物製
作の省力化,省スペース化,コストダウンの要求と部材
製作精度の向上、計測技術の高度化が進んできたことか
ら、また、鋼構造物が超大化することもあって、仮組立
を省略する方向に変わりつつある。
2. Description of the Related Art For bridges, building steel frames, ships and other large steel structures, parts such as steel plates are assembled and welded at a factory and divided into a plurality of component blocks, which are transferred to a construction site or a sill. , Where it will be built by bolts or welding. Conventionally, after the blocks have been manufactured, prior to transfer to the construction site, temporary assembly is performed in the factory or yard by actual assembly to check the assembled state so that there is no problem in the on-site joining. However, in recent years, the demand for labor saving and space saving of steel structures, cost reduction, improvement of member manufacturing accuracy, and sophistication of measurement technology have progressed. As a result, temporary assembly is being omitted.

【0003】この場合仮組立を省略しても現地における
接合に支障が生じないようにするために、コンピュ−タ
などを利用して、ブロック同士を仮想的に組立てて組立
精度を確認する仮組立シミュレーションを行う必要があ
る。この仮組立シミュレーションを行う際、使用するブ
ロックの三次元形状の正確な計測データを得ることは、
仮組立シミュレーションの精度を決定するという点で重
要なことである。しかしながら、従来の三次元形状の計
測は、トランシットや巻尺,下げ振り,レベルなどを利
用した二次元的なものであり、三次元形状の正確な把握
には不適当なものであった。近年、三次元形状のブロッ
クの計測に、測量の分野で発展してきた前方交会法によ
る三角測量や、光波距離計を用いた測距,測角法による
ものが採用されるようになってきている。
In this case, in order to prevent the local joining from being hindered even if the temporary assembly is omitted, the blocks are virtually assembled by using a computer or the like to confirm the assembly accuracy. It is necessary to perform a simulation. When performing this temporary assembly simulation, obtaining accurate measurement data of the three-dimensional shape of the block used is
This is important in determining the accuracy of the temporary assembly simulation. However, the conventional measurement of a three-dimensional shape is a two-dimensional one using a transit, a tape measure, a plumb bob, a level, etc., and is not suitable for accurately grasping the three-dimensional shape. In recent years, triangulation by the forward intersection method, which has been developed in the field of surveying, distance measurement using a light wave range finder, and angle measurement method have come to be used for the measurement of blocks of three-dimensional shape. .

【0004】一例として、一台の計測機で計測対象物上
の任意の点の三次元座標値を計測できる三次元座標計測
システムが、商品名「MONMOS」として、株式会社
ソキアから市販されている。この装置は、あらかじめ任
意の2点を計測して三次元座標系を設定した後、各測点
に設けた反射ターゲットの中心を視準して水平角,鉛直
角,測距、の3要素を同時に計測し、座標変換の解析,
演算を行って三次元座標値を求めるもので、100m離
れた距離で±1mm以下の高い精度が得られるものであ
る。
As an example, a three-dimensional coordinate measuring system capable of measuring the three-dimensional coordinate value of an arbitrary point on an object to be measured with one measuring instrument is commercially available from Sokia Co., Ltd. under the trade name "MONMOS". . This system measures three arbitrary points in advance and sets the three-dimensional coordinate system, then collimates the center of the reflective target provided at each measuring point to determine the three elements of horizontal angle, vertical angle, and distance measurement. Simultaneous measurement and analysis of coordinate transformation,
The calculation is performed to obtain a three-dimensional coordinate value, and a high accuracy of ± 1 mm or less can be obtained at a distance of 100 m.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、前記
「MONMOS」を含めて従来の三次元座標計測機は、
視準作業において望遠鏡のピント合わせやターゲット中
心と望遠鏡の十字線の中心合わせ等を人間の視覚によっ
て行っていたため、作業が煩雑で視準作業に時間を要
し、また計測者の人的誤差が入りやすく、能率が悪く計
測精度を低下させる要因となっていた。このような欠点
を解消するには、視準作業を自動化することが考えら
れ、一部で自動視準方式の計測機が開発されている。
However, the conventional three-dimensional coordinate measuring machine including the above-mentioned "MONMOS" is
In the collimation work, the focus of the telescope and the centering of the crosshairs of the telescope with the center of the target were performed by human vision, so the work was complicated and time was required for the collimation work. It was easy to enter, was inefficient, and was a factor that reduced measurement accuracy. In order to eliminate such a defect, it is considered that the collimation work is automated, and an automatic collimation type measuring instrument has been partially developed.

【0006】例えば、「第4回建設ロボットシンポジウ
ム1994年7月19〜20日」で発表された「三次元
空間自動測量システムの開発」では、自動視準して測
距,測角を行う測量機本体と、これらの機器を制御しデ
ータの表示,記録,管理する制御管理用コントロールユ
ニットで構成された機器を用いて、大型タンク等の大空
間構造物の挙動を無人計測した事例が開示されている。
このシステムは、標的(ターゲット)位置,測定順序等
の条件を初期設定した後、モーター駆動するCCDカメ
ラで捉えた標的を画像処理装置で抽出し、標的図心とC
CDカメラの光軸を一致させるようにCCDカメラの水
平角,鉛直角をサーボモーターで駆動させ自動視準する
ものである。なお、初期設定時の標的位置は座標値が既
知の場合には作業者が直接座標値を入力し、未知の場合
にはコントローラーによりCCDカメラを標的に向けモ
ニター画面に入れる作業を繰り返してティーチングする
ものである。
[0006] For example, in "Development of an automatic three-dimensional space surveying system" announced at the "4th Construction Robot Symposium July 19-20, 1994", surveying is performed by automatic collimation for distance measurement and angle measurement. An example of unmanned measurement of the behavior of a large space structure such as a large tank is disclosed by using a device composed of a machine body and a control management control unit that displays, records, and manages data by controlling these devices. ing.
This system initializes conditions such as the target position and measurement order, then extracts the target captured by a motor-driven CCD camera with an image processing device, and the target centroid and C
The horizontal and vertical angles of the CCD camera are driven by a servomotor so that the optical axes of the CD camera coincide with each other, and automatic collimation is performed. When the coordinate value of the target position at the time of initial setting is known, the operator directly inputs the coordinate value, and when the coordinate value is unknown, the controller repeatedly points the CCD camera at the target and puts it on the monitor screen. It is a thing.

【0007】本システムでは自動視準する初期設定にお
いてあらかじめ各標的の座標値を入力するとしている
が、計測機を原点としたときの自動視準用の各測点の座
標値の算出方法を明示していない。あるいは各測点にC
CDカメラを向けてモニター画面に入れる作業を繰り返
し行ってティーチングするとしており、煩雑な人手作業
を伴い自動化のメリットがあまり期待できない。また自
動視準において標的図心を画像処理によって求め、視野
内でCCDカメラをサーボモーターを駆動させてCCD
カメラの光軸と標的図心を合致させる動作を繰り返し行
って視準する方式としているため計測に時間を要し、ま
た標的図心とCCDカメラの光軸を合致させる際機械誤
差が伴うため計測精度が悪くなるという問題がある。
In this system, the coordinate value of each target is input in advance in the automatic collimation initial setting. However, the method of calculating the coordinate value of each measuring point for automatic collimation when the measuring instrument is the origin is clarified. Not not. Or C for each station
Teaching is performed by repeating the work of pointing the CD camera on the monitor screen, and the merit of automation cannot be expected so much due to the complicated manual work. In the automatic collimation, the target centroid is obtained by image processing, and the CCD camera is driven by the servomotor in the field of view to drive the CCD.
It takes time to measure because it is a method of collimating by repeating the operation of aligning the optical axis of the camera and the target centroid. Also, there is a mechanical error when aligning the optical axis of the CCD camera and the target centroid. There is a problem that the accuracy becomes poor.

【0008】この他の自動測量システムとして、ライカ
株式会社の自動監視測量システム「WILD APS」がある。
このシステムは、ターゲットの自動追尾,自動探索,自
動視準機能を有する三次元座標自動計測システムである
が、前記の自動計測システムと同様に、初期設定時の標
的位置の入力方法が同じであり同様の問題がある。
Another automatic surveying system is Leica Corporation's automatic monitoring and surveying system "WILD APS".
This system is a three-dimensional coordinate automatic measurement system that has automatic target tracking, automatic search, and automatic collimation functions. However, like the automatic measurement system described above, the target position input method during initialization is the same. I have a similar problem.

【0009】このシステムのターゲットの自動探索機構
は、測距光のターゲットからの反射の有無をもとに、水
平,鉛直方向の走査を行ってターゲットを探索している
ので、点による探索であり、複数のターゲットの中から
特定のターゲットを検出できず、詳細な計測には不向き
である。さらに探索の範囲の視準方向の水平および鉛直
角が10°×10°と狭く、計測対象物と近接した計測には
向かないという問題があった。
Since the target automatic search mechanism of this system searches the target by scanning in the horizontal and vertical directions based on the presence or absence of reflection of the distance measuring light from the target, it is a point-based search. , A specific target cannot be detected from a plurality of targets, which is not suitable for detailed measurement. Furthermore, the horizontal and vertical angles in the collimation direction of the search range are narrow at 10 ° × 10 °, which is not suitable for measurement close to the measurement target.

【0010】また、測点上のターゲットを直接視準でき
ない場合には、複数台の計測機を使用するか計測機を移
動して計測しなければならない。計測機の台数,移動回
数を最小限にするためには、ターゲットの中心を測点か
ら偏位させて計測機から視準できる位置にターゲットを
設置する必要があり、ターゲットを視準し中心点の三次
元座標値を求めただけでは測点の位置を特定できず、測
点の三次元座標値すなわち計測対象物の実形状を正確に
求めることができないという問題があった。
If the target on the measuring point cannot be directly collimated, it is necessary to use a plurality of measuring machines or move the measuring machines to measure. In order to minimize the number of measuring instruments and the number of movements, it is necessary to deviate the center of the target from the measuring point and install the target at a position that can be collimated from the measuring instrument. There is a problem that the position of the measurement point cannot be specified only by obtaining the three-dimensional coordinate value of, and the three-dimensional coordinate value of the measurement point, that is, the actual shape of the measurement target cannot be accurately obtained.

【0011】また、これらの三次元座標値計測システム
は、実測の座標系に対応した計測対象物の設計座標値を
有しておらず、計測の途中において、設計値との比較が
できないことや、当該計測の信頼性を計測現場で確認で
きないという問題があった。本発明はこれらの課題を解
消し、人的な作業を極力排除し、かつ能率が良く精度の
高い三次元座標自動計測解析方法を提供することを目的
としている。
Further, these three-dimensional coordinate value measuring systems do not have the design coordinate values of the measurement object corresponding to the actually measured coordinate system, and it is impossible to compare with the design values during the measurement. However, there was a problem that the reliability of the measurement could not be confirmed at the measurement site. An object of the present invention is to solve these problems, to eliminate human work as much as possible, and to provide a highly efficient and highly accurate three-dimensional coordinate automatic measurement and analysis method.

【0012】[0012]

【課題を解決するための手段】[Means for Solving the Problems]

(1) 計測対象物上の多数の測点に設けたターゲット
を視準して、各測点の三次元座標値を計測するシステム
において、モーター駆動可能なCCDカメラで捉えた前
記ターゲット上の視準点の位置を測距,測角する機能を
備えた計測機本体と、計測機本体のCCDカメラで捉え
たターゲットの画像を解析する画像処理装置と、計測条
件の設定,座標変換,解析を行うプログラムが作動する
モニター付きコンピューター等で構成された三次元計測
システムを用いて、計測対象物の設計寸法値または三次
元設計座標値をコンピューターに入力し、モニター画面
で計測機の設置可能範囲を求めた後、その範囲内に計測
機を設置し、基準となる測点を実測して得られた座標値
を基に基準座標系を設定して各測点の三次元設計座標値
の座標変換を行い、その設計座標値を自動計測用の極座
標値に変換し、変換された極座標値で計測機のCCDカ
メラを駆動し、各測点に取り付けられたターゲットを自
動的に追尾し、CCDカメラの光軸が測定対象ターゲッ
ト内に入った状態で測距,測角を行うとともに画像処理
装置にてターゲット像を解析し、視準点とターゲット像
の図心とのずれ量,ターゲット面の傾きとその方向,タ
ーゲット像の主軸とターゲット面上に記された基準の傾
きを求め、これらの値から視準点からターゲット中心点
までの三次元座標値および計測対象物上の測点の三次元
座標値を求めることを特徴する三次元座標自動計測解析
法。
(1) In a system that collimates targets provided at a large number of measurement points on an object to be measured and measures the three-dimensional coordinate values of each measurement point, the vision on the target captured by a CCD camera that can be driven by a motor. A measuring instrument body with functions to measure and measure the position of the quasi-point, an image processing device that analyzes the image of the target captured by the CCD camera of the measuring instrument body, measurement condition setting, coordinate conversion, and analysis. Using a three-dimensional measurement system consisting of a computer with a monitor that operates the program to be executed, enter the design dimension values or three-dimensional design coordinate values of the measurement object into the computer, and then set the installation range of the measuring instrument on the monitor screen. After determining, install a measuring instrument within that range, set the reference coordinate system based on the coordinate values obtained by actually measuring the reference measurement points, and convert the three-dimensional design coordinate values of each measurement point. And then The design coordinate values are converted into polar coordinate values for automatic measurement, the CCD camera of the measuring machine is driven by the converted polar coordinate values, the target attached to each measurement point is automatically tracked, and the optical axis of the CCD camera Distance measurement and angle measurement are performed while the target object is inside the target to be measured, and the target image is analyzed by the image processing device. The amount of deviation between the collimation point and the centroid of the target image, the inclination of the target surface and its direction , Determine the main axis of the target image and the inclination of the reference written on the target surface, and calculate the three-dimensional coordinate value from the collimation point to the target center point and the three-dimensional coordinate value of the measuring point on the measurement object from these values. A three-dimensional coordinate automatic measurement and analysis method characterized by seeking.

【0013】(2) ズーム機能付きCCDカメラを用
いて、その視野を拡大することによって視野内にターゲ
ットを捉え、そのターゲット像の画像処理を行ってター
ゲットの視準面の色またはパターンから測定対象ターゲ
ットを識別し、CCDカメラの光軸と識別した測定対象
ターゲット像の図心との二次的なずれ量を画像解析によ
って求め、計測機本体を駆動してCCDカメラの光軸を
視野内の該測定対象ターゲット内に入るように移動する
ことを特徴とする上記(1)記載の三次元座標自動計測
解析法。
(2) A CCD camera with a zoom function is used to capture the target within the field of view by enlarging the field of view, and image processing of the target image is performed to measure the color or pattern of the collimation plane of the target. The target is identified, and the secondary deviation amount between the optical axis of the CCD camera and the centroid of the identified target image of the measurement target is obtained by image analysis, and the measuring instrument main body is driven to set the optical axis of the CCD camera within the field of view. The three-dimensional coordinate automatic measurement / analysis method according to (1) above, wherein the three-dimensional coordinate automatic measurement / analysis method is carried out so as to enter the target to be measured.

【0014】[0014]

【作用】上記(1)によれば、計測対象物上の各測点の
三次元座標値あるいは計測対象物の寸法値は設計値にお
いて既知であるので、この既知の設計座標値と計測機本
体の位置をモニター付きコンピュ−タに入力し、次に各
測点のターゲットの配置,視準する順番といった計測の
シミュレーションを行い、計測対象物上の所定のターゲ
ットを視準できる計測機本体の設置範囲をモニター上で
実測の前に求められる。この設置範囲内に計測機本体の
設置をすることによって、以降の自動計測が確実なもの
とされる。
According to the above (1), since the three-dimensional coordinate value of each measurement point on the measurement object or the dimension value of the measurement object is known in the design value, the known design coordinate value and the measuring machine body are known. The position of a measuring instrument is input to a computer with a monitor, and then a simulation of measurement such as the arrangement of targets at each measurement point and the order of collimation is performed, and a measuring instrument main body that can collimate a predetermined target on the measurement target is installed. The range is calculated on the monitor before actual measurement. By installing the measuring instrument body within this installation range, subsequent automatic measurements will be ensured.

【0015】計測現場では、上記位置に設置された計測
機により計測対象物上の基準点となる3測点上のターゲ
ットの位置が測距,測角され、計測機を原点とした極座
標値で検出される。そして、この極座標値は三次元座標
系の座標値に座標変換され、基準の3測点の三次元座標
値が求められ、その3基準点を基に基準直交座標系が定
められる。この基準座標系を共通の座標系とし、入力済
みの設計座標値または設計寸法値は基準座標系の三次元
設計座標値に変換される。そして、各測点の計測ではこ
の三次元設計座標値を計測機本体を原点とした極座標値
に変換し、この座標値を用いてあらかじめ設定した順番
で計測機本体上のCCDカメラの視準方向を自動的にを
駆動することによって、各測点のターゲットが順次追尾
される。さらに、視準面に基線を記したターゲットを用
いることにより、ターゲット中心点の三次元座標値の偏
位補正を行って測点の三次元座標値が求められる。
At the measuring site, the position of the target on three measuring points, which are the reference points on the object to be measured, is measured and measured by the measuring machine installed at the above position, and the polar coordinate value with the measuring machine as the origin is used. To be detected. Then, the polar coordinate values are coordinate-converted into coordinate values of a three-dimensional coordinate system, three-dimensional coordinate values of three reference measurement points are obtained, and a reference orthogonal coordinate system is determined based on the three reference points. Using this reference coordinate system as a common coordinate system, the input design coordinate values or design dimension values are converted into three-dimensional design coordinate values in the reference coordinate system. Then, in the measurement of each measurement point, this three-dimensional design coordinate value is converted into a polar coordinate value with the measuring machine main body as the origin, and the collimation direction of the CCD camera on the measuring machine main body is used in a preset order using this coordinate value. The target of each measurement point is sequentially tracked by automatically driving. Furthermore, by using a target having a baseline on the collimation plane, the three-dimensional coordinate value of the measurement point can be obtained by correcting the deviation of the three-dimensional coordinate value of the target center point.

【0016】また、CCDカメラで捉えられた各測点の
ターゲットはそのターゲット像を画像解析することによ
り視準点からの一次元的なずれ量が求められ、視準点の
座標値を補正することにより、距離計の視準軸をターゲ
ットの中心点に合致させることなく、ターゲット中心点
の三次元座標値を得る、すなわち自動視準される。
Further, the target of each measurement point captured by the CCD camera is subjected to image analysis of the target image to obtain a one-dimensional displacement amount from the collimation point, and the coordinate value of the collimation point is corrected. Thus, the three-dimensional coordinate value of the target center point is obtained, that is, automatic collimation is performed without matching the collimation axis of the rangefinder to the center point of the target.

【0017】上記(2)によれば、ズーム機能付きCC
Dカメラを用いることにより、CCDカメラの視野内に
ターゲット像がない場合、視野を拡大し自動的に視野内
にターゲットを捉え、ターゲットの色またはパターン認
識から測定対象ターゲットを画像処理により識別し、複
数のターゲットの中から測定対象ターゲットが検出され
る。画像解析より演算された数値制御データにを用い
て、計測機本体をCCDカメラを駆動しCCDカメラの
光軸を測定対象ターゲット内に移動後、自動視準をおこ
ない、ターゲット中心点の三次元座標値を得ることがで
きる。
According to the above (2), the CC with zoom function is provided.
By using the D camera, when there is no target image in the field of view of the CCD camera, the field of view is enlarged, the target is automatically captured in the field of view, and the measurement target is identified by image processing from the color or pattern recognition of the target, A target to be measured is detected from the plurality of targets. Using the numerical control data calculated from the image analysis, drive the CCD camera of the measuring instrument main body and move the optical axis of the CCD camera into the target to be measured, then perform automatic collimation, and the three-dimensional coordinates of the center point of the target. You can get the value.

【0018】上記の方法で求められた計測対象物上の測
点の三次元設計座標値は、任意の三次元直交座標におけ
る座標値,寸法値に変換され、設計値と比較され誤差量
を算定し出力される。
The three-dimensional design coordinate values of the measuring points on the measurement object obtained by the above method are converted into coordinate values and dimension values in arbitrary three-dimensional Cartesian coordinates and compared with the design values to calculate the error amount. And then output.

【0019】[0019]

【実施例】以下、本発明の実施例を図を参照して説明す
る。図1は、本発明の一実施例による大型構造物の三次
元座標計測解析システムの全体構成を示す図である。本
発明に用いるシステムは、計測対象物上の各測点に設け
られたターゲット6と、サーボモータ駆動のカラーCC
Dカメラにより、ターゲット6を自動的に追尾,探索,
視準し、測距,水平および鉛直角の測角を行う機構を有
する計測機1と、計測機1のCCDカメラから得られた
画像を解析する画像処理装置2と、計測のシミュレーシ
ョン,座標変換等の解析および計測結果の記憶を行うモ
ニター付きコンピュ−タ3と、自動計測用極座標を演算
し、計測機本体の数値制御用データーの生成を行うプロ
グラムが稼働する携帯型コンピュ−タ4と、CCDカメ
ラの視準方向,拡大倍率,合焦を遠隔操作するコントロ
ーラ5と、プリンタPRR,プロッタPLR,モデムM
OD等の出力装置等で構成される。モデムMODは通信
線を介しての他のコンピュ−タとのデ−タ通信を行なう
ためのものである。
Embodiments of the present invention will now be described with reference to the drawings. FIG. 1 is a diagram showing the overall configuration of a three-dimensional coordinate measurement / analysis system for a large structure according to an embodiment of the present invention. The system used in the present invention includes a target 6 provided at each measurement point on an object to be measured and a color CC driven by a servo motor.
The D camera automatically tracks and searches the target 6.
A measuring instrument 1 having a mechanism for collimating, distance measuring, and horizontal and vertical angle measuring, an image processing device 2 for analyzing an image obtained from a CCD camera of the measuring instrument 1, a simulation of measurement, and coordinate conversion. A computer with a monitor 3 for analyzing the above and storing the measurement result, and a portable computer 4 for running a program for calculating polar coordinates for automatic measurement and generating data for numerical control of the measuring machine main body, Controller 5 for remotely controlling the collimation direction, magnification and focus of the CCD camera, printer PRR, plotter PLR, modem M
It is composed of an output device such as an OD. The modem MOD is for performing data communication with other computers via communication lines.

【0020】ターゲット6は、プリズム反射シートであ
り、計測機1から発射された光波を反射する。反射光は
CCDカメラで撮像され、CCDカメラの撮影画像信号
すなわち画像信号より、タ−ゲット6の像が認識され
る。ターゲット6は、視準距離に応じて必要サイズのも
のを用いる。たとえば視準距離10mでは直径5mm以
上、視準距離100mでは100mm以上とする。各測
点にターゲット6を設ける際、ターゲット面7の光軸と
なす角度は±45°以内が計測可能であるが、なるべく
CCDカメラに正対させる。ターゲット6の形状は、円
形,四角形,三角形等いずれでもよいが、後述するター
ゲットの傾きによるずれ量の補正をする場合には、真円
にしたものを使用するのがよい。また、図10に示すよ
うな垂直な側面19を有する円筒形ターゲットを用いる
と、ターゲットの画像の側面像21から傾きの方向を知
ることができる。さらにターゲット表面に着色したり特
定のマークを付けると、ターゲットの識別に便利であ
る。
The target 6 is a prism reflection sheet, and reflects the light wave emitted from the measuring instrument 1. The reflected light is imaged by the CCD camera, and the image of the target 6 is recognized from the image signal of the CCD camera, that is, the image signal. The target 6 has a required size according to the collimation distance. For example, the diameter is 5 mm or more at the collimation distance of 10 m, and 100 mm or more at the collimation distance of 100 m. When the target 6 is provided at each measuring point, the angle formed with the optical axis of the target surface 7 can be measured within ± 45 °, but it should be faced to the CCD camera as much as possible. The shape of the target 6 may be a circle, a quadrangle, a triangle, or the like, but when correcting the amount of deviation due to the inclination of the target, which will be described later, it is preferable to use a perfect circle. Further, when a cylindrical target having a vertical side surface 19 as shown in FIG. 10 is used, the tilt direction can be known from the side surface image 21 of the target image. Furthermore, it is convenient to identify the target if the target surface is colored or a specific mark is attached.

【0021】図2の(a)は、真円の視準面をもつシー
トタイプのターゲットである。ターゲット表面には必ず
しもターゲットの中心を示すクロスラインを必要としな
いが、ターゲット中心を測点に合わせやすいように、図
2の(b)に示すようなクロスラインを記してもよい。
図2の(c)は、ターゲットの中心を測点に一致させて
取付けにくい場合に使用するターゲットの一例であり、
ターゲットの視準面7を2軸方向に傾斜または回転させ
て使用することができる。この場合、測点の方向を示す
ターゲットの中心を通る基線8をターゲット視準面7上
に記したものを使用する。
FIG. 2A shows a sheet type target having a perfect circle collimation surface. A cross line indicating the center of the target is not necessarily required on the target surface, but a cross line as shown in FIG. 2B may be written so that the center of the target can be easily aligned with the measurement point.
FIG. 2C is an example of a target used when it is difficult to mount the center of the target at the measuring point,
The collimation plane 7 of the target can be used by inclining or rotating in the biaxial directions. In this case, a base line 8 that passes through the center of the target indicating the direction of the measurement point is marked on the target collimation plane 7.

【0022】計測機1は、近赤外線による測距を行う光
波距離計と、水平角および鉛直角の測角を行う測角計
と、ターゲット6を自動的に追尾,探索,視準するため
のズーム機構付きのカラーCCDカメラと、視準方向を
数値的に制御できる水平角および鉛直角可変用のサ−ボ
モ−タ等を備えており、設計極座標値の入力を受けター
ゲット6を視準して、測距,測角を行い、ターゲット中
心の座標の極座標として出力する。なお、光波距離計の
視準軸とCCDカメラの光軸は同軸である。また、色彩
によるターゲットの識別の必要性がなければ、白黒のC
CDカメラでもよい。
The measuring instrument 1 is a light-wave range finder for measuring distances by near infrared rays, a goniometer for measuring horizontal and vertical angles, and a target 6 for automatically tracking, searching and collimating. It is equipped with a color CCD camera with a zoom mechanism and a servo motor for varying the horizontal and vertical angles that can numerically control the collimation direction. Then, distance measurement and angle measurement are performed, and the coordinates are output as polar coordinates of the coordinates of the center of the target. The collimation axis of the light distance meter and the optical axis of the CCD camera are coaxial. If there is no need to identify the target by color, the black and white C
It may be a CD camera.

【0023】モニター付きコンピュ−タ3は、計測シミ
ュレーション,座標変換等の解析,設計値および計測結
果のグラフィック表示および記憶等を行うもので、計測
のシミュレーション,座標変換,補正演算等の解析ソフ
トウェアが作動するものである。
The computer 3 with a monitor is for performing measurement simulation, analysis of coordinate conversion, etc., graphic display and storage of design values and measurement results, and analysis software for measurement simulation, coordinate conversion, correction calculation, etc. It works.

【0024】携帯型コンピュ−タ4は、上記のモニター
付きコンピュ−タ3とほぼ同等の機能を有し、実測時の
計測対象物10と計測機1の位置関係に基づいて各測定
点の三次元設計座標値の変換を行い、自動計測用極座標
値を演算し数値制御用データの作成を行うもので、ノー
トパソコンあるいはハンディーターミナル等を用いる。
なお、携帯型コンピュ−タ4を省略し画像処理装置2
とモニター付き用コンピュ−タ3とオンライン等で直接
接続してもよい。
The portable computer 4 has almost the same function as the computer with a monitor 3 described above, and the cubic of each measurement point is determined based on the positional relationship between the measuring object 10 and the measuring machine 1 at the time of actual measurement. The original design coordinate value is converted, the polar coordinate value for automatic measurement is calculated, and the data for numerical control is created, and a notebook computer or a handy terminal is used.
The portable computer 4 is omitted and the image processing apparatus 2 is omitted.
May be directly connected to the monitor-equipped computer 3 online or the like.

【0025】コントロ−ラ5は、計測機1のCCDカメ
ラの視準方向,拡大倍率,合焦を遠隔操作する機能を有
し、計測対象物10上の測点のうち、原点と基準軸およ
び基準面を設定するための3基準点を視準するために使
用される。また、計測対象物10上の三次元設計座標値
が既知でない測点の三次元座標値を、マニュアル操作で
計測する場合にも使用する。
The controller 5 has a function of remotely controlling the collimation direction, magnification and focusing of the CCD camera of the measuring instrument 1, and among the measuring points on the measuring object 10, the origin, the reference axis and It is used to collimate the three reference points for setting the reference plane. Further, it is also used when manually measuring the three-dimensional coordinate values of a measuring point whose three-dimensional design coordinate values on the measurement object 10 are unknown.

【0026】−第1実施例− 以下、前記のように構成したシステムを用いて計測対象
物上の測点の三次元座標値を自動的に計測する第1の実
施例について説明する。図3は計測手順の骨子を示すフ
ローチャートであり、図4は計測対象物を自動的に計測
する態様を示したものである。この第1実施例では次の
ように三次元座標値自動計測を行なう。 計測対象となる構造物の設計あるいは製作のために作
成された既知の三次元設計座標値を、モニター付きコン
ピュ−タ3を使用して入力を行い、モニター画面上に計
測対象構造物の三次元設計モデルを作成し測点を決定す
る。この場合、構造物の設計寸法値を入力し、コンピュ
−タ内で三次元設計座標値に変換させてもよい; 同じ画面上に計測機1の設置位置を入力し; この点を原点として計測対象構造物10上の測点の設
計極座標値を求め、視準する測点上のターゲット6の決
定,測定順番の設定等の、計測条件のシミュレーション
を行い、計測機1の設置可能範囲を求める; 前記設置可能範囲内に計測機1を設置し; 計測対象構造物10上の3測点を基準点(9a,9
b,9c)とし、その測点上のターゲットの極座標値を
計測機1により実測し、測点の三次元座標値に変換す
る; この3点のうち任意の1点を原点、原点9aと第2点
9bを結んだ線をx軸と、この軸と第3点9cを含む平
面をx−y(x−z)面と、この面に垂直な軸をz軸と
定義し、計測対象構造物の局所座標系とする。
-First Embodiment- A first embodiment for automatically measuring the three-dimensional coordinate values of a measurement point on a measurement object using the system configured as described above will be described below. FIG. 3 is a flow chart showing the outline of the measurement procedure, and FIG. 4 shows a mode in which the measurement target is automatically measured. In the first embodiment, automatic three-dimensional coordinate value measurement is performed as follows. The known 3D design coordinate values created for the design or manufacture of the structure to be measured are input using the computer with monitor 3, and the 3D of the structure to be measured is displayed on the monitor screen. Create a design model and determine measurement points. In this case, you may input the design dimension value of the structure and convert it into the three-dimensional design coordinate value in the computer; enter the installation position of the measuring instrument 1 on the same screen; measure this point as the origin A design polar coordinate value of a measurement point on the target structure 10 is obtained, simulation of measurement conditions such as determination of the target 6 on the measurement point to be collimated, setting of measurement order, etc. is performed, and an installable range of the measuring instrument 1 is obtained. The measuring device 1 is installed within the installable range; the three measurement points on the measurement target structure 10 are reference points (9a, 9a).
b, 9c), the polar coordinate value of the target on the measurement point is measured by the measuring instrument 1 and converted into the three-dimensional coordinate value of the measurement point; any one of these three points is the origin, the origin 9a and the The line connecting the two points 9b is defined as the x-axis, the plane including this axis and the third point 9c is defined as the xy (x-z) plane, and the axis perpendicular to this plane is defined as the z-axis. Use the local coordinate system of the object.

【0027】計測対象物10の三次元設計座標値のう
ちで、前記の3基準点(9a,9b,9c)に対応する
3点の設計座標値からなる原点9a,座標軸,基準面、
を計測対象構造物上の原点9a,基準軸,基準面、に合
致させれば、計測対象構造物の実物の局所座標系と三次
元設計モデルの局所座標系は一致する。図式的に表現す
れば、図4のように計測対象構造物10の実物のうえに
共通の座標軸を持つ三次元設計モデルが投影された状態
と見ることができる。このことにより、実測時の計測機
1位置を原点9aとしたときの三次元設計モデル上の測
点の設計極座標値が座標変換により求められる。また、
図5のように1箇所の計測機1の設置点から視準できな
い測点15,16は、前記の計測のシミュレーション
から解っているので、それらに設置されたターゲットを
視準できる複数の計測機1Aの設置点12,13を設
け、計測対象物内外の両方から視準可能な共通測定点1
4にターゲット6を設置し、これを計測の接合点として
座標を一致させる。この計測機設置数,位置および共通
測定点の数,位置もあらかじめシミュレーションしてお
く。
Of the three-dimensional design coordinate values of the measuring object 10, the origin 9a consisting of the design coordinate values of three points corresponding to the above-mentioned three reference points (9a, 9b, 9c), the coordinate axis, the reference plane,
By matching the origin 9a, the reference axis, and the reference plane on the measurement target structure, the actual local coordinate system of the measurement target structure and the local coordinate system of the three-dimensional design model match. If expressed graphically, it can be regarded as a state in which a three-dimensional design model having common coordinate axes is projected on the actual object of the measurement target structure 10 as shown in FIG. As a result, the design polar coordinate value of the measurement point on the three-dimensional design model when the position of the measuring instrument 1 at the time of actual measurement is the origin 9a is obtained by coordinate conversion. Also,
As shown in FIG. 5, the measuring points 15 and 16 that cannot be collimated from one installation point of the measuring instrument 1 are known from the above-described measurement simulation, and therefore, a plurality of measuring instruments that can collimate the targets installed on them. A common measurement point 1 where the installation points 12 and 13 of 1A are provided and collimation can be performed both inside and outside the measurement object
The target 6 is installed on the surface 4, and the coordinates are made to coincide with each other by using this as a junction point for measurement. The number and position of measuring instruments installed and the number and position of common measurement points are also simulated in advance.

【0028】この測定対象ターゲットの設計極座標値
に、その測点のターゲットの形式,色,サイズといった
属性データを加え、各々のターゲットの自動追尾,探
索,視準用の数値制御データを作成し; 計測機1を駆動しCCDカメラの視準方向,拡大倍
率,合焦の遠隔操作を行い、測定対象ターゲットを自動
的に追尾,探索,視準する。
Numerical control data for automatic tracking, search and collimation of each target is created by adding attribute data such as the type, color and size of the target of the measurement point to the design polar coordinate value of the target to be measured; The machine 1 is driven and the collimating direction of the CCD camera, the magnifying power, and the remote control of focusing are performed, and the target to be measured is automatically tracked, searched, and collimated.

【0029】本発明における、ターゲット中心点を自動
視準する原理は以下のようである。図6は計測機1のC
CDカメラで捉えたターゲット6の影像である。CCD
カメラによりターゲット6を視準し得られた真円のター
ゲット面を持つターゲット像7は、CCDカメラの光軸
と角度を持っていれば楕円の画像17として捉えられ
る。
The principle of automatic collimation of the target center point in the present invention is as follows. FIG. 6 shows C of the measuring instrument 1.
It is an image of the target 6 captured by a CD camera. CCD
The target image 7 having a perfect circular target surface obtained by collimating the target 6 with the camera is captured as an elliptic image 17 if it has an angle with the optical axis of the CCD camera.

【0030】ここでターゲット6の中心点の、CCDカ
メラの視準点からのずれ量(Δx,Δy,Δz)の算出
法を図7を用いて説明する。視準軸(光軸)方向をZp
とし、それと直交する面をxp−yp平面とし、水平方
向にxp軸を定め、それと直交する軸をYp軸とし画像
座標系を設定し、ターゲット上の視準点すなわち光軸が
ターゲットと交差する点をPとし画像座標の原点とす
る。このXp−Yp平面上のターゲット像の画像解析を
行い、ターゲット像の図心Cの座標値(Δx,Δy)を
ターゲット像の図心計算から、ターゲット面の光軸に対
する傾きθを、ターゲット像の長径と短径の比あるいは
ターゲット(真円)とターゲット像(楕円)の面積比か
ら求める。
A method of calculating the deviation amount (Δx, Δy, Δz) of the center point of the target 6 from the collimation point of the CCD camera will be described with reference to FIG. Zp in the collimation axis (optical axis) direction
The plane orthogonal to the plane is defined as the xp-yp plane, the xp axis is defined in the horizontal direction, the axis orthogonal to the plane is defined as the Yp axis, the image coordinate system is set, and the collimation point on the target, that is, the optical axis intersects with the target. Let P be the origin of the image coordinates. Image analysis of the target image on the Xp-Yp plane is performed, and the coordinate value (Δx, Δy) of the centroid C of the target image is calculated from the centroid calculation of the target image, and the inclination θ with respect to the optical axis of the target surface is calculated. It is calculated from the ratio of the major axis to the minor axis or the area ratio of the target (true circle) and the target image (ellipse).

【0031】[0031]

【数1】 [Equation 1]

【0032】ターゲット面の光軸となす角度θは、ター
ゲット面7の傾きの方向によって正負が決定されるが、
このターゲット面7の傾きの方向はCCDカメラで捉え
たターゲット面の楕円状の画像17からだけでは判断で
きない。このターゲット面7の方向を判定する手順を図
8と図9のフローチャートを用いて説明する。図8のO
点は計測機1の位置で全体座標系の原点であり、対象タ
ーゲット上の視準点がP、光軸をターゲット像の短軸方
向に任意に移動して視準されたターゲット上の点がP’
である。2点視準法では、 測定対象ターゲット上のP点を視準し、 その点の極座標値、すなわち斜距離R,水平角Hp,
鉛直角Vpを得る、また ターゲット像の画像解析から(Δx,Δy,θ,α)
を求めておく、次に ターゲット上の光軸をターゲット像20の短軸に平行
に移動して別の点P’を視準し、 その点の斜距離R’を測定し、 RとR’の値を比較することによって、ターゲット面
7の向き、すなわちθの正負がわかる。
The angle θ formed with the optical axis of the target surface is positive or negative depending on the direction of inclination of the target surface 7,
The direction of the inclination of the target surface 7 cannot be judged only from the elliptical image 17 of the target surface captured by the CCD camera. The procedure for determining the direction of the target surface 7 will be described with reference to the flowcharts of FIGS. 8 and 9. 8 O
The point is the origin of the overall coordinate system at the position of the measuring instrument 1, the collimation point on the target target is P, and the point on the target collimated by arbitrarily moving the optical axis in the short axis direction of the target image is P '
Is. In the two-point collimation method, the point P on the target to be measured is collimated, and the polar coordinate value of the point, that is, the oblique distance R, the horizontal angle Hp,
Obtain the vertical angle Vp, and from the image analysis of the target image (Δx, Δy, θ, α)
Then, the optical axis on the target is moved parallel to the short axis of the target image 20 to collimate another point P ′, and the oblique distance R ′ at that point is measured to obtain R and R ′. By comparing the values of, the direction of the target surface 7, that is, the sign of θ is known.

【0033】なお、1点視準で行うこともできる。この
場合は一例として、図10に示すようなターゲット面7
に垂直な側面19を持つ円筒形台付きのようなターゲッ
ト自体で傾き方向を判別できるようなもの(b)を用い
れば、ターゲットに傾きのある場合、(c)のようにタ
ーゲットの側面19が見える側が手前と判断でき、1回
の視準でθの正負を判定できる。
It is also possible to perform the one-point collimation. In this case, as an example, the target surface 7 as shown in FIG.
When a target (b) such as a cylindrical table having a side surface 19 perpendicular to the target can be used to determine the tilt direction, when the target has a tilt, the side surface 19 of the target is changed as shown in (c). The visible side can be judged to be the front side, and the positive / negative of θ can be judged by one collimation.

【0034】さらに図7に示すターゲットの長軸(L
軸)の水平軸(Xp軸)となす角度αを求め、以下のよ
うな計算式によりターゲット中心点の光軸方向のずれ量
Δzを算出する。
Further, the long axis (L
The angle α of the axis) with the horizontal axis (Xp axis) is obtained, and the shift amount Δz of the target center point in the optical axis direction is calculated by the following formula.

【0035】[0035]

【数2】 [Equation 2]

【0036】次に、対象ターゲットの中心点の座標値の
算出方法を図11を用いて説明する。計測機1を原点O
とした時のターゲット中心点Tの全体座標系における三
次元座標値(Xc,Yc,Zc)が、傾斜したターゲッ
ト像の視準点Pの極座標値(R,Hp,Vp)と画像座
標系における視準点Pからのずれ量(Δx,Δy,Δ
z)から、下式により求められる。
Next, a method of calculating the coordinate value of the center point of the target will be described with reference to FIG. The measuring instrument 1 is the origin O
And the three-dimensional coordinate value (Xc, Yc, Zc) of the target center point T in the overall coordinate system is the polar coordinate value (R, Hp, Vp) of the collimation point P of the tilted target image and the image coordinate system. Deviation amount from the sighting point P (Δx, Δy, Δ
From z), the following formula is used.

【0037】[0037]

【数3】 (Equation 3)

【0038】また、測点の三次元座標値の算出方法を図
12を用いて説明する。ターゲット中心Tから測点Qま
でのターゲット面の基線方向の距離をh、直角方向の距
離をdとし、ターゲット像の長軸(L軸)と基線の画像
のなす角度をβとすると、画像座標系においてターゲッ
ト中心点Tを原点としたときの測点Qの座標値(Δx
s,Δys,Δzs)は下式により求められる。
A method of calculating the three-dimensional coordinate value of the measurement point will be described with reference to FIG. Assuming that the distance from the target center T to the measuring point Q in the base line direction of the target surface is h, the distance in the perpendicular direction is d, and the angle between the long axis (L axis) of the target image and the image of the base line is β, the image coordinates In the system, the coordinate value (Δx
s, Δys, Δzs) is calculated by the following equation.

【0039】[0039]

【数4】 [Equation 4]

【0040】上記の測点Sの画像座標系における座標値
を全体座標系に変換して、計測機1を原点Oとした時の
測点Sの三次元座標値(Xs,Ys,Zs)は次式によ
り求められる。
The three-dimensional coordinate values (Xs, Ys, Zs) of the measuring point S when the coordinate value of the measuring point S in the image coordinate system is converted into the overall coordinate system and the measuring machine 1 is the origin O are It is calculated by the following formula.

【0041】[0041]

【数5】 (Equation 5)

【0042】次にターゲットの自動探索について説明す
る。一般的には、土木,建築,構造物および船舶の部
材,ブロックといった計測対象物の設計値からのずれ
は、数mm〜数cm程度であり、ターゲット6の大き
さ,取り付け方向を適切に選ぶことにより、設計値で視
準すれば、通常1回の視準でCCDカメラの光軸はター
ゲット内に入るが、大規模な計測対象物あるいは製作精
度の悪い計測対象物の場合、設計値で視準してもCCD
カメラがターゲット像を捉えることができないことがあ
る。このような場合にはターゲットの自動探索が必要と
なる。図13にはターゲットの自動探索の手順を示すフ
ローチャートを示す。画像解析により画面上(視野内)
にターゲット像が存在するか否かを判定し、無ければ自
動的にCCDカメラのズーム機構を作動させ、視野を拡
大しターゲットを探索する。また、ターゲット像がCC
Dカメラの視野内に入っていても、ターゲット内にCC
Dカメラの光軸が入っていない場合、またCCDカメラ
の視野内に測定対象ターゲット像の全体が入っていない
場合には、そのターゲットの全体像または部分像の画像
解析により光軸からのずれ量(δx,δy)を求め、光
軸の移動を行いターゲットを視準する。そして自動視準
を行う際のCCDカメラの倍率はターゲットの画像処理
に最適な状態に切り替える。
Next, the automatic search for the target will be described. Generally, the deviation from the design value of the measurement object such as civil engineering, construction, structures and members of ships and blocks is about several mm to several cm, and the size and the mounting direction of the target 6 are appropriately selected. Therefore, if collimating with the design value, the optical axis of the CCD camera usually enters the target with one collimation, but in the case of a large-scale measurement object or a measurement object with poor manufacturing accuracy, the design value CCD even if collimated
The camera may not be able to capture the target image. In such a case, automatic search for the target is required. FIG. 13 is a flow chart showing the procedure of automatic target search. On screen by image analysis (in view)
It is determined whether or not there is a target image in the image, and if there is no target image, the zoom mechanism of the CCD camera is automatically activated to expand the field of view and search for the target. Also, the target image is CC
CC in the target even if it is within the field of view of the D camera
When the optical axis of the D camera is not included, or when the entire target image of the measurement target is not included in the field of view of the CCD camera, the amount of deviation from the optical axis by image analysis of the entire image or partial image of the target. (Δx, δy) is obtained, the optical axis is moved, and the target is collimated. Then, the magnification of the CCD camera when performing the automatic collimation is switched to the optimum state for the image processing of the target.

【0043】次に、CCDカメラ視野内に複数のターゲ
ットを捉えた場合の測定対象ターゲットの識別法につい
て説明する。計測対象物上の近接した測点や遠方の測点
を計測する場合、図14に示すようにCCDカメラの視
野内22に複数のターゲット像が存在することがある。
この場合、ターゲットの視準面が特定の色に着色された
ターゲット23を用いてカラーCCDカメラにより識別
するか、またはターゲットの視準面の形状や視準面上に
記された特定のマークを利用したパターン認識により、
対象ターゲットの自動選択を行う。
Next, a method of identifying the target to be measured when a plurality of targets are captured within the field of view of the CCD camera will be described. When measuring a close-up measuring point or a distant measuring point on an object to be measured, a plurality of target images may exist in the field of view 22 of the CCD camera as shown in FIG.
In this case, the target 23 whose target collimation surface is colored with a specific color is used for identification by a color CCD camera, or the shape of the target collimation surface or a specific mark on the collimation surface is marked. By the pattern recognition used,
Automatically select the target.

【0044】上記の方法により、自動追尾,探索,視準
された計測対象物上のターゲットの中心点の三次元座標
値は、ターゲットの設置偏位(測点とターゲット中心と
のずれ量)が補正されて測点の三次元座標値が求められ
る。さらに、携帯型コンピュ−タ4に記憶された設計値
と比較され、計測機1の配置およびターゲット6の設置
等の計測の状態の確認ならびに計測対象物の誤差量の出
力をリアルタイムで行う。
By the above method, the three-dimensional coordinate value of the center point of the target on the measurement object which is automatically tracked, searched and collimated is determined by the installation deviation of the target (the amount of deviation between the measurement point and the center of the target). After correction, the three-dimensional coordinate value of the measurement point is obtained. Further, it is compared with the design value stored in the portable computer 4, and the state of measurement such as the arrangement of the measuring instrument 1 and the installation of the target 6 is confirmed and the error amount of the measurement object is output in real time.

【0045】−第2実施例− 本発明の第2の実施例として自動追尾と自動視準に三次
元CAD使用した例を説明する。三次元座標計測解析シ
ステムを構成する機器のうちのターゲット6,計測機
1,画像処理装置2等は、第1実施例と同一のものでよ
いが、モニター付きコンピュ−タ3と携帯型コンピュ−
タ4は、三次元CADが作動するのに十分な能力および
容量のCPUとハードディスク等の外部記憶装置を装備
しているものとする。以下、前記のように構成したシス
テムを用いて計測対象物10上の測点の三次元座標値を
自動的に計測する手順を前記図3の計測手順の骨子を示
すフローチャートを用いて説明する。
-Second Embodiment- As a second embodiment of the present invention, an example in which three-dimensional CAD is used for automatic tracking and automatic collimation will be described. The target 6, the measuring device 1, the image processing device 2 and the like among the devices constituting the three-dimensional coordinate measurement / analysis system may be the same as those in the first embodiment, but the computer with monitor 3 and the portable computer.
It is assumed that the computer 4 is equipped with a CPU having sufficient capacity and capacity for operating the three-dimensional CAD and an external storage device such as a hard disk. The procedure for automatically measuring the three-dimensional coordinate values of the measurement point on the measurement object 10 using the system configured as described above will be described below with reference to the flowchart of the measurement procedure shown in FIG.

【0046】第2実施例の三次元座標値自動計測法は次
のように行なう、まず、 計測対象となる構造物の設計あるいは製作のために作
成された既知の三次元設計座標値をモニター付きコンピ
ュ−タを使用して三次元CADの図形デ−タとして入力
を行い、モニター画面上に計測対象構造物の三次元設計
モデルを作成し測点を決定する。この場合、構造物の設
計寸法値を入力して三次元モデルを作図してもよい。つ
ぎに、 同じ三次元CADの画面上に計測機1の設置位置を入
力し; この点を原点として計測対象構造物上の測点の設計極
座標値をCADの座標表示機能により求める。また、計
測機1が設置された位置から視準できる測点上のターゲ
ットを三次元CADの隠線処理機能を用いて選定し、タ
ーゲットの測点からの偏位およびターゲット面の向きを
設定したうえで、ターゲットの中心点の設計極座標値を
と同様にして求め、測定順番の設定等の計測条件のシ
ミュレーションを行い、計測機1の設置可能範囲を求め
る; 前記設置可能範囲内に計測機1を設置し; 計測対象構造物上に基準面を構成する3測点上ターゲ
ットの極座標値を計測機1により実測する; この座標値は三次元CADに入力され、CADの座標
表示機能により測点の三次元座標値を求め、任意の1点
を原点、原点と第2点を結んだ線をx軸と、この軸と第
3点を含む平面をx−y(x−z)面と定義して、計測
対象構造物の局所座標系とし、三次元CAD上に設定す
る; その局所座標上にで作成された計測対象物の三次元
設計モデルの複写を行う。
The three-dimensional coordinate value automatic measuring method of the second embodiment is carried out as follows. First, a known three-dimensional design coordinate value created for designing or manufacturing a structure to be measured is provided with a monitor. Input as graphic data of three-dimensional CAD using a computer, create a three-dimensional design model of the structure to be measured on the monitor screen, and determine the measurement points. In this case, the three-dimensional model may be drawn by inputting the design dimension value of the structure. Next, the installation position of the measuring instrument 1 is input on the same three-dimensional CAD screen; with this point as the origin, the design polar coordinate value of the measurement point on the structure to be measured is obtained by the coordinate display function of CAD. Further, a target on a measurement point that can be collimated from the position where the measuring instrument 1 is installed is selected by using the hidden line processing function of the three-dimensional CAD, and the deviation of the target from the measurement point and the orientation of the target surface are set. Then, the design polar coordinate value of the center point of the target is obtained in the same manner as above, and the measurement conditions such as the setting of the measurement order are simulated to obtain the installable range of the measuring instrument 1; The polar coordinate values of the targets on the three measurement points that form the reference plane on the structure to be measured are measured by the measuring machine 1; these coordinate values are input to the three-dimensional CAD and the coordinate display function of the CAD measures the points. The three-dimensional coordinate value of is determined, and an arbitrary point is defined as the origin, the line connecting the origin and the second point is defined as the x-axis, and the plane including this axis and the third point is defined as the xy (xz) plane. The local coordinate system of the structure to be measured. Set on the original CAD; perform copying of the three-dimensional design model of the measurement object that is created on its local coordinates.

【0047】そして、実測時の計測機1位置を原点とし
たときの三次元設計モデル上の測点に設置されたターゲ
ットの中心点の設計極座標値がCADの座標表示機能に
より求められる。また図5のような座標の接続も三次元
CAD上で行う。このとき、計測機設置数,位置および
共通測定点の数,位置もあらかじめCAD上でシミュレ
ーションしておく。手順,は第1実施例と同様であ
る。
Then, the design polar coordinate value of the center point of the target installed at the measurement point on the three-dimensional design model when the position of the measuring instrument 1 at the time of actual measurement is set as the origin is obtained by the coordinate display function of CAD. Further, the connection of coordinates as shown in FIG. 5 is also performed on the three-dimensional CAD. At this time, the number and positions of measuring instruments installed and the number and positions of common measuring points are also simulated in advance on CAD. The procedure is the same as in the first embodiment.

【0048】次に図15に示すように自動視準において
CCDカメラで捉えたターゲット像17を画像解析する
ことによって得られたデータ(Δx,Δy,θ,α,
β)と光波距離計と測角計により測距,測角された視準
点Pの極座標値(R,Hp,Vp)を用いて、ターゲッ
ト6の中心点と測点の三次元座標値を三次元CADを用
いて求める方法について説明する。
Next, as shown in FIG. 15, data (Δx, Δy, θ, α,) obtained by image analysis of the target image 17 captured by the CCD camera in automatic collimation.
β) and the polar coordinate values (R, Hp, Vp) of the collimation point P measured and measured by the light-wave rangefinder and goniometer to determine the three-dimensional coordinate values of the center point of the target 6 and the measurement point. A method of obtaining using three-dimensional CAD will be described.

【0049】まず、計測機1を原点として、この原点O
と対象ターゲットの視準点Pを結んだ線分OP(光軸)
に直角な平面A(25)を設定する。図15の(a)は
ターゲット像17を含む平面25であり、ターゲット上
の視準点Pとターゲット像17の図心Cはこの平面内2
5に存在する。図15の(b)に示すように、平面25
(A)上の視準点Pを通りターゲット像17の楕円の長
軸に平行な直線を交線R−Rとする、平面25と(π/
2−θ)の角度をなす平面26(B)を設定する。この
平面26が図15の(c)に示すターゲット面7を含む
平面であり、ターゲット像の図心Cを平面Bに投影した
点がターゲットの中心点Tである。計測機11を原点O
とした時のターゲット中心点Tの全体座標系における三
次元座標値をCADの座標表示機能により直接求める。
また図15の(a)において、ターゲット像の中心点T
を通りターゲット像17の長軸とβの角度を持つ径線C
D27を引き、平面26に投影する。図15の(c)に
示すようにこの径線の投影線はターゲット上に記された
基線と一致する。図15の(d)は投影線TE28に沿
ったターゲット面7に垂直な断面図であるが、ターゲッ
ト中心点Tと測点Qの位置関係は既知であるので、ター
ゲット中心点Tから投影線TE28方向にh、垂直にd
の距離の点が測点Qであり、三次元座標値はCADの座
標表示機能により直接求める。
First, with the measuring instrument 1 as the origin, this origin O
Segment OP (optical axis) that connects the collimation point P of the target and the target
Set a plane A (25) that is perpendicular to. FIG. 15A is a plane 25 including the target image 17, and the collimation point P on the target and the centroid C of the target image 17 are within the plane 2.
Exists in 5. As shown in (b) of FIG.
A straight line that passes through the collimation point P on (A) and is parallel to the major axis of the ellipse of the target image 17 is defined by an intersection line RR and the plane 25 and (π /
A plane 26 (B) having an angle of 2-θ) is set. This plane 26 is a plane including the target surface 7 shown in FIG. 15C, and a point obtained by projecting the centroid C of the target image on the plane B is the center point T of the target. The measuring machine 11 is the origin O
At this time, the three-dimensional coordinate value of the target center point T in the overall coordinate system is directly obtained by the CAD coordinate display function.
Further, in FIG. 15A, the center point T of the target image
A radial line C passing through and having an angle of β with the major axis of the target image 17
D27 is drawn and projected on the plane 26. As shown in FIG. 15 (c), the projection line of this radial line coincides with the base line marked on the target. FIG. 15D is a sectional view taken along the projection line TE28 and perpendicular to the target surface 7. However, since the positional relationship between the target center point T and the measuring point Q is known, the projection line TE28 from the target center point T is known. Direction h, vertical d
The point of the distance is the measurement point Q, and the three-dimensional coordinate value is directly obtained by the coordinate display function of CAD.

【0050】なお、全体座標系や任意の局所座標系にお
ける測点の座標値,寸法値および図心も、三次元CAD
の座標表示,距値計算,面積計算,図形情報機能等を用
いて求める。
The coordinate values, dimension values, and centroids of measurement points in the global coordinate system or any local coordinate system are also three-dimensional CAD.
It is calculated using the coordinate display, distance value calculation, area calculation, graphic information function, etc.

【0051】[0051]

【発明の効果】本発明によれば、計測対象物の三次元座
標の計測において、既知の三次元設計座標値を用いてC
CDカメラと距離計,測角計からなる計測機1を自動的
に制御して、計測対象物上の測点に設置されたターゲッ
トの自動追尾,自動探索,自動視準を行うため、実際の
計測作業において入手作業が大幅に省略され、人為的ミ
スが少なくなり、計測現地における計測作業が迅速かつ
確実にできる。また、自動視準の際、ターゲット中心点
に光波距離計の視準軸を完全に合致させることなく、C
CDカメラによって得られたターゲット像を画像解析す
ることよりずれ量を求めて補正するので、視準操作に要
していた時間の大幅な短縮がはかられ、計測スピードが
速く、しかもターゲットの中心と距離計の視準軸を合致
させる際生じる機械誤差を排除でき高精度の計測ができ
る。さらに、計測対象物上の測点から偏位させた位置に
回転可能なターゲットを設置することが可能となり、計
測機の設置台数あるいは移動回数を削減することがで
き、計測設備コスト,計測時間を大幅に抑えることがで
きるとともに、計測機の切り替えや移動による座標の接
合の際に生じる測定誤差を最小限にすることができ高精
度の計測ができる。また、計測途中で計測対象物の測定
値を設計値と比較でき、計測の状態および計測対象物の
誤差量がリアルタイムで確認できるようになり、計測の
信頼性が向上する。
According to the present invention, in the measurement of the three-dimensional coordinates of the object to be measured, C is calculated by using the known three-dimensional design coordinate values.
In order to automatically control the measuring instrument 1 consisting of a CD camera, a rangefinder, and a goniometer to perform automatic tracking, automatic search, and automatic collimation of targets installed at measurement points on the measurement target, In the measurement work, the acquisition work is largely omitted, human error is reduced, and the measurement work at the measurement site can be performed quickly and reliably. Also, during automatic collimation, the C axis of the optical rangefinder does not have to be perfectly aligned with the center point of the target.
The target image obtained by the CD camera is analyzed and the amount of deviation is obtained and corrected, so the time required for the collimation operation can be greatly shortened, the measurement speed is fast, and the center of the target is fast. It is possible to eliminate the mechanical error that occurs when the collimation axis of the range finder and the collimation axis of the range finder are matched and to perform highly accurate measurement. Furthermore, it becomes possible to install a rotatable target at a position deviated from the measurement point on the measurement object, and it is possible to reduce the number of measuring machines installed or the number of movements, reducing the measurement equipment cost and measurement time. In addition to being able to greatly suppress it, it is possible to minimize the measurement error that occurs when the coordinates are joined due to the switching and movement of the measuring machine, and it is possible to perform highly accurate measurement. In addition, the measured value of the measurement target can be compared with the design value during measurement, and the state of measurement and the amount of error of the measurement target can be confirmed in real time, and the reliability of measurement is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明を実施する、大型構造物の計測測定装
置の全体構成を示すブロック図である。
FIG. 1 is a block diagram showing an overall configuration of a measuring and measuring apparatus for a large structure, which embodies the present invention.

【図2】 図1に示す視準用ターゲット6の数例を示す
正面図である。
FIG. 2 is a front view showing several examples of the collimation target 6 shown in FIG.

【図3】 本発明の第1実施例の計測手順の骨子を示す
フローチャートである。
FIG. 3 is a flow chart showing the outline of the measurement procedure of the first embodiment of the present invention.

【図4】 図1に示す計測対象構造物(実線)と、該構
造物の共通の座標軸を持った三次元設計モデルにより表
わされる像(点線)を、計測機1を基準点にして示す斜
視図である。
FIG. 4 is a perspective view showing a structure to be measured (solid line) shown in FIG. 1 and an image (dotted line) represented by a three-dimensional design model having common coordinate axes of the structure with the measuring machine 1 as a reference point. It is a figure.

【図5】 図1に示す一箇所の計測機1で視準できない
測点の計測態様を示す示す斜視図である。
5 is a perspective view showing a measurement mode of measurement points that cannot be collimated by the measuring instrument 1 at one place shown in FIG. 1. FIG.

【図6】 図1に示す計測機1のCCDカメラの光軸に
対してθの角度を持つ真円のターゲットを視準して得ら
れたターゲット像(楕円)と、光軸に対して直交するタ
−ゲットの像(円)を示す平面図である。
6 is a target image (ellipse) obtained by collimating a perfect circular target having an angle of θ with respect to the optical axis of the CCD camera of the measuring instrument 1 shown in FIG. It is a top view which shows the image (circle) of the target which does.

【図7】 図1に示す計測機1のCCDカメラで撮影し
たターゲットの中心の光軸方向のずれ量Δzを示す平面
図である。
7 is a plan view showing a deviation amount Δz in the optical axis direction of the center of the target taken by a CCD camera of the measuring instrument 1 shown in FIG.

【図8】 図1に示す計測機1のCCDカメラで撮影し
たタ−ゲットの、2点視準法により求めるターゲット面
の傾斜方向を示す斜視図および側面図である。
8A and 8B are a perspective view and a side view showing a tilt direction of a target surface obtained by a two-point collimation method of a target photographed by a CCD camera of the measuring instrument 1 shown in FIG.

【図9】 本発明の第1実施例における2点視準法の計
測手順の骨子を示すフローチャートである。
FIG. 9 is a flowchart showing the outline of the measurement procedure of the two-point collimation method in the first embodiment of the present invention.

【図10】 本発明で用いるターゲットの変形例を、図
1に示す計測機1のCCDカメラで撮影した画像を示す
平面図であり、(a)はタ−ゲットがCCDカメラに正
対向しているときの画像を、(b)は横向きのときの画
像を、(c)は傾めのときの画像を示す。
10 is a plan view showing an image taken by a CCD camera of the measuring instrument 1 shown in FIG. 1, showing a modified example of the target used in the present invention. FIG. 10 (a) shows that the target is directly opposed to the CCD camera. The image when the user is present, (b) shows the image in the horizontal direction, and (c) shows the image when tilted.

【図11】 図1に示す計測機1を原点とするターゲッ
ト中心点の三次元座標値Δx,Δy,Δzを示す斜視図
である。
11 is a perspective view showing three-dimensional coordinate values Δx, Δy, and Δz of a target center point whose origin is the measuring instrument 1 shown in FIG.

【図12】 測点の三次元座標値を算出するときの、図
1に示す計測機1のCCDカメラで撮影したタ−ゲット
の中心Cと測定Qの立体関係を示す平面図である。
12 is a plan view showing the three-dimensional relationship between the center C and the measurement Q of the target photographed by the CCD camera of the measuring instrument 1 shown in FIG. 1 when calculating the three-dimensional coordinate values of the measuring point.

【図13】 本発明の第1実施例におけるターゲットの
自動探索の手順を示すフローチャートである。
FIG. 13 is a flowchart showing a procedure of automatic target search in the first embodiment of the present invention.

【図14】 図1に示す計測機1のCCDカメラの視野
内に複数個のタ−ゲ−ットがあるときの、CCDカメラ
の撮影画面の一例を示す平面図である。
14 is a plan view showing an example of a photographing screen of the CCD camera when there are a plurality of targets in the field of view of the CCD camera of the measuring instrument 1 shown in FIG.

【図15】 本発明の第2実施例における、図1に示す
計測機1のCCDカメラで撮影したタ−ゲット像の中心
Cと測定Qの立体関係を示す平面図であり、(a)はC
CDカメラの光軸に直角な面25上のタ−ゲット像を示
し、(b)は基準平面X−Zと、面25と、面25と所
定の角度をなす面26との関係を示す平面図、(c)は
面26上のタ−ゲット像を示す平面図、(d)は(c)
に示す投影線TE28に沿った、タ−ゲット面7の断面
を示す平面図である。
15 is a plan view showing the three-dimensional relationship between the center C and the measurement Q of the target image taken by the CCD camera of the measuring instrument 1 shown in FIG. 1 in the second embodiment of the present invention, FIG. C
A target image on a plane 25 perpendicular to the optical axis of the CD camera is shown, and (b) is a plane showing the relationship between the reference plane X-Z, the plane 25, and the plane 26 forming a predetermined angle with the plane 25. Figure, (c) is a plan view showing the target image on the surface 26, (d) is (c)
FIG. 9 is a plan view showing a cross section of the target surface 7 taken along the projection line TE28 shown in FIG.

【符号の説明】[Explanation of symbols]

1:計測機 2:画像処理装置 3:モニター付きコンピュ−タ 4:携帯型コンピ
ュ−タ 5:コントローラー 6:ターゲット 7:ターゲット面(視準面) 8:基線 9a,9b,9c:基準点 9a:原点 10:計測対象物 11:計測対象
物の設計値の投影図 12:計測機A 13:計測機B 14:共通計測点 15:計測機Bによって計測できない測点 16:計測機Aによって計測できない測点 17:光軸に対してθの角度を持つターゲット像 18:ターゲット面の法線ベクトル 19:ターゲッ
トの側面 20:ターゲット像 21:ターゲッ
ト側面像 22:CCDカメラの視野(モニター画面) 23:視準面に着色されたターゲット像 24:測定対象ターゲット 25:平面A 26:平面B 27:径線CD 28:投影線TE
1: Measuring device 2: Image processing device 3: Computer with monitor 4: Portable computer 5: Controller 6: Target 7: Target plane (collimation plane) 8: Base line 9a, 9b, 9c: Reference point 9a : Origin 10: Measurement object 11: Projection drawing of design value of measurement object 12: Measuring machine A 13: Measuring machine B 14: Common measuring point 15: Measuring point which cannot be measured by measuring machine B 16: Measuring by measuring machine A Impossible measuring points 17: Target image with an angle of θ to the optical axis 18: Target surface normal vector 19: Target side surface 20: Target image 21: Target side surface image 22: CCD camera field of view (monitor screen) 23 : Target image colored on collimation surface 24: Target of measurement 25: Plane A 26: Plane B 27: Radial line CD 28: Projection line TE

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 G06T 7/00 // G06F 17/00 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location G06T 7/00 // G06F 17/00

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 計測対象物上の多数の測点に設けたター
ゲットを視準して、各測点の三次元座標値を計測するシ
ステムにおいて、 モーター駆動可能なCCDカメラで捉えた前記ターゲッ
ト上の視準点の位置を測距,測角する機能を備えた計測
機本体と、計測機本体のCCDカメラで捉えたターゲッ
トの画像を解析する画像処理装置と、計測条件の設定,
座標変換,解析を行うプログラムが作動するモニター付
きコンピューター等で構成された三次元計測システムを
用いて、計測対象物の設計寸法値または三次元設計座標
値をコンピューターに入力し、モニター画面で計測機の
設置可能範囲を求めた後、その範囲内に計測機を設置
し、 基準となる測点を実測して得られた座標値を基に基準座
標系を設定して各測点の三次元設計座標値の座標変換を
行い、その設計座標値を自動計測用の極座標値に変換
し、変換された極座標値で計測機のCCDカメラを駆動
し、各測点に取り付けられたターゲットを自動的に追尾
し、CCDカメラの光軸が測定対象ターゲット内に入っ
た状態で測距,測角を行うとともに画像処理装置にてタ
ーゲット像を解析し、視準点とターゲット像の図心との
ずれ量,ターゲット面の傾きとその方向,ターゲット像
の主軸とターゲット面上に記された基準の傾きを求め、
これらの値から視準点からターゲット中心点までの三次
元座標値および計測対象物上の測点の三次元座標値を求
めることを特徴する三次元座標自動計測解析法。
1. A system for measuring the three-dimensional coordinate values of each measuring point by collimating the targets provided at a large number of measuring points on an object to be measured, the target being captured by a CCD camera capable of driving a motor. Measuring instrument main body equipped with functions to measure and measure the position of the collimation point, image processing device that analyzes the image of the target captured by the CCD camera of the measuring instrument main body, measurement condition setting,
Using a three-dimensional measurement system consisting of a computer with a monitor that operates a program that performs coordinate conversion and analysis, input the design dimension values or three-dimensional design coordinate values of the measurement target into the computer, and then use the measurement screen on the monitor screen. After determining the installable range of the equipment, install a measuring machine within that area, set the reference coordinate system based on the coordinate values obtained by actually measuring the reference measurement points, and set the three-dimensional design of each measurement point. Performs coordinate conversion of the coordinate values, converts the design coordinate values to polar coordinate values for automatic measurement, drives the CCD camera of the measuring machine with the converted polar coordinate values, and automatically targets attached to each measurement point. Tracking, distance measurement and angle measurement are performed with the optical axis of the CCD camera inside the target to be measured, and the target image is analyzed by the image processing device, and the amount of deviation between the collimation point and the centroid of the target image is measured. , Target The inclination of the image plane and its direction, the main axis of the target image and the reference inclination described on the target plane are obtained,
A three-dimensional coordinate automatic measurement and analysis method, characterized in that the three-dimensional coordinate value from the collimation point to the target center point and the three-dimensional coordinate value of the measuring point on the measuring object are obtained from these values.
【請求項2】 ズーム機能付きCCDカメラを用いて、
その視野を拡大することによって視野内にターゲットを
捉え、そのターゲット像の画像処理を行ってターゲット
の視準面の色またはパターンから測定対象ターゲットを
識別し、CCDカメラの光軸と識別した測定対象ターゲ
ット像の図心との二次的なずれ量を画像解析によって求
め、計測機本体を駆動してCCDカメラの光軸を視野内
の該測定対象ターゲット内に入るように移動することを
特徴とする請求項1記載の三次元座標自動計測解析法。
2. Using a CCD camera with a zoom function,
By enlarging the field of view, the target is captured within the field of view, the target image is image-processed, and the measurement target is identified from the color or pattern of the collimation plane of the target, and the measurement target is identified as the optical axis of the CCD camera. A secondary displacement amount of the target image from the centroid is obtained by image analysis, and the main body of the measuring machine is driven to move the optical axis of the CCD camera so as to enter the target to be measured in the visual field. The three-dimensional coordinate automatic measurement and analysis method according to claim 1.
JP27254194A 1994-11-07 1994-11-07 3D coordinate automatic measurement analysis method Expired - Lifetime JP3210817B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27254194A JP3210817B2 (en) 1994-11-07 1994-11-07 3D coordinate automatic measurement analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27254194A JP3210817B2 (en) 1994-11-07 1994-11-07 3D coordinate automatic measurement analysis method

Publications (2)

Publication Number Publication Date
JPH08136218A true JPH08136218A (en) 1996-05-31
JP3210817B2 JP3210817B2 (en) 2001-09-25

Family

ID=17515343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27254194A Expired - Lifetime JP3210817B2 (en) 1994-11-07 1994-11-07 3D coordinate automatic measurement analysis method

Country Status (1)

Country Link
JP (1) JP3210817B2 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997012202A1 (en) * 1995-09-28 1997-04-03 Osaka Gas Information System Research Institute Co., Ltd. Structure measuring system
JP2002364175A (en) * 2001-06-05 2002-12-18 Kumagai Gumi Co Ltd Method of preparing member for interior or for facility and method of positioning it
US6559931B2 (en) 2001-02-08 2003-05-06 Nkk Corporation Three-dimensional (3-D) coordinate measuring method, 3-D coordinate measuring apparatus, and large-structure building method
JP2006329903A (en) * 2005-05-30 2006-12-07 Konica Minolta Sensing Inc Three-dimensional measuring method and three-dimensional measuring system
KR100684624B1 (en) * 2005-12-28 2007-02-22 삼성중공업 주식회사 System and method for measuring a big size panel
JP2007171092A (en) * 2005-12-26 2007-07-05 Ishikawajima Harima Heavy Ind Co Ltd Marker for three-dimensional measurement, and three-dimensional measurement method using the same
JP2010217018A (en) * 2009-03-17 2010-09-30 Sooki:Kk System for execution support of tunnel excavation using three-dimensional laser scanner
JP2010217017A (en) * 2009-03-17 2010-09-30 Sooki:Kk Method for execution of tunnel excavation construction using three-dimensional laser scanner
JP2011033438A (en) * 2009-07-31 2011-02-17 Taisei Corp System for checking accuracy of finishing type, and apparatus, and program and method for planning disposition of three-dimensional measurement machine
US8699006B2 (en) 2010-09-30 2014-04-15 Kabushiki Kaisha Topcon Measuring method and measuring instrument
JP2014077727A (en) * 2012-10-11 2014-05-01 Tobishima Corp Three-dimensional displacement measurement method and three-dimensional displacement measurement device
JP2014089211A (en) * 2014-01-14 2014-05-15 Sooki Co Ltd Tunnel cross-section measurement method using three-dimensional laser scanner
JP2014092387A (en) * 2012-11-01 2014-05-19 Yorigami Maritime Construction Co Ltd Automatic level surveying device having remote monitoring function, dredging method, pile driving method and block installation method
KR101408349B1 (en) * 2012-10-19 2014-06-17 대우조선해양 주식회사 Ship resetting method and coordinate measuring system for resetting ship
US8908169B2 (en) 2010-09-30 2014-12-09 Kabushiki Kaisha Topcon Measuring method and measuring instrument
JP2016200463A (en) * 2015-04-08 2016-12-01 大成建設株式会社 Measurement method using total station, and control device of total station
CN106247940A (en) * 2016-09-08 2016-12-21 大连理工大学 A kind of measuring method measuring molded line three-dimensional position at quarter
JP2018048509A (en) * 2016-09-23 2018-03-29 清水建設株式会社 Management method and management device for tunnel excavation
CN112784368A (en) * 2020-12-30 2021-05-11 北京航空航天大学 Adaptive shape measuring point planning method and system for surface features
JP2021085770A (en) * 2019-11-28 2021-06-03 東亜道路工業株式会社 Method, system and computer program for acquiring position information of mobile body
CN113237459A (en) * 2021-04-12 2021-08-10 机械工业第九设计研究院有限公司 Long-term monitoring method and monitoring system for building settlement
CN115508006A (en) * 2022-09-15 2022-12-23 中国船舶科学研究中心 Ship model gravity center and inertia testing method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103307976B (en) * 2013-04-16 2015-09-16 杭州先临三维科技股份有限公司 The monitoring method of grain stock in barn
CN104359415B (en) * 2014-10-31 2017-05-24 广东工业大学 Measuring method and system of angular deformation for line heating and cooling

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997012202A1 (en) * 1995-09-28 1997-04-03 Osaka Gas Information System Research Institute Co., Ltd. Structure measuring system
US5983166A (en) * 1995-09-28 1999-11-09 Komatsu Ltd. Structure measurement system
US6559931B2 (en) 2001-02-08 2003-05-06 Nkk Corporation Three-dimensional (3-D) coordinate measuring method, 3-D coordinate measuring apparatus, and large-structure building method
JP2002364175A (en) * 2001-06-05 2002-12-18 Kumagai Gumi Co Ltd Method of preparing member for interior or for facility and method of positioning it
JP2006329903A (en) * 2005-05-30 2006-12-07 Konica Minolta Sensing Inc Three-dimensional measuring method and three-dimensional measuring system
JP2007171092A (en) * 2005-12-26 2007-07-05 Ishikawajima Harima Heavy Ind Co Ltd Marker for three-dimensional measurement, and three-dimensional measurement method using the same
KR100684624B1 (en) * 2005-12-28 2007-02-22 삼성중공업 주식회사 System and method for measuring a big size panel
JP2010217018A (en) * 2009-03-17 2010-09-30 Sooki:Kk System for execution support of tunnel excavation using three-dimensional laser scanner
JP2010217017A (en) * 2009-03-17 2010-09-30 Sooki:Kk Method for execution of tunnel excavation construction using three-dimensional laser scanner
JP2011033438A (en) * 2009-07-31 2011-02-17 Taisei Corp System for checking accuracy of finishing type, and apparatus, and program and method for planning disposition of three-dimensional measurement machine
US8908169B2 (en) 2010-09-30 2014-12-09 Kabushiki Kaisha Topcon Measuring method and measuring instrument
US8699006B2 (en) 2010-09-30 2014-04-15 Kabushiki Kaisha Topcon Measuring method and measuring instrument
JP2014077727A (en) * 2012-10-11 2014-05-01 Tobishima Corp Three-dimensional displacement measurement method and three-dimensional displacement measurement device
KR101408349B1 (en) * 2012-10-19 2014-06-17 대우조선해양 주식회사 Ship resetting method and coordinate measuring system for resetting ship
JP2014092387A (en) * 2012-11-01 2014-05-19 Yorigami Maritime Construction Co Ltd Automatic level surveying device having remote monitoring function, dredging method, pile driving method and block installation method
JP2014089211A (en) * 2014-01-14 2014-05-15 Sooki Co Ltd Tunnel cross-section measurement method using three-dimensional laser scanner
JP2016200463A (en) * 2015-04-08 2016-12-01 大成建設株式会社 Measurement method using total station, and control device of total station
CN106247940A (en) * 2016-09-08 2016-12-21 大连理工大学 A kind of measuring method measuring molded line three-dimensional position at quarter
CN106247940B (en) * 2016-09-08 2018-06-08 大连理工大学 It is a kind of to measure the measuring method for carving molded line three-dimensional position
JP2018048509A (en) * 2016-09-23 2018-03-29 清水建設株式会社 Management method and management device for tunnel excavation
JP2021085770A (en) * 2019-11-28 2021-06-03 東亜道路工業株式会社 Method, system and computer program for acquiring position information of mobile body
CN112784368A (en) * 2020-12-30 2021-05-11 北京航空航天大学 Adaptive shape measuring point planning method and system for surface features
CN113237459A (en) * 2021-04-12 2021-08-10 机械工业第九设计研究院有限公司 Long-term monitoring method and monitoring system for building settlement
CN113237459B (en) * 2021-04-12 2022-10-11 机械工业第九设计研究院股份有限公司 Long-term monitoring method and monitoring system for building settlement
CN115508006A (en) * 2022-09-15 2022-12-23 中国船舶科学研究中心 Ship model gravity center and inertia testing method
CN115508006B (en) * 2022-09-15 2023-09-22 中国船舶科学研究中心 Ship model gravity center and inertia testing method

Also Published As

Publication number Publication date
JP3210817B2 (en) 2001-09-25

Similar Documents

Publication Publication Date Title
JP3210817B2 (en) 3D coordinate automatic measurement analysis method
US6559931B2 (en) Three-dimensional (3-D) coordinate measuring method, 3-D coordinate measuring apparatus, and large-structure building method
US9858712B2 (en) System and method capable of navigating and/or mapping any multi-dimensional space
US8060344B2 (en) Method and system for automatically performing a study of a multidimensional space
Madsen et al. Optimal landmark selection for triangulation of robot position
US6101268A (en) Method and apparatus for determining the configuration of a workpiece
US20190242971A1 (en) Relative Object Localization Process for Local Positioning System
JP2004508954A (en) Positioning device and system
WO2013059160A1 (en) Acquisition of information for a construction site
Cho et al. Target-focused local workspace modeling for construction automation applications
JP2980195B2 (en) Method and apparatus for measuring rebar diameter
JP2002090144A (en) Secular change monitoring system using automatic tracking total station and storage medium
JPH08254409A (en) Three-dimensional shape measuring and analyzing method
JP2001296124A (en) Method and apparatus for measurement of three- dimensional coordinates
JP2021039013A (en) Wall crack measuring machine and measuring method
JP2003114105A (en) Construction method for large structure
JPH06186036A (en) Three-dimensional location measuring system
JP4359083B2 (en) Surveying system
JP2001221636A (en) Three-dimensional coordinate measuring method and measuring device
JP3498250B2 (en) Automatic measuring device and method for long structures such as bridge girder
JP4276900B2 (en) Automatic survey system
JPH07113640A (en) Method and equipment for measuring attitude of excavator by laser distance measurement
Jankovic et al. Calibrating an active omnidirectional vision system
Pevzner et al. Construction Operation Assessment and Correction Using Laser Scanning and Projection Feedback
Vamossy et al. Environment mapping with laser-based and other sensors

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010626

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070713

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080713

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080713

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080713

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090713

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090713

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 10

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 10

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term