JPH08126214A - Method and circuit for measuring capacity of storage battery - Google Patents

Method and circuit for measuring capacity of storage battery

Info

Publication number
JPH08126214A
JPH08126214A JP6262361A JP26236194A JPH08126214A JP H08126214 A JPH08126214 A JP H08126214A JP 6262361 A JP6262361 A JP 6262361A JP 26236194 A JP26236194 A JP 26236194A JP H08126214 A JPH08126214 A JP H08126214A
Authority
JP
Japan
Prior art keywords
storage battery
voltage
power converter
circuit
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6262361A
Other languages
Japanese (ja)
Other versions
JP3075103B2 (en
Inventor
Takashi Yamashita
隆司 山下
Takashi Nakayama
貴 中山
Tsunehiro Sato
恒博 佐藤
Kazuo Takano
和夫 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
N T T FACILITIES KK
Nippon Telegraph and Telephone Corp
NTT Facilities Inc
Original Assignee
N T T FACILITIES KK
Nippon Telegraph and Telephone Corp
NTT Facilities Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by N T T FACILITIES KK, Nippon Telegraph and Telephone Corp, NTT Facilities Inc filed Critical N T T FACILITIES KK
Priority to JP06262361A priority Critical patent/JP3075103B2/en
Publication of JPH08126214A publication Critical patent/JPH08126214A/en
Application granted granted Critical
Publication of JP3075103B2 publication Critical patent/JP3075103B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Stand-By Power Supply Arrangements (AREA)

Abstract

PURPOSE: To provide a method and a circuit for measuring the capacity of a storage battery wherein a measurement requires a relatively short time, wherein feeding can be continued even if service interruption occurs during measurement, and wherein the degradation of specific cells will not be accelerated. CONSTITUTION: The present invention relates to an uninterruptible power supply system comprising a power converter 2 that is fed with power from an a.c or d.c. power supply 1 and outputs a required d.c. voltage to a load device 4; and a storage battery 3 that is connected to the output terminals of the power converter 2 in parallel, and that is floating-charged when the power converter 2 is in operation and supplies the load device 4 with power when the power converter 2 is out of operation. Thus the preset output voltage of the power converter 2 is reduced to a level at which the load device 4 is capable of properly operating. The storage battery 3 is thereby discharged, and its terminal voltage is measured. The time taken for the voltage to reach the discharge and voltage, is estimated based on the rate of the terminal voltage drop.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、交流または直流を入力
とする電力変換装置とバックアップ用蓄電池で構成され
る無停電給電システムにおいて、使用中の蓄電池容量を
測定するための、容量測定方法とその実現回路構成に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a capacity measuring method for measuring the capacity of a storage battery in use in an uninterruptible power supply system composed of an AC or DC power converter and a backup storage battery. The present invention relates to a circuit configuration for realizing it.

【0002】[0002]

【従来の技術】従来の容量試験方法を図9に示す。図9
において、1は交流または直流電源、2は電力変換装
置、3は蓄電池、4は負荷装置、5は切替スイッチ、6
は放電用定電流負荷である。本方法では、通常電力変換
装置2の出力端子に並列に接続されている蓄電池3を切
り離し、放電用定電流負荷6に接続することにより所定
の電流で放電させ、蓄電池3の端子電圧が放電終止電圧
に達するまでの時間を測定し、放電電流値Iと放電時間
tの積It(Ah)を求める。簡易的に行うには放電用
定電流負荷6は単なる抵抗を用いる場合もある。本方法
は蓄電池3の容量は正確に把握できるが、測定時間が長
くかかる上、測定中は蓄電池3が給電系から切り離され
るためこの時に停電が発生すると負荷装置4へ給電が継
続できないという欠点がある。負荷装置4が交換機や伝
送装置等の通信装置である場合は、本停電の影響は非常
に大きくなる。
2. Description of the Related Art A conventional capacity test method is shown in FIG. Figure 9
In the figure, 1 is an AC or DC power supply, 2 is a power conversion device, 3 is a storage battery, 4 is a load device, 5 is a changeover switch, and 6
Is a constant current load for discharge. In this method, the storage battery 3 that is normally connected in parallel to the output terminal of the power conversion device 2 is disconnected and connected to the constant current load 6 for discharging to discharge at a predetermined current, and the terminal voltage of the storage battery 3 ends discharge. The time to reach the voltage is measured, and the product It (Ah) of the discharge current value I and the discharge time t is obtained. For simplicity, the discharging constant-current load 6 may use a simple resistor. This method can accurately grasp the capacity of the storage battery 3, but it takes a long time to measure, and the storage battery 3 is disconnected from the power supply system during the measurement. Therefore, if a power failure occurs at this time, power supply to the load device 4 cannot be continued. is there. When the load device 4 is a communication device such as an exchange or a transmission device, the effect of this power failure is very large.

【0003】測定中に蓄電池が給電系から切り離される
という欠点を解決するため、従来、図10のような方法
も行われていた。図10において1〜4は図9と同様で
あり、7は最低電圧の電池セル、8は切替スイッチ、9
は放電用定電流負荷、10は放電した電池セルを再充電
する充電器、11は交流または直流電源である。図10
の方法では、蓄電池3の全てのセル電圧を予め測定して
おき、その中でも最も低い電圧のセルについて上記の様
な放電試験を行い、その放電電流値Iと放電時間tの積
It(Ah)を求めていた。本方法によると、複数のセ
ルで構成される蓄電池3の1セルのみの放電であるた
め、例え試験中に停電が発生したとしても、蓄電池3の
電圧は最大でセル1個分の電圧が低下するだけであり、
負荷装置4への給電を継続できる。
In order to solve the drawback that the storage battery is disconnected from the power supply system during measurement, a method as shown in FIG. 10 has been conventionally performed. 10, 1 to 4 are the same as those in FIG. 9, 7 is a battery cell having the lowest voltage, 8 is a changeover switch, and 9
Is a constant current load for discharging, 10 is a charger for recharging discharged battery cells, and 11 is an AC or DC power supply. Figure 10
In this method, all the cell voltages of the storage battery 3 are measured in advance, and the discharge test as described above is performed on the cell with the lowest voltage among them, and the product It (Ah) of the discharge current value I and the discharge time t. Was seeking. According to this method, since only one cell of the storage battery 3 composed of a plurality of cells is discharged, even if a power failure occurs during the test, the maximum voltage of the storage battery 3 is one cell lower. Just do
Power supply to the load device 4 can be continued.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、本方法
によっても測定時間の短縮は図れず、さらに予め全ての
セル電圧を計っておかなければならないという不便さが
ある。さらに本方法を繰り返し行うと、容量試験を実施
するセルが常に同じとなる傾向があり、容量が少なく劣
化し始めているセルの劣化をさらに早めるという欠点が
新たに発生する。
However, even with this method, the measurement time cannot be shortened and there is the inconvenience that all cell voltages must be measured in advance. Further, when the method is repeatedly performed, the cells on which the capacity test is performed tend to be the same all the time, and a new defect occurs in that the deterioration of cells whose capacity is low and is beginning to deteriorate is further accelerated.

【0005】本発明は上記の事情に鑑みてなされたもの
で、比較的短時間で測定でき、測定中に停電が発生して
も給電を継続でき、さらに特定の電池セルの劣化を早め
ることのない蓄電池容量測定方法及び回路を提供するこ
とを目的とする。
The present invention has been made in view of the above circumstances, and enables measurement in a relatively short time, power supply to be continued even if a power failure occurs during measurement, and further deterioration of a specific battery cell can be accelerated. An object of the present invention is to provide a storage battery capacity measuring method and circuit.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に本発明の蓄電池容量測定方法は、交流電源または直流
電源を入力として負荷装置に必要な直流電圧を出力する
電力変換装置、及び電力変換装置出力端子に並列に接続
され電力変換装置動作時は浮動充電され電力変換装置停
止時は負荷に電力を供給する蓄電池によって構成される
無停電給電システムにおいて、電力変換装置の出力設定
電圧を負荷装置が正常動作を維持できる電圧まで低下さ
せ、蓄電池を放電状態にしてその端子電圧を測定し、そ
の端子電圧の低下速度により放電終止電圧に至る時間を
推定する。
In order to achieve the above object, a storage battery capacity measuring method of the present invention comprises a power converter for inputting an AC power supply or a DC power supply and outputting a DC voltage required for a load device, and a power conversion. In an uninterruptible power supply system that is connected in parallel to the device output terminals and is floatingly charged when the power conversion device is operating and that supplies power to the load when the power conversion device is stopped, the output set voltage of the power conversion device is set to the load device. The battery voltage is reduced to a level at which the battery can maintain normal operation, the storage battery is discharged, the terminal voltage is measured, and the time to reach the discharge end voltage is estimated from the rate of decrease of the terminal voltage.

【0007】又、本発明の蓄電池容量測定方法は、前記
蓄電池容量測定方法において、蓄電池放電状態における
端子電圧を、測定時の電池温度から基準温度における電
圧に、測定時の電池放電電流から基準放電電流における
電圧に、それぞれ補正した後、その補正後の端子電圧の
低下速度により放電終止電圧に至る時間を推定する。
The storage battery capacity measuring method of the present invention is the storage battery capacity measuring method, wherein the terminal voltage in the storage battery discharging state is changed from the battery temperature at the time of measurement to the voltage at the reference temperature, and from the battery discharge current at the time of measurement to the reference discharge. After correcting each of the voltages in the current, the time to reach the discharge end voltage is estimated from the rate of decrease of the terminal voltage after the correction.

【0008】又、本発明の蓄電池容量測定回路は、交流
電源または直流電源を入力として負荷装置に必要な直流
電圧を出力する電力変換装置、及び電力変換装置出力端
子に並列に接続され電力変換装置動作時は浮動充電され
電力変換装置停止時は負荷に電力を供給する蓄電池によ
って構成される無停電給電システムにおいて、電力変換
装置の出力電圧を低下させる手段と、蓄電池端子電圧を
測定する手段と、外部信号をトリガとして電力変換装置
の出力電圧を低下させる信号と出力電圧低下信号発生期
間中に異なる2つの時間にタイミング信号を発生するタ
イミング信号発生回路と、前記タイミング信号によって
蓄電池端子電圧信号を通過させるゲート回路と、ゲート
回路出力信号を記憶するメモリ回路と、メモリ回路のデ
ータを基に残放電時間を求める演算回路とを具備するこ
とを特徴とするものである。
Further, the storage battery capacity measuring circuit of the present invention is a power conversion device which is connected in parallel to a power conversion device which outputs a DC voltage required for a load device by inputting an AC power supply or a DC power supply, and a power conversion device which is connected in parallel. In an uninterruptible power supply system configured by a storage battery that is floatingly charged during operation and that supplies power to a load when the power conversion device is stopped, means for lowering the output voltage of the power conversion device, and means for measuring the storage battery terminal voltage, A signal that lowers the output voltage of the power conversion device using an external signal as a trigger and a timing signal generation circuit that generates a timing signal at two different times during the output voltage reduction signal generation period, and a storage battery terminal voltage signal passes by the timing signal. Gate circuit, memory circuit that stores the gate circuit output signal, and residual discharge based on the data in the memory circuit It is characterized in that it comprises an arithmetic circuit for finding between.

【0009】又、本発明の蓄電池容量測定回路は、交流
電源または直流電源を入力として負荷装置に必要な直流
電圧を出力する電力変換装置、及び電力変換装置出力端
子に並列に接続され電力変換装置動作時は浮動充電され
電力変換装置停止時は負荷に電力を供給する蓄電池によ
って構成される無停電給電システムにおいて、電力変換
装置の出力電圧を低下させる手段と、蓄電池端子電圧、
蓄電池放電電流、蓄電池温度をそれぞれ測定する手段
と、外部信号をトリガとして電力変換装置の出力電圧を
低下させる信号と出力電圧低下信号発生期間中に異なる
2つの時間にタイミング信号を発生するタイミング信号
発生回路と、前記タイミング信号によって蓄電池端子電
圧、蓄電池放電電流、蓄電池温度信号を通過させるゲー
ト回路と、ゲート回路出力信号を記憶するメモリ回路
と、メモリ回路のデータを基に残放電時間を求める演算
回路とを具備することを特徴とするものである。
Further, the storage battery capacity measuring circuit of the present invention includes a power converter that inputs an AC power supply or a DC power supply and outputs a DC voltage required for a load device, and a power converter connected in parallel to a power converter output terminal. In an uninterruptible power supply system configured by a storage battery that is floatingly charged during operation and that supplies power to a load when the power conversion device is stopped, a means for lowering the output voltage of the power conversion device, a storage battery terminal voltage,
Means for measuring the storage battery discharge current and the storage battery temperature respectively, a signal for lowering the output voltage of the power conversion device by using an external signal as a trigger, and a timing signal generation for generating timing signals at two different times during the output voltage reduction signal generation period A circuit, a gate circuit that passes a storage battery terminal voltage, a storage battery discharge current, and a storage battery temperature signal according to the timing signal, a memory circuit that stores a gate circuit output signal, and an arithmetic circuit that determines the remaining discharge time based on the data of the memory circuit And is provided.

【0010】[0010]

【作用】上記手段により本発明は、無停電電源システム
に組み込まれた蓄電池を切り離すことなく、電力変換装
置の出力電圧を負荷装置が許容する範囲で低下させ、実
際の負荷装置を用いて蓄電池を短時間放電させ、その低
下速度から蓄電池容量を求めることを主要な特徴とす
る。従来の技術において、別の放電用負荷を用い、放電
終止電圧まで放電試験していた所が異なっている。
With the above-mentioned means, the present invention reduces the output voltage of the power converter within the range permitted by the load device without disconnecting the storage battery incorporated in the uninterruptible power supply system, and uses the actual load device to store the storage battery. The main feature is that the storage battery capacity is obtained from the rate of decrease by discharging for a short time. The conventional technique is different in that the discharge test is performed up to the discharge end voltage by using another discharge load.

【0011】[0011]

【実施例】以下図面を参照して本発明の実施例を詳細に
説明する。 [実施例1]図1、図2は請求項1に対応する実施例で
あって、図1は構成説明図、図2は動作を説明すると特
性図である。図1において、1は交流または直流電源、
2は電力変換装置、3は蓄電池、4は負荷装置であり、
図2において、VF は浮動充電電圧(電力変換装置定常
時出力設定電圧)、VE は放電終止電圧(負荷装置許容
最低入力電圧)、t1 ,t2 は実放電時間、V1 ,V2
は実放電時間における蓄電池端子電圧、VA は電力変換
装置出力低下時設定電圧である。
Embodiments of the present invention will now be described in detail with reference to the drawings. [Embodiment 1] FIGS. 1 and 2 show an embodiment corresponding to claim 1. FIG. 1 is a structural explanatory view, and FIG. 2 is a characteristic diagram for explaining the operation. In FIG. 1, 1 is an AC or DC power supply,
2 is a power converter, 3 is a storage battery, 4 is a load device,
In FIG. 2, V F is a floating charging voltage (power converter constant output setting voltage), V E is discharge end voltage (load device allowable minimum input voltage), t 1 and t 2 are actual discharge times, and V 1 and V 2
Is the storage battery terminal voltage at the actual discharge time, and V A is the set voltage when the power converter output decreases.

【0012】本実施例における動作を説明する。まず定
常動作時は図1(a)に示すように、交流または直流電
源1を入力として電力変換装置2が出力電圧VF (図2
における浮動充電電圧)を出力し、蓄電池3を浮動充電
しながら、負荷装置4に電力を供給している。電力変換
装置2の出力電圧は、入力交流または直流電源1の電圧
が変動したり出力電流が変動した場合でも常に一定電圧
F を出力できるような安定化機能を有している。この
ような構成で交流または直流電源1からの給電が一定時
間以上(通常24時間以上)継続している場合は、蓄電
池3は満充電状態であるため、蓄電池3の充電電流(浮
動充電電流)は僅かであり、電力変換装置2の出力する
電流の大部分は負荷電流として負荷装置4に供給されて
いる。
The operation of this embodiment will be described. First, at the time of steady operation, as shown in FIG. 1A, the power converter 2 receives an output voltage V F (see FIG.
The floating charging voltage in 1) is output to supply the electric power to the load device 4 while floating charging the storage battery 3. The output voltage of the power conversion device 2 has a stabilizing function such that a constant voltage V F can always be output even when the voltage of the input AC or DC power supply 1 changes or the output current changes. In such a configuration, when the power supply from the AC or DC power supply 1 continues for a certain time or more (normally 24 hours or more), the storage battery 3 is in a fully charged state, and thus the charging current (floating charging current) of the storage battery 3 Is small, and most of the current output from the power conversion device 2 is supplied to the load device 4 as a load current.

【0013】次に、図1(b)のように電力変換装置2
の出力設定電圧をVA (図2における出力低下時設定電
圧)に低下する。ただしVA は蓄電池3の放電終止電圧
すなわち負荷装置許容最低入力電圧VE より高い値とす
る。電力変換装置2は一定電圧VA を出力するため、蓄
電池3の端子電圧の方が高くなり、負荷装置4へは蓄電
池3から電力を供給する。この状態で蓄電池3の端子電
圧を測定すると、電力変換装置2からは給電されないた
め、蓄電池3の放電特性(図2)がそのまま表れる。こ
こで時間t1 と時間t2 において蓄電池電圧V1 とV2
を測定すると、放電終止電圧VE に至る時間tE は、放
電電圧特性がほぼ直線的に低下するとして以下の式で求
められる。
Next, as shown in FIG. 1B, the power converter 2
Reducing the output setting voltage V A (when the output reduction of 2 set voltage). However, V A is set to a value higher than the discharge end voltage of the storage battery 3, that is, the load device allowable minimum input voltage V E. Since the power conversion device 2 outputs a constant voltage V A , the terminal voltage of the storage battery 3 becomes higher, and the storage battery 3 supplies power to the load device 4. When the terminal voltage of the storage battery 3 is measured in this state, power is not supplied from the power conversion device 2, and therefore the discharge characteristic (FIG. 2) of the storage battery 3 appears as it is. Here, at time t 1 and time t 2 , the storage battery voltages V 1 and V 2
When measuring the time t E to reach the discharge end voltage V E is obtained by the following equation as the discharge voltage characteristics decreases almost linearly.

【0014】tE =t1 +{(VE −V1 )/(V2
1 )}(t2 −t1 ) 時間t1 としては放電開始後30秒〜5分程度、t2
しては蓄電池全放電量の30%程度以下の放電時間(例
えば10時間率の放電であれば3時間以内)を用いる。
T E = t 1 + {(V E −V 1 ) / (V 2
V 1 )} (t 2 −t 1 ) Time t 1 is about 30 seconds to 5 minutes after the start of discharge, and t 2 is a discharge time of about 30% or less of the total discharge amount of the storage battery (for example, at a discharge rate of 10 hours). Use within 3 hours if available).

【0015】また蓄電池容量Qは、負荷電流の平均値I
を用いて、 Q=I・tE で求められる。なおここで測定時刻は2ポイントで例示
したが、t1 〜t2 の間を分割して3ポイント以上測定
して、放電電圧特性カーブをより正確に推定することも
可能である。
The storage battery capacity Q is the average value I of the load current.
Is calculated by the following equation: Q = I · t E. Note here measurement time has been illustrated in two points, as measured over 3 points is divided between t 1 ~t 2, it is also possible to estimate the discharge voltage characteristics curves more precisely.

【0016】以上のように動作することによって、蓄電
池3の容量を比較的短時間で推定することができる。蓄
電池3は測定中も給電系から切り離されていないため、
測定中に停電が発生したとしても負荷装置4への給電を
継続できる特徴がある。また万一蓄電池3の容量が劣化
等によって著しく低下していた場合にも、停電状態でな
い限り電力変換装置2が負荷装置4の許容最低入力電圧
以上の電圧を出力し、負荷装置4への給電を継続するの
で、給電を停止することはない。従って本実施例による
と、従来例と比べて、給電系の高信頼度を維持しながら
蓄電池の容量測定ができるという特徴がある。また別の
従来例で示したような、個々の電池セルの電圧を予め測
定しておく煩雑さや、特定の電池セルの劣化を早めるこ
ともない。 [実施例2]図3、図4は請求項2の動作を説明する図
である。本実施例における動作は、実施例1と同様に、
まず定常動作時は図1(a)に示すように、交流または
直流電源1を入力として電力変換装置2が一定の出力電
圧VF (図2における浮動充電電圧)を出力し、蓄電池
3を浮動充電しながら、負荷装置4に電力を供給してい
る。次に、図1(b)のように電力変換装置2の出力設
定電圧をVA (図2における出力低下時設定電圧)に低
下する。電力変換装置2は一定電圧VA を出力するた
め、蓄電池3の端子電圧の方が高くなり、負荷装置4へ
は蓄電池3から電力を供給する。この状態で蓄電池3の
端子電圧を測定すると、電力変換装置2からは給電され
ないため、蓄電池3の放電特性(図2)がそのまま表れ
る。ここで時間t1 と時間t2 において蓄電池電圧V1
とV2 、放電電流I1 とI2 、電池温度T1 とT2 を測
定する。蓄電池電圧は温度や放電電流によってそれぞれ
図3、図4のように変化するため、検出した蓄電池電圧
1 ,V2 を以下の式で基準温度と基準放電電流におけ
る値V10,V20に補正する。以下の式は蓄電池電圧が温
度や放電電流に対してリニアに変化した場合を想定して
いる。
By operating as described above, the capacity of the storage battery 3 can be estimated in a relatively short time. Since the storage battery 3 is not disconnected from the power feeding system during measurement,
Even if a power failure occurs during the measurement, the power supply to the load device 4 can be continued. In addition, even if the capacity of the storage battery 3 is significantly reduced due to deterioration or the like, the power conversion device 2 outputs a voltage equal to or higher than the allowable minimum input voltage of the load device 4 and the power is supplied to the load device 4 unless a power failure occurs. Since it continues, power supply is not stopped. Therefore, according to this embodiment, the capacity of the storage battery can be measured while maintaining the high reliability of the power feeding system, as compared with the conventional example. Further, unlike the case of another conventional example, the complexity of previously measuring the voltage of each battery cell and the deterioration of a specific battery cell are not accelerated. [Embodiment 2] FIGS. 3 and 4 are diagrams for explaining the operation of the present invention. The operation of this embodiment is similar to that of the first embodiment.
First, during steady operation, as shown in FIG. 1A, the power converter 2 outputs a constant output voltage V F (floating charging voltage in FIG. 2) with the AC or DC power supply 1 as an input, and the storage battery 3 floats. While charging, the load device 4 is supplied with power. Next, as shown in FIG. 1B, the output setting voltage of the power conversion device 2 is reduced to V A (setting voltage when the output is reduced in FIG. 2). Since the power conversion device 2 outputs a constant voltage V A , the terminal voltage of the storage battery 3 becomes higher, and the storage battery 3 supplies power to the load device 4. When the terminal voltage of the storage battery 3 is measured in this state, power is not supplied from the power conversion device 2, and therefore the discharge characteristic (FIG. 2) of the storage battery 3 appears as it is. Here, at time t 1 and time t 2 , the storage battery voltage V 1
And V 2 , discharge currents I 1 and I 2 , and battery temperatures T 1 and T 2 are measured. Since the storage battery voltage changes as shown in FIGS. 3 and 4 depending on the temperature and the discharge current, respectively, the detected storage battery voltages V 1 and V 2 are corrected to the values V 10 and V 20 at the reference temperature and the reference discharge current by the following formulas. To do. The following formula assumes that the storage battery voltage changes linearly with temperature and discharge current.

【0017】V10=V1 /{1+α(T1 −T0 )−β
(I1 −I0 )} V20=V2 /{1+α(T2 −T0 )−β(I2 −I
0 )} ここで、α,βはそれぞれ温度、放電電流に対する電圧
変化の比例定数であり、例えば1000Ahのシール鉛
蓄電池で10時間率〜5時間率の放電条件においてα=
0.5mV/deg、β=1mV/A程度である。
V 10 = V 1 / {1 + α (T 1 -T 0 ) -β
(I 1 −I 0 )} V 20 = V 2 / {1 + α (T 2 −T 0 ) −β (I 2 −I
0 )} where α and β are proportional constants of voltage change with respect to temperature and discharge current, for example, in a sealed lead acid battery of 1000 Ah, under a discharge condition of 10 hours to 5 hours, α =
It is about 0.5 mV / deg and β = 1 mV / A.

【0018】次に、放電終止電圧VE に至る時間tE
以下の式で求められる。 tE =t1 +{(VE −V10)/(V20−V10)}(t
2 −t1 ) t1 ,t2 の値は実施例1と同様である。
Next, the time t E to reach the discharge end voltage V E is calculated by the following equation. t E = t 1 + {(V E −V 10 ) / (V 20 −V 10 )} (t
The values of 2- t 1 ) t 1 and t 2 are the same as in the first embodiment.

【0019】また蓄電池容量Qは、負荷電流の平均値I
を用いて、 Q=I・t で求められる。なお測定点(時刻)を増加して放電カー
ブをより正確に表現することや、温度と放電電流に対す
る電圧の補正について他の方法を用いることも可能であ
る。
The storage battery capacity Q is the average value I of the load current.
Is calculated as follows: Q = I · t E It is also possible to increase the number of measurement points (time) to express the discharge curve more accurately, or to use another method for correcting the voltage with respect to the temperature and the discharge current.

【0020】以上のように動作することによって、温度
や負荷電流が変化した場合においても、蓄電池の容量を
比較的短時間で推定することができる。また本実施例に
よると、実施例1と同様に、従来例と比べて、給電系の
高信頼度を維持しながら蓄電池の容量測定ができ、また
個々の電池セルの電圧を予め測定しておく煩雑さや、特
定の電池セルの劣化を早めることもないという特徴があ
る。 [実施例3]図5は請求項3に対応した実施例の構成説
明図、図7は図5の各部の動作波形図を示している。図
5において、1は交流または直流電源、2は電力変換装
置、3は蓄電池、4は負荷装置、12は電力変換装置入
力端子、13は整流・平滑部、14はインバータ部、1
5はトランス、16は整流・平滑部、17は電力変換装
置出力端子、18は比較器、19は誤差増幅器、20は
発振器、21は基準電圧、22,23は抵抗、24は容
量試験回路、25は測定開始トリガ信号入力端子、26
は放電時間出力端子、27は測定トリガを入力として基
準電圧を変化させる信号bとメモリへのデータ取込みタ
イミングを指定する信号cを出力するタイミング信号発
生回路、28はタイミング信号発生回路出力信号cで指
定された時刻に蓄電池電圧データを取り込むためのゲー
ト回路、29はタイミング信号発生回路出力信号cで指
定された時刻とその蓄電池電圧データを記憶するメモリ
回路、30はメモリ回路に記憶された時刻および電圧デ
ータをもとに放電残時間を算出する演算回路である。
By operating as described above, the capacity of the storage battery can be estimated in a relatively short time even when the temperature or the load current changes. Further, according to the present embodiment, similarly to the first embodiment, the capacity of the storage battery can be measured while maintaining the high reliability of the power feeding system, and the voltage of each battery cell is measured in advance as compared with the conventional example. It is not complicated and does not accelerate deterioration of a specific battery cell. [Embodiment 3] FIG. 5 is an explanatory view of the construction of an embodiment corresponding to claim 3, and FIG. 7 is an operation waveform chart of each portion of FIG. In FIG. 5, 1 is an AC or DC power supply, 2 is a power converter, 3 is a storage battery, 4 is a load device, 12 is a power converter input terminal, 13 is a rectifying / smoothing unit, 14 is an inverter unit, 1
5 is a transformer, 16 is a rectifying / smoothing unit, 17 is a power converter output terminal, 18 is a comparator, 19 is an error amplifier, 20 is an oscillator, 21 is a reference voltage, 22 and 23 are resistors, 24 is a capacitance test circuit, 25 is a measurement start trigger signal input terminal, 26
Is a discharge time output terminal, 27 is a timing signal generating circuit for outputting a signal b for changing the reference voltage with the measurement trigger as an input and a signal c for specifying the timing of data acquisition to the memory, and 28 is a timing signal generating circuit output signal c. A gate circuit for fetching the storage battery voltage data at a designated time, 29 is a memory circuit for storing the time designated by the timing signal generating circuit output signal c and the storage battery voltage data, and 30 is a time stored in the memory circuit and This is an arithmetic circuit that calculates the remaining discharge time based on the voltage data.

【0021】図5の動作を説明する。電力変換装置2の
内部では、交流または直流電源1の入力を整流・平滑部
13で直流電圧に変換後、インバータ部14で高周波交
流電圧に変換してトランス15で昇降圧し、整流・平滑
部16で直流電圧に変換して出力される。出力電圧は抵
抗22,23で分圧した後、誤差増幅器19で基準電圧
21と比較される。誤差増幅器19の出力は発振器20
の鋸歯状波等と比較器18で比較され、パルス信号とな
ってインバータ部14の内部スイッチ素子を駆動する。
入力電圧や出力電流が変動しても、電力変換装置出力電
圧VOU は、基準電圧Vr と抵抗R1 ,R2 で決ま
る VOUT =(R1 +R2 )Vr /R2 の値で一定に保たれる。浮動充電時においてはこのV
OUT がVF (図2に示す浮動充電電圧)である。
The operation of FIG. 5 will be described. Inside the power conversion device 2, after the input of the AC or DC power supply 1 is converted into a DC voltage by the rectification / smoothing unit 13, it is converted into a high frequency AC voltage by the inverter unit 14 and stepped up / down by the transformer 15, and the rectification / smoothing unit 16 is used. Is converted into a DC voltage and output. The output voltage is divided by the resistors 22 and 23, and then compared with the reference voltage 21 by the error amplifier 19. The output of the error amplifier 19 is the oscillator 20.
Is compared with a saw-tooth wave and the like in the comparator 18 and becomes a pulse signal to drive the internal switch element of the inverter unit 14.
Even when the input voltage or the output current is varied, the power converter output voltage VOU T is determined by the reference voltage V r resistors R 1, R 2 V OUT = (R 1 + R 2) with a value of V r / R 2 Is kept constant. When floating charging, this V
OUT is V F (floating charging voltage shown in FIG. 2).

【0022】一方容量試験回路では、図7で示すよう
に、外部からの入力トリガ信号aにより、タイミング信
号発生回路27が基準電圧21を低下させる信号bを発
生し、基準電圧を出力電圧VOUT が図2に示すVA にな
るよう変化させる。なお出力電圧VOUT を低下させる手
段は、基準電圧を変化させるだけでなく、出力電圧検出
側の抵抗R1 ,R2 を変化させることによっても実現で
きる。これにより電力変換装置2の出力電圧より蓄電池
3の電圧の方が高くなり、蓄電池3より負荷装置4へ電
力が供給され、蓄電池3は放電を開始する。タイミング
信号発生回路27は、端子25の外部トリガ信号入力か
らt1 およびt2 経過後にゲート回路28を動作させ、
メモリ回路29に蓄電池電圧V1 ,V2 と時間t1 ,t
2 が取り込まれる。演算回路30はV1 ,V2 ,t1
2 の値より、実施例1で示した方法によって、放電終
止電圧VE に至る時間tE を求める。なお測定時刻につ
いては2ポイントで示したが、より多くの測定時刻を設
定しても、本構成によって実現可能である。
On the other hand, in the capacitance test circuit, as shown in FIG. 7, the timing signal generating circuit 27 generates the signal b for lowering the reference voltage 21 by the input trigger signal a from the outside, and the reference voltage is output to the output voltage V OUT. Is changed to V A shown in FIG. The means for lowering the output voltage V OUT can be realized not only by changing the reference voltage but also by changing the resistors R 1 and R 2 on the output voltage detecting side. As a result, the voltage of the storage battery 3 becomes higher than the output voltage of the power conversion device 2, power is supplied from the storage battery 3 to the load device 4, and the storage battery 3 starts discharging. The timing signal generation circuit 27 operates the gate circuit 28 after t 1 and t 2 have elapsed from the input of the external trigger signal to the terminal 25,
In the memory circuit 29, the storage battery voltages V 1 and V 2 and the times t 1 and t
2 is captured. The arithmetic circuit 30 has V 1 , V 2 , t 1 ,
From the value of t 2 , the time t E to reach the discharge end voltage V E is obtained by the method shown in the first embodiment. It should be noted that the measurement time is shown by two points, but it can be realized by this configuration even if more measurement times are set.

【0023】以上のように動作することによって、蓄電
池の容量を比較的短時間で推定することができる。また
本実施例によると、従来例と比べて、給電系の高信頼度
を維持しながら蓄電池の容量測定ができ、また個々の電
池セルの電圧を予め測定しておく煩雑さや、特定の電池
セルの劣化を早めることもないという特徴がある。 [実施例4]図6は請求項4に対応した実施例の構成説
明図、図8は図6の各部の動作波形図を示している。図
6において1〜25および27は図5と同様であり、3
1は放電時間および蓄電池容量出力端子、32は蓄電池
電流検出回路、33は蓄電池温度検出回路、34はタイ
ミング信号発生回路出力信号cで指定された時刻に蓄電
池電圧、蓄電池放電電流、蓄電池温度データを取り込む
ためのゲート回路、35はタイミング信号発生回路出力
信号cで指定された時刻とその蓄電池電圧、蓄電池放電
電流、蓄電池温度データを記憶するメモリ回路、36は
メモリ回路に記憶された時刻、電圧、電流、温度データ
をもとに放電残時間や容量を算出する演算回路である。
ここで蓄電池電流検出回路32は蓄電池電流を直接測定
するよう記載したが、負荷電流と電力変換回路出力電流
を測定してその差分を求めること、あるいは電力変換回
路出力電流がほぼ0として、測定した負荷電流をそのま
ま用いることによっても実現できることは言うまでもな
い。
By operating as described above, the capacity of the storage battery can be estimated in a relatively short time. Further, according to the present embodiment, as compared with the conventional example, the capacity of the storage battery can be measured while maintaining the high reliability of the power supply system, and the complexity of previously measuring the voltage of each battery cell and the specific battery cell The feature is that it does not accelerate the deterioration of. [Embodiment 4] FIG. 6 is an explanatory view of the structure of an embodiment corresponding to claim 4, and FIG. 8 is an operation waveform diagram of each portion of FIG. 6, 1 to 25 and 27 are the same as those in FIG.
1 is a discharge time and a storage battery capacity output terminal, 32 is a storage battery current detection circuit, 33 is a storage battery temperature detection circuit, 34 is a storage battery voltage, a storage battery discharge current, and a storage battery temperature data at the time designated by the timing signal generation circuit output signal c. A gate circuit for taking in, 35 is a memory circuit for storing the time designated by the timing signal generating circuit output signal c and its storage battery voltage, storage battery discharge current, storage battery temperature data, and 36 is the time, voltage stored in the memory circuit, This is an arithmetic circuit that calculates the remaining discharge time and the capacity based on the current and temperature data.
Although the storage battery current detection circuit 32 is described as directly measuring the storage battery current here, it is measured by measuring the load current and the output current of the power conversion circuit and obtaining the difference between them, or by measuring the output current of the power conversion circuit as almost zero. It goes without saying that it can be realized by using the load current as it is.

【0024】図6の動作のうち電力変換装置2の内部の
動作は図5と同様であり、容量試験回路24では、図8
で示すように、外部からの入力トリガ信号aにより、タ
イミング信号発生回路27が基準電圧21を低下させる
信号bを発生し、基準電圧を出力電圧VOUT が図2に示
すVA になるよう変化させる。なお出力電圧VOUT を低
下させる手段は、実施例3でも述べたように、基準電圧
を変化させるだけでなく、出力電圧検出側の抵抗R1
2 を変化させることによっても実現できる。これによ
り電力変換装置出力電圧より蓄電池電圧の方が高くな
り、蓄電池3より負荷装置4へ電力が供給され、蓄電池
3は放電を開始する。タイミング信号発生回路27は、
端子25の外部トリガ信号入力からt1 およびt2 経過
後にゲート回路34を動作させ、メモリ回路35に蓄電
池電圧V1 ,V2 、蓄電池放電電流I1 ,I2 、蓄電池
温度T1 ,T2 と時間t1 ,t2 が取り込まれる。演算
回路36はV1 ,V2 ,I1 ,I2 ,T1 ,T2 ,t
1 ,t2 の値より、実施例2で示した方法によって、放
電終止電圧VE に至る時間tE を求める。なお測定時刻
については2ポイントで示したが、より多くの測定時刻
を設定しても、本構成によって実現可能である。
Among the operations shown in FIG. 6, the internal operation of the power conversion device 2 is the same as that shown in FIG.
2, the timing signal generating circuit 27 generates the signal b for lowering the reference voltage 21 by the input trigger signal a from the outside, and the reference voltage is changed so that the output voltage V OUT becomes V A shown in FIG. Let The means for lowering the output voltage V OUT is not only to change the reference voltage, as described in the third embodiment, but also to the resistance R 1 on the output voltage detecting side,
It can also be realized by changing R 2 . As a result, the storage battery voltage becomes higher than the power converter output voltage, the storage battery 3 supplies power to the load device 4, and the storage battery 3 starts discharging. The timing signal generation circuit 27
The gate circuit 34 is operated after the lapse of t 1 and t 2 from the input of the external trigger signal to the terminal 25, and the storage battery voltages V 1 and V 2 , the storage battery discharge currents I 1 and I 2 , the storage battery temperatures T 1 and T 2 are stored in the memory circuit 35. And the times t 1 and t 2 are captured. The arithmetic circuit 36 includes V 1 , V 2 , I 1 , I 2 , T 1 , T 2 , and t.
From the values of 1 and t 2 , the time t E to reach the discharge end voltage V E is obtained by the method shown in the second embodiment. It should be noted that the measurement time is shown by two points, but it can be realized by this configuration even if more measurement times are set.

【0025】以上のように動作することによって、温度
や負荷電流が変化した場合においても、蓄電池の容量を
比較的短時間で推定することができる。また本実施例に
よると、実施例3と同様に、従来例と比べて、給電系の
高信頼度を維持しながら蓄電池の容量測定ができ、また
個々の電池セルの電圧を予め測定しておく煩雑さや、特
定の電池セルの劣化を早めることもないという特徴があ
る。
By operating as described above, the capacity of the storage battery can be estimated in a relatively short time even when the temperature or the load current changes. Further, according to the present embodiment, as in the case of the third embodiment, the capacity of the storage battery can be measured while maintaining the high reliability of the power feeding system, and the voltage of each battery cell is measured in advance as compared with the conventional example. It is not complicated and does not accelerate deterioration of a specific battery cell.

【0026】[0026]

【発明の効果】以上述べたように本発明によれば、蓄電
池の容量を比較的短時間で推定することができると共
に、蓄電池は測定中も給電系から切り離されていないた
め、測定中に停電が発生したとしても負荷装置への給電
を継続できる特徴がある。また万一蓄電池の容量が劣化
等によって著しく低下していた場合にも、停電状態でな
い限り電力変換装置が負荷の許容入力電圧以上の電圧を
出力し、負荷への給電を継続するので、給電を停止する
ことはない。さらに本発明は別の従来例で示したよう
な、個々の電池セルの電圧を予め測定しておく煩雑さ
や、特定の電池セルの劣化を早めることもない。従って
本発明によると、高信頼な給電システムを、メンテナン
スに多くの稼働をかけることなく、経済的に構成できる
という特徴がある。
As described above, according to the present invention, the capacity of the storage battery can be estimated in a relatively short time, and the storage battery is not disconnected from the power supply system even during the measurement, so that a power failure occurs during the measurement. Even if this occurs, there is a feature that power supply to the load device can be continued. In addition, even if the capacity of the storage battery is significantly reduced due to deterioration, etc., the power converter outputs a voltage higher than the allowable input voltage of the load and continues to supply power to the load unless power failure occurs. There is no stopping. Furthermore, the present invention does not accelerate the deterioration of a specific battery cell and the complexity of previously measuring the voltage of each battery cell as shown in another conventional example. Therefore, according to the present invention, a highly reliable power supply system can be economically configured without spending a lot of maintenance work.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1を示す構成説明図である。FIG. 1 is a configuration explanatory view showing a first embodiment of the present invention.

【図2】本発明の実施例1の動作を説明する特性図であ
る。
FIG. 2 is a characteristic diagram illustrating the operation of the first embodiment of the present invention.

【図3】本発明の実施例2の動作を説明する特性図であ
る。
FIG. 3 is a characteristic diagram illustrating the operation of the second embodiment of the present invention.

【図4】本発明の実施例2の動作を説明する特性図であ
る。
FIG. 4 is a characteristic diagram illustrating the operation of the second embodiment of the present invention.

【図5】本発明の実施例3を示す構成説明図である。FIG. 5 is a configuration explanatory view showing a third embodiment of the present invention.

【図6】本発明の実施例4を示す構成説明図である。FIG. 6 is a structural explanatory view showing a fourth embodiment of the present invention.

【図7】本発明の実施例3の動作波形を示す波形図であ
る。
FIG. 7 is a waveform diagram showing operation waveforms according to the third embodiment of the present invention.

【図8】本発明の実施例4の動作波形を示す波形図であ
る。
FIG. 8 is a waveform diagram showing operation waveforms according to the fourth embodiment of the present invention.

【図9】従来の容量試験方法の一例を示す構成説明図で
ある。
FIG. 9 is a configuration explanatory view showing an example of a conventional capacity test method.

【図10】従来の容量試験方法の他の例を示す構成説明
図である。
FIG. 10 is a configuration explanatory view showing another example of the conventional capacity test method.

【符号の説明】[Explanation of symbols]

1…交流または直流電源、2…電力変換装置、3…蓄電
池、4…負荷装置、5…切替スイッチ、6…放電用定電
流負荷、7…最低電圧の電池セル、8…切替スイッチ、
9…放電用定電流負荷、10…放電した電池セルを再充
電する充電器、11…交流または直流電源、12…電力
変換装置入力端子、13…整流・平滑部、14…インバ
ータ部、15…トランス、16…整流・平滑部、17…
電力変換装置出力端子、18…比較器、19…誤差増幅
器、20…発振器、21…基準電圧、22〜23…抵
抗、24…容量試験回路、25…測定開始トリガ信号入
力端子、26…放電時間出力端子、27…測定トリガを
入力として基準電圧を変化させる信号とメモリへのデー
タ取込みタイミングを指定する信号を出力するタイミン
グ信号発生回路、28…タイミング信号発生回路出力で
指定された時刻に蓄電池電圧データを取り込むためのゲ
ート回路、29…タイミング信号発生回路出力で指定さ
れた時刻とその蓄電池電圧データを記憶するメモリ回
路、30…メモリ回路に記憶された時刻および電圧デー
タをもとに放電時間を算出する演算回路、31…放電時
間および蓄電池容量出力端子、32…蓄電池電流検出回
路、33…蓄電池温度検出回路、34…タイミング信号
発生回路出力で指定された時刻に蓄電池電圧、蓄電池放
電電流、蓄電池温度データを取り込むためのゲート回
路、35…タイミング信号発生回路出力で指定された時
刻とその蓄電池電圧、蓄電池放電電流、蓄電池温度デー
タを記憶するメモリ回路、36…メモリ回路に記憶され
た時刻、電圧、電流、温度データをもとに放電時間や容
量を算出する演算回路。
1 ... AC or DC power supply, 2 ... Power conversion device, 3 ... Storage battery, 4 ... Load device, 5 ... Changeover switch, 6 ... Discharge constant current load, 7 ... Lowest voltage battery cell, 8 ... Changeover switch,
9 ... Constant current load for discharging, 10 ... Charger for recharging discharged battery cells, 11 ... AC or DC power supply, 12 ... Power converter input terminal, 13 ... Rectifying / smoothing section, 14 ... Inverter section, 15 ... Transformer, 16 ... Rectifying / smoothing section, 17 ...
Power converter output terminal, 18 ... Comparator, 19 ... Error amplifier, 20 ... Oscillator, 21 ... Reference voltage, 22-23 ... Resistance, 24 ... Capacitance test circuit, 25 ... Measurement start trigger signal input terminal, 26 ... Discharge time Output terminal, 27 ... A timing signal generation circuit that outputs a signal that changes the reference voltage using the measurement trigger as an input and a signal that specifies the timing of data acquisition to the memory, 28 ... the storage battery voltage at the time specified by the timing signal generation circuit output A gate circuit for taking in data, 29 ... A memory circuit for storing the time designated by the output of the timing signal generating circuit and its storage battery voltage data, 30 ... A discharge time based on the time and the voltage data stored in the memory circuit. Calculation circuit for calculation, 31 ... Discharge time and storage battery capacity output terminal, 32 ... Storage battery current detection circuit, 33 ... Storage battery temperature Output circuit, 34 ... Gate circuit for taking in storage battery voltage, storage battery discharge current, storage battery temperature data at the time specified by the timing signal generation circuit output, 35 ... Time specified by the timing signal generation circuit output and its storage battery voltage, Memory circuit for storing storage battery discharge current, storage battery temperature data, 36 ... Arithmetic circuit for calculating discharge time and capacity based on time, voltage, current and temperature data stored in the memory circuit.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中山 貴 東京都千代田区内幸町一丁目1番6号 日 本電信電話株式会社内 (72)発明者 佐藤 恒博 東京都千代田区内幸町一丁目1番6号 日 本電信電話株式会社内 (72)発明者 高野 和夫 東京都港区六本木一丁目4番33号 株式会 社エヌ・ティ・ティファシリティーズ内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takashi Nakayama 1-1-6 Uchisaiwaicho, Chiyoda-ku, Tokyo Nihon Telegraph and Telephone Corporation (72) Inoue Tsunehiro Sato 1-1-6 Uchisaiwaicho, Chiyoda-ku, Tokyo Nihonhon Telegraph and Telephone Corporation (72) Inventor Kazuo Takano 1-34 Roppongi, Minato-ku, Tokyo Inside NTT FACILITIES CORPORATION

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 交流電源または直流電源を入力として負
荷装置に必要な直流電圧を出力する電力変換装置、及び
電力変換装置出力端子に並列に接続され電力変換装置動
作時は浮動充電され電力変換装置停止時は負荷に電力を
供給する蓄電池によって構成される無停電給電システム
において、 電力変換装置の出力設定電圧を負荷装置が正常動作を維
持できる電圧まで低下させ、蓄電池を放電状態にしてそ
の端子電圧を測定し、その端子電圧の低下速度により放
電終止電圧に至る時間を推定する蓄電池容量測定方法。
1. A power converter that inputs an AC power supply or a DC power supply and outputs a DC voltage required for a load device, and a power converter that is connected in parallel to a power converter output terminal and is floatingly charged when the power converter is operating. In an uninterruptible power supply system that consists of a storage battery that supplies power to the load when it is stopped, the output voltage of the power converter is lowered to a voltage at which the load device can maintain normal operation, the storage battery is discharged, and its terminal voltage is reduced. A storage battery capacity measuring method in which the time until the discharge end voltage is reached is estimated by measuring the terminal voltage.
【請求項2】 請求項1における蓄電池容量測定方法に
おいて、 蓄電池放電状態における端子電圧を、測定時の電池温度
から基準温度における電圧に、測定時の電池放電電流か
ら基準放電電流における電圧に、それぞれ補正した後、
その補正後の端子電圧の低下速度により放電終止電圧に
至る時間を推定する蓄電池容量測定方法。
2. The storage battery capacity measuring method according to claim 1, wherein the terminal voltage in the storage battery discharging state is changed from the battery temperature at the time of measurement to the reference temperature, and from the battery discharge current at the time of measurement to the voltage at the reference discharge current, respectively. After correcting
A storage battery capacity measuring method for estimating the time to reach the discharge end voltage based on the corrected terminal voltage decrease rate.
【請求項3】 交流電源または直流電源を入力として負
荷装置に必要な直流電圧を出力する電力変換装置、及び
電力変換装置出力端子に並列に接続され電力変換装置動
作時は浮動充電され電力変換装置停止時は負荷に電力を
供給する蓄電池によって構成される無停電給電システム
において、 電力変換装置の出力電圧を低下させる手段と、蓄電池端
子電圧を測定する手段と、外部信号をトリガとして電力
変換装置の出力電圧を低下させる信号と出力電圧低下信
号発生期間中に異なる2つの時間にタイミング信号を発
生するタイミング信号発生回路と、前記タイミング信号
によって蓄電池端子電圧信号を通過させるゲート回路
と、ゲート回路出力信号を記憶するメモリ回路と、メモ
リ回路のデータを基に残放電時間を求める演算回路とを
具備することを特徴とする蓄電池容量測定回路。
3. A power converter that inputs an AC power supply or a DC power supply and outputs a DC voltage necessary for a load device, and a power converter that is connected in parallel to a power converter output terminal and is floatingly charged when the power converter is operating. In an uninterruptible power supply system that is configured by a storage battery that supplies power to the load when stopped, a means for lowering the output voltage of the power converter, a means for measuring the storage battery terminal voltage, and an external signal as a trigger for the power converter. A signal for lowering the output voltage and a timing signal generating circuit for generating a timing signal at two different times during the output voltage lowering signal generation period, a gate circuit for passing a storage battery terminal voltage signal according to the timing signal, and a gate circuit output signal And a calculation circuit for calculating the remaining discharge time based on the data of the memory circuit. Battery capacity measurement circuit, wherein the door.
【請求項4】 交流電源または直流電源を入力として負
荷装置に必要な直流電圧を出力する電力変換装置、及び
電力変換装置出力端子に並列に接続され電力変換装置動
作時は浮動充電され電力変換装置停止時は負荷に電力を
供給する蓄電池によって構成される無停電給電システム
において、 電力変換装置の出力電圧を低下させる手段と、蓄電池端
子電圧、蓄電池放電電流、蓄電池温度をそれぞれ測定す
る手段と、外部信号をトリガとして電力変換装置の出力
電圧を低下させる信号と出力電圧低下信号発生期間中に
異なる2つの時間にタイミング信号を発生するタイミン
グ信号発生回路と、前記タイミング信号によって蓄電池
端子電圧、蓄電池放電電流、蓄電池温度信号を通過させ
るゲート回路と、ゲート回路出力信号を記憶するメモリ
回路と、メモリ回路のデータを基に残放電時間を求める
演算回路とを具備することを特徴とする蓄電池容量測定
回路。
4. A power converter that inputs an AC power supply or a DC power supply and outputs a DC voltage necessary for a load device, and a power converter that is connected in parallel to a power converter output terminal and is floating-charged when the power converter is operating. In an uninterruptible power supply system that consists of a storage battery that supplies power to a load when it is stopped, a means to reduce the output voltage of the power converter, a means to measure the storage battery terminal voltage, a storage battery discharge current, and a storage battery temperature, and an external device. A signal that triggers a signal to lower the output voltage of the power converter and a timing signal generation circuit that generates a timing signal at two different times during the output voltage drop signal generation period, and a storage battery terminal voltage and a storage battery discharge current according to the timing signal. , A gate circuit for passing the battery temperature signal, and a memory circuit for storing the gate circuit output signal Battery capacity measurement circuit characterized by comprising an arithmetic circuit for finding the remaining discharge time on the basis of the data of the memory circuit.
JP06262361A 1994-10-26 1994-10-26 Battery capacity measuring method and circuit Expired - Lifetime JP3075103B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06262361A JP3075103B2 (en) 1994-10-26 1994-10-26 Battery capacity measuring method and circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06262361A JP3075103B2 (en) 1994-10-26 1994-10-26 Battery capacity measuring method and circuit

Publications (2)

Publication Number Publication Date
JPH08126214A true JPH08126214A (en) 1996-05-17
JP3075103B2 JP3075103B2 (en) 2000-08-07

Family

ID=17374677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06262361A Expired - Lifetime JP3075103B2 (en) 1994-10-26 1994-10-26 Battery capacity measuring method and circuit

Country Status (1)

Country Link
JP (1) JP3075103B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004312849A (en) * 2003-04-04 2004-11-04 Sanyo Denki Co Ltd Uninterruptive power supply system with storage battery deterioration judging circuit
WO2008044454A1 (en) * 2006-10-06 2008-04-17 Panasonic Corporation Discharge controller
JP2010121978A (en) * 2008-11-17 2010-06-03 Texas Instr Japan Ltd Method and system for detecting battery end-point voltage
WO2010082549A1 (en) * 2009-01-14 2010-07-22 ミツミ電機株式会社 Battery pack, semiconductor integrated circuit, remaining capacity correcting method, and storage medium
CN102854474A (en) * 2012-09-25 2013-01-02 深圳市泰昂能源科技股份有限公司 Online detection method for actual capacity of storage batteries
JP2017053754A (en) * 2015-09-10 2017-03-16 ファナック株式会社 Electronic apparatus having function of notifying user of battery residual amount
JP2019035596A (en) * 2017-08-10 2019-03-07 日置電機株式会社 Impedance measurement device
CN112433162A (en) * 2020-10-26 2021-03-02 惠州市豪鹏科技有限公司 Lithium ion battery aging method

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004312849A (en) * 2003-04-04 2004-11-04 Sanyo Denki Co Ltd Uninterruptive power supply system with storage battery deterioration judging circuit
US8102155B2 (en) 2006-10-06 2012-01-24 Panasonic Corporation Discharge controller
WO2008044454A1 (en) * 2006-10-06 2008-04-17 Panasonic Corporation Discharge controller
JP2010121978A (en) * 2008-11-17 2010-06-03 Texas Instr Japan Ltd Method and system for detecting battery end-point voltage
WO2010082549A1 (en) * 2009-01-14 2010-07-22 ミツミ電機株式会社 Battery pack, semiconductor integrated circuit, remaining capacity correcting method, and storage medium
KR20110119618A (en) * 2009-01-14 2011-11-02 미쓰미덴기가부시기가이샤 Battery pack, semiconductor integrated circuit, remaining capacity correcting method, and storage medium
JP2010165525A (en) * 2009-01-14 2010-07-29 Mitsumi Electric Co Ltd Battery pack, semiconductor integrated circuit, residual capacity correction method, and residual capacity correction program
US8519716B2 (en) 2009-01-14 2013-08-27 Mitsumi Electric Co., Ltd. Battery pack, semiconductor integrated circuit, remaining capacity correction method, and storage medium
CN102854474A (en) * 2012-09-25 2013-01-02 深圳市泰昂能源科技股份有限公司 Online detection method for actual capacity of storage batteries
JP2017053754A (en) * 2015-09-10 2017-03-16 ファナック株式会社 Electronic apparatus having function of notifying user of battery residual amount
US10673262B2 (en) 2015-09-10 2020-06-02 Fanuc Corporation Electric device having function of informing battery residual capacity
JP2019035596A (en) * 2017-08-10 2019-03-07 日置電機株式会社 Impedance measurement device
CN112433162A (en) * 2020-10-26 2021-03-02 惠州市豪鹏科技有限公司 Lithium ion battery aging method
CN112433162B (en) * 2020-10-26 2023-09-01 惠州市豪鹏科技有限公司 Aging method of lithium ion battery

Also Published As

Publication number Publication date
JP3075103B2 (en) 2000-08-07

Similar Documents

Publication Publication Date Title
US7157810B2 (en) Backup power supply
JP3430264B2 (en) Charging device
US5808443A (en) Battery charging method
US5252906A (en) Method of optimizing the charging of a battery of storage cells, and apparatus for performing the method
EP0623985B1 (en) Power Sharing detector
US5233284A (en) System and method for rapid charging of a battery
JPH0898426A (en) Battery charging method
JP3075103B2 (en) Battery capacity measuring method and circuit
JP3539123B2 (en) Method and apparatus for determining deterioration of secondary battery
JP2001157364A (en) System power stabilization device and controlling method thereof
US6420853B1 (en) Battery charger capable of accurately determining fully charged condition regardless of batteries with different charge chracteristics
KR19990028876A (en) Control and Termination of Battery Charging Process
EP0534362B1 (en) Method and apparatus for testing self-commutative electric power conversion device
JPH08297516A (en) Solar power generation device
JP3237293B2 (en) Method and apparatus for charging sealed lead-acid battery
US6335612B2 (en) Battery charger and method of detecting a fully charged condition of a secondary battery
JPH10260236A (en) Method for monitoring remaining capacity of secondary battery
JP3070559B2 (en) Battery level display circuit
JP2937796B2 (en) Method for measuring charge / discharge current of secondary battery for power storage, method for measuring remaining power, and measuring device
JP3398921B2 (en) Battery internal resistance measurement device
JP3819722B2 (en) Voltage fluctuation compensation device
JPH0980130A (en) Storage battery capacity measurement method
US6304471B1 (en) System and method for assessing a capacity of a backup battery and power plant incorporating the same
JP2977183B2 (en) Deterioration judgment method of secondary battery
JP3580414B2 (en) Rechargeable battery charging circuit

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090609

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090609

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100609

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100609

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110609

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110609

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120609

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120609

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130609

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140609

Year of fee payment: 14

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term