JPH08123563A - Photovoltaic power generation system, device and method for controlling power for the same - Google Patents

Photovoltaic power generation system, device and method for controlling power for the same

Info

Publication number
JPH08123563A
JPH08123563A JP6287141A JP28714194A JPH08123563A JP H08123563 A JPH08123563 A JP H08123563A JP 6287141 A JP6287141 A JP 6287141A JP 28714194 A JP28714194 A JP 28714194A JP H08123563 A JPH08123563 A JP H08123563A
Authority
JP
Japan
Prior art keywords
command signal
solar cell
power
signal
detecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6287141A
Other languages
Japanese (ja)
Inventor
Masamichi Kurokami
誠路 黒神
Nobuyoshi Takehara
信善 竹原
Kimitoshi Fukae
公俊 深江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP6287141A priority Critical patent/JPH08123563A/en
Publication of JPH08123563A publication Critical patent/JPH08123563A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

PURPOSE: To provide a power control system for stably extracting a maximum output from a solar battery. CONSTITUTION: Concerning the photovoltaic power generation system equipped with a solar battery 1, power converting means 2 for supplying power from the solar battery 1 to a load 3, current detecting means 5 for detecting the output current of the solar battery 1, voltage detecting means 5 for detecting the output voltage of the solar battery 1 and light quantity detecting means 6 for detecting the quantity of sunlight, this system is provided with an arithmetic means 7 for inputting a light quantity detecting signal from the light quantity detecting means and outputting a first command signal i1 corresponding to prescribed function characteristics, control means 8 for inputting a current signal from the current detecting means and a voltage signal from the voltage detecting means and outputting a second command signal i2 so as to maximize power calculated as the product of the current signal and the voltage signal, and adding means 9 for adding the first and second command signals and outputting an added value i3 as the output command value of the power converting means.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、太陽光発電システムな
らびにその電力制御装置および方法に関し、特に太陽光
発電システム太陽電池の電力を効率よく取り出すための
電力制御装置を有する太陽光発電システムならびにその
電力制御装置および方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photovoltaic power generation system and a power control device and method thereof, and more particularly to a photovoltaic power generation system having a power control device for efficiently extracting the electric power of a photovoltaic cell and the photovoltaic power generation system. The present invention relates to a power control device and method.

【0002】[0002]

【従来技術】今日地球環境に対する意識の高まりから、
クリーンエネルギーを提供する太陽光発電システムに大
きな期待が寄せられている。ところが、太陽電池の出力
は、日射量、温度、動作点電圧および動作点電流などに
よりかなり変動するために、太陽電池から見た負荷を調
整し、常に最大の電力を取り出すことが要望される。
2. Description of the Related Art Due to the growing awareness of the global environment today,
There are great expectations for solar power generation systems that provide clean energy. However, the output of the solar cell fluctuates considerably depending on the amount of solar radiation, temperature, operating point voltage, operating point current, etc. Therefore, it is required to adjust the load seen from the solar cell and always extract the maximum electric power.

【0003】このため、太陽電池アレイの動作点の電圧
や電流を検出・変動させて、その時の電力変動を調べて
動作点を決定する、いわゆる直接法が提案されている。
例えば、特公昭63−57807記載の電力の電流微分
値を利用するものや特開昭62−85312にも記載さ
れている電力変化量が正の方向に探索する、いわゆる山
登り法などがある。
For this reason, a so-called direct method has been proposed in which the voltage or current at the operating point of the solar cell array is detected and fluctuated, and the power fluctuation at that time is examined to determine the operating point.
For example, there is a method utilizing a current differential value of electric power described in JP-B-63-57807 and a so-called hill-climbing method described in Japanese Patent Application Laid-Open No. 62-85312 in which the amount of change in electric power is searched in the positive direction.

【0004】また、発電用太陽電池の電圧や電流以外の
ものを検出し、発電用太陽電池の動作点を制御する、い
わゆる間接法も知られている。例えば、特公昭61−2
206記載の日射量から作った電圧や電流等の対応する
電気的信号とインバータ系の出力との偏差が零となるよ
うに位相制御回路を制御するものや、特公昭62−52
541記載の補助太陽電池の短絡電流から演算された電
流値と発電用太陽電池の電流値を一致させる方法などが
ある。
A so-called indirect method is also known, in which something other than the voltage or current of the solar cell for power generation is detected to control the operating point of the solar cell for power generation. For example, Japanese Patent Publication 61-2
Controlling the phase control circuit so that the deviation between the output of the inverter system and the corresponding electric signal such as voltage or current generated from the amount of solar radiation described in 206 becomes zero, or JP-B-62-52.
There is a method of matching the current value calculated from the short circuit current of the auxiliary solar cell described in 541 with the current value of the solar cell for power generation.

【0005】従来は、上記のような方法を利用して、太
陽電池から最大電力を取り出すように電力変換装置など
を制御していた。
Conventionally, the above-mentioned method has been utilized to control a power converter or the like so as to extract the maximum power from the solar cell.

【0006】[0006]

【発明が解決しようとする課題】ところが、上記した従
来の方法には以下の欠点がある。
However, the above-mentioned conventional method has the following drawbacks.

【0007】直接法においては、太陽電池の複数の動作
点の電圧、電流をサンプリングを行なうが、これにはサ
ンプリング周期Tsにより規定される時間を要する。こ
のため、気象条件の変化の中でも特に変化速度の速い光
量変化が電力制御に悪影響を及ぼす場合がある。
In the direct method, the voltages and currents at a plurality of operating points of the solar cell are sampled, but this requires a time defined by the sampling cycle Ts. Therefore, among the changes in the weather conditions, the change in the light amount having a particularly high change speed may adversely affect the power control.

【0008】例えば、前記山登り法においては、図6
(横軸は電圧V、縦軸は電力P)のように、初めの設定
電圧がV1 で電圧変化方向が「増加」と設定されている
時に光量が増加すると以下のようになる。図6におい
て、61は時刻t1 でのV−Pカーブ、62は時刻t2
でのV−Pカーブを示す。
For example, in the hill climbing method, as shown in FIG.
When the initial set voltage is V 1 and the voltage change direction is set to “increase” as shown in (the horizontal axis is the voltage V and the vertical axis is the power P), the light amount increases as follows. In FIG. 6, 61 is a VP curve at time t 1 , and 62 is time t 2.
The VP curve in FIG.

【0009】設定電圧をV1 とし、時刻t1 でサンプリ
ングすると、カーブ61上の動作点の電圧V1 と電流
1 が取り込まれ、この時の出力電力P1 が算出され
る。次に、設定電圧をV2 として電圧を変動させ、時刻
1 からサンプリング周期Ts後の時刻t2 でサンプリ
ングを行なう。日射(光量)が変動しない場合は、同じ
カーブ61上の動作点の電圧と電流が取り込まれて出
力電力P3 が算出され、動作点から動作点の電力変
化を「減少」と判断して次の電圧変化方向を「減少」へ
反転する。
When the set voltage is V 1 and sampling is performed at time t 1 , the voltage V 1 and the current I 1 at the operating point on the curve 61 are taken in, and the output power P 1 at this time is calculated. Next, the set voltage is set to V 2 to change the voltage, and sampling is performed at time t 2 after the sampling period Ts from time t 1 . When the solar radiation (light intensity) does not change, the voltage and current at the operating point on the same curve 61 is taken in to calculate the output power P 3, and the change in the power at the operating point from the operating point is determined to be “decreasing” and then the next. Reverses the voltage change direction of to "decrease".

【0010】しかし、時刻t1 から時刻t2 のサンプリ
ング期間に光量が増加すると、時刻t2 のサンプリング
ではカーブ62上の動作点の電圧V2 と電流I2 が取
り込まれて出力電力P2 が算出される。動作点では図
6のV−Pカーブ62から明らかなように電力がP1
らP2 に増加しているため、時刻t2 は本来なら次の電
圧変化方向を「減少」とすべき動作点であるにもかかわ
らず、電圧変化方向をそのままの「増加」と決定する。
この結果、最大出力動作点をさらに電圧の大きな方へ探
索するので瞬時出力効率は低下する。なお、瞬時出力効
率とは、ある時刻における最大電力に対する出力電力の
割合を表わしたものである。
However, when the amount of light increases during the sampling period from time t 1 to time t 2 , the voltage V 2 and the current I 2 at the operating point on the curve 62 are taken in by the sampling at time t 2 and the output power P 2 becomes It is calculated. At the operating point, as is apparent from the V-P curve 62 in FIG. 6, the power increases from P 1 to P 2 , so at time t 2, the operating point at which the next voltage change direction should be “decreased” should be originally. However, the direction of voltage change is determined as “increasing” as it is.
As a result, the maximum output operating point is searched for in a direction with a larger voltage, so that the instantaneous output efficiency is lowered. The instantaneous output efficiency is the ratio of the output power to the maximum power at a certain time.

【0011】さらに、光量変化により同様に動作電圧が
増加し続けることにより瞬時出力効率は大きく低下す
る。これにより、出力効率も低下することは明らかであ
る。なお、出力効率とは、ある期間における最大電力量
に対する出力電力量の割合を示したものである。
Further, the instantaneous output efficiency is greatly reduced because the operating voltage continues to increase due to the change in the light amount. It is clear that this also reduces the output efficiency. Note that the output efficiency indicates the ratio of the output power amount to the maximum power amount in a certain period.

【0012】光量変化により電力変化を誤検出する場合
としては、上述の例のように出力電力が大きくなる場合
のほかに、出力電力が小さくなる場合や出力電力が変化
しない場合も存在する。
As a case of erroneously detecting a power change due to a light amount change, there is a case where the output power becomes large as in the above example, a case where the output power becomes small, or a case where the output power does not change.

【0013】また、太陽電池の出力電圧の急激な変動に
より、電力変換装置の保護機能が働き、電力変換装置の
動作が停止する恐れもある。電力制御方式の誤動作によ
り電力変換装置が停止することは好ましいことではな
い。
Further, a sudden change in the output voltage of the solar cell may activate the protection function of the power conversion device and stop the operation of the power conversion device. It is not preferable that the power conversion device is stopped due to a malfunction of the power control method.

【0014】以上、山登り法での動作について説明した
が、電力の電圧微分値を利用する制御方法でも同様の結
果となる。このように、サンプリング中の光量変化によ
り、太陽電池の出力効率の低下やシステム動作の不安定
を招く恐れが多分にある。
Although the operation according to the hill climbing method has been described above, the same result can be obtained with the control method using the voltage differential value of electric power. As described above, there is a possibility that the output efficiency of the solar cell may decrease and the system operation may become unstable due to the change in the light amount during sampling.

【0015】一方、間接法の特公昭63−57807に
おいては、温度依存性に対する配慮がなされおらず、日
中変動や季節変動あるいは設置場所などにより温度変化
がある場合は太陽電池の出力特性が変化するため、正確
に最大出力が得られない欠点がある。また、太陽電池の
一部になんらかの陰ができた場合、すなわちパーシャル
シェードの場合にも太陽電池の出力特性が変化し最大出
力が得られない。
On the other hand, in Japanese Patent Publication No. 63-57807 of the indirect method, the temperature dependence is not taken into consideration, and the output characteristics of the solar cell change when there is a temperature change due to daytime fluctuations, seasonal fluctuations, or installation location. Therefore, there is a drawback that the maximum output cannot be obtained accurately. Further, even if some shade is formed in a part of the solar cell, that is, in the case of a partial shade, the output characteristics of the solar cell change and the maximum output cannot be obtained.

【0016】特公昭62−52541においては、短絡
電流と最大出力電流の関係の経時変化が考慮されておら
ず、長期設置する場合には最大出力が得られなくなると
いう欠点がある。また、パーシャルシェードの場合は、
特公昭62−52541と同様に太陽電池の出力特性が
変化するため最大出力が得られない。
Japanese Examined Patent Publication No. 62-52541 does not consider the change in the relationship between the short-circuit current and the maximum output current with time, and has a drawback that the maximum output cannot be obtained when the device is installed for a long period of time. In the case of partial shade,
As in JP-B-62-52541, the maximum output cannot be obtained because the output characteristics of the solar cell change.

【0017】本発明の目的は、従来の太陽電池の電力制
御方式の欠点を補完し、安定的に太陽電池から最大出力
を取り出す電力制御方式を提供することである。
An object of the present invention is to provide a power control system that complements the drawbacks of the conventional power control system for solar cells and stably extracts the maximum output from the solar cells.

【0018】[0018]

【課題を解決するための手段】上記目的は、太陽電池
と、該太陽電池からの電力を負荷に供給する電力変換手
段と、該太陽電池の出力電流を検出する電流検出手段
と、該太陽電池の出力電圧を検出する電圧検出手段と、
光量検出手段とを有する太陽光発電システムにおいて、
前記光量検出手段からの光量検出信号を入力し所定の関
数特性により第1の指令信号を出力する演算手段と、前
記電流検出手段からの電流信号および前記電圧検出手段
からの電圧信号を入力し、前記電流信号と前記電圧信号
の積として求まる電力が最大となるよう第2の指令信号
を出力する制御手段と、前記第1の指令信号および前記
第2の指令信号を加算し第3の指令信号を出力する加算
手段とを設け、前記第3の指令信号を前記電力変換手段
の出力指令値とすることにより達成される。
The above object is to provide a solar cell, power conversion means for supplying electric power from the solar cell to a load, current detection means for detecting an output current of the solar cell, and the solar cell. Voltage detection means for detecting the output voltage of
In a solar power generation system having a light amount detection means,
An arithmetic unit for inputting a light amount detection signal from the light amount detecting unit and outputting a first command signal according to a predetermined functional characteristic, and a current signal from the current detecting unit and a voltage signal from the voltage detecting unit are input, A control unit that outputs a second command signal so that the electric power obtained as a product of the current signal and the voltage signal becomes maximum, and a third command signal that adds the first command signal and the second command signal. Is provided and the third command signal is used as the output command value of the power conversion device.

【0019】本発明の一実施例においては、前記太陽光
発電システムにおいて、前記制御手段ではさらに前記光
量検出信号を入力し、前記光量検出信号および/または
前記光量検出信号の変化分に応じて前記第2の指令信号
を出力する。また、光量検出手段として光電変換素子、
あるいは、太陽電池と同じ特性をもつ光電変換素子を用
いる。さらに、少なくとも光量検出信号と第2の指令信
号または第3の指令信号を記憶し、記憶された値をもと
に演算手段の関数特性を変更する。
In one embodiment of the present invention, in the solar power generation system, the control means further inputs the light amount detection signal, and the light amount detection signal and / or the light amount detection signal is changed in accordance with the change amount. The second command signal is output. Further, a photoelectric conversion element as the light amount detection means,
Alternatively, a photoelectric conversion element having the same characteristics as the solar cell is used. Further, at least the light amount detection signal and the second command signal or the third command signal are stored, and the function characteristic of the calculation means is changed based on the stored value.

【0020】[0020]

【作用】本発明の電力制御システムでは、日射一定時に
は、検出される光量が一定であるので、第1の指令信号
は一定値となる。一方、第2の指令信号は、温度変化な
どによる最適動作点の変動を追従するように変化する。
これにより、太陽電池より最大出力が取り出される。
In the power control system of the present invention, the amount of light detected is constant when the solar radiation is constant, so the first command signal has a constant value. On the other hand, the second command signal changes so as to follow changes in the optimum operating point due to temperature changes and the like.
As a result, the maximum output is taken out from the solar cell.

【0021】日射変動時には、応答速度の速い光量検出
手段からの光量値が演算手段に入力され、第1の指令信
号が日射変動と同等の速度で変化し、それに伴って第3
の指令信号も変化する。そして、電力制御装置の出力が
調整され太陽電池はおよそ最適動作点となり、ほぼ最大
出力が得られる。そして、第2の指令信号により、より
正確に最適動作点を追従し、最大出力が得られるように
なる。このように、光量変化を指令値に直接反映させる
ので、電力制御装置の誤動作なく最適動作点に速やかに
追従できる。また、第2の指令信号の変化を光量および
/または光量の変化分に応じて行なうことにより、誤動
作を起こさず最適動作点を速やかに追従することができ
る。
When the solar radiation fluctuates, the light amount value from the light amount detecting means having a fast response speed is input to the calculating means, and the first command signal changes at the same speed as the solar radiation fluctuation.
The command signal of will also change. Then, the output of the power control device is adjusted, and the solar cell is approximately at the optimum operating point, and almost the maximum output is obtained. Then, by the second command signal, the optimum operating point is more accurately tracked and the maximum output is obtained. In this way, since the change in the light amount is directly reflected in the command value, it is possible to quickly follow the optimum operating point without malfunction of the power control device. Further, by changing the second command signal according to the light amount and / or the change amount of the light amount, it is possible to quickly follow the optimum operating point without causing a malfunction.

【0022】太陽電池特性の経時変化に対しては、第2
の指令信号による最適動作点の追従により、確実に最適
動作点に追従できる。また、光量検出信号と第2の指令
信号または第3の指令信号を記憶し、記憶された値をも
とに演算手段の関数特性を変更することにより、より適
した第1の指令信号を出力することができ、最適動作点
に速やかに到達できる。
For the change of the solar cell characteristics with time, the second
By following the optimum operating point by the command signal of, it is possible to reliably follow the optimum operating point. Further, by storing the light amount detection signal and the second command signal or the third command signal and changing the function characteristic of the calculation means based on the stored values, a more suitable first command signal is output. Therefore, the optimum operating point can be reached quickly.

【0023】さらに、光量検出手段として光電変換素子
を用いると、コストの低いものを選択でき、システムの
低コスト化を推進できる。また、光量検出手段である光
電変換素子として、太陽電池とほぼ同じ特性を持つ光電
変換素子を用いれば、より正確に第1の指令信号を出力
し、光量変化時にも最適動作点を速やかに追従できる。
勿論、全く同じ特性を持つ光電変換素子を用いても同様
によい。
Further, when a photoelectric conversion element is used as the light amount detecting means, a low cost one can be selected, and the cost reduction of the system can be promoted. Further, if a photoelectric conversion element having almost the same characteristics as the solar cell is used as the photoelectric conversion element that is the light amount detection means, the first command signal is output more accurately and the optimum operating point is quickly tracked even when the light amount changes. it can.
Of course, a photoelectric conversion element having exactly the same characteristics may be used as well.

【0024】[0024]

【実施例】以下、図面を参照して本発明の実施例を説明
する。第1の実施例 図1に本発明の太陽光発電システムの構成を示す。太陽
電池1の直流電力は、電力変換手段である電力変換装置
2にて電力が変換され、負荷3に供給される。太陽電池
1としては、アモルファスシリコン、結晶シリコン、あ
るいは化合物半導体などを用いた太陽電池がある。通常
は、複数の太陽電池を直並列に組み合わせて、所望の電
圧・電流が得られるようにストリングやアレイを構成す
る。
Embodiments of the present invention will be described below with reference to the drawings. First Embodiment FIG. 1 shows the configuration of the solar power generation system of the present invention. The DC power of the solar cell 1 is converted in power by the power conversion device 2 which is a power conversion means, and is supplied to the load 3. As the solar cell 1, there is a solar cell using amorphous silicon, crystalline silicon, a compound semiconductor, or the like. Usually, a plurality of solar cells are combined in series and parallel to form a string or array so that a desired voltage / current can be obtained.

【0025】電力変換装置2は変換素子および変換素子
駆動回路により達成される。変換素子としては、パワー
トランジスタ、パワーMOSFET、IGBTなどの自
己消弧型素子を用いたDC/DCコンバータ、自励式電
圧型DC/ACインバータなどがある。この変換素子
は、ゲートパルスのオン/オフデューティ比を変えるこ
とで電力潮流、入出力電力、出力周波数などを制御でき
る。変換素子駆動回路は、加算手段9からの第3の指令
信号i3 に従い、瞬時電流比較、三角波比較方式等によ
り駆動パルスを発生する。これにより、第3の指令信号
3 に従い変換素子のデューティ比を制御する。変換素
子駆動回路は、アナログ回路でもディジタル回路でも構
成できるが、最近ではほとんどがディジタル化されてお
り、CPUやDSPを装備している。
The power conversion device 2 is achieved by a conversion element and a conversion element drive circuit. Examples of the conversion element include a DC / DC converter using a self-extinguishing element such as a power transistor, a power MOSFET, and an IGBT, and a self-excited voltage type DC / AC inverter. This conversion element can control the power flow, input / output power, output frequency, etc. by changing the on / off duty ratio of the gate pulse. The conversion element drive circuit generates a drive pulse according to the third command signal i 3 from the adding means 9 by an instantaneous current comparison, a triangular wave comparison method, or the like. Thereby, the duty ratio of the conversion element is controlled according to the third command signal i 3 . The conversion element drive circuit can be configured by an analog circuit or a digital circuit, but most of them have recently been digitized and are equipped with a CPU and a DSP.

【0026】負荷3としては、電熱負荷や電動機負荷あ
るいは商用交流系統およびそれらの組み合わせなどがあ
る。負荷が商用交流系統の場合は系統連系太陽光発電シ
ステムと呼ばれており、系統に投入されうる電力は制限
されないので、太陽電池からより多くの電力を取り出す
本発明の電力制御方式を用いるのに非常に好ましい。
The load 3 may be an electric heat load, an electric motor load, a commercial AC system, or a combination thereof. When the load is a commercial AC system, it is called a grid-connected photovoltaic power generation system, and the power that can be input to the system is not limited. Therefore, the power control method of the present invention that extracts more power from the solar cell is used. Highly preferred.

【0027】太陽電池1の出力電圧および出力電流は、
電圧検出手段4および電流検出手段5で検出され、検出
された電圧信号および電流信号は制御手段8に入力され
る。電圧検出手段4は太陽電池の出力電圧を抵抗で分圧
し、A/D変換してディジタル値に変換して制御手段8
に送る。この際、ノイズの混入等を避けるため太陽電池
の出力回路と検出信号の送信回路はフォトカプラ等で絶
縁しておくことが望ましい。電流検出手段5は、ホール
素子または標準抵抗等で電流を電圧に変換し、電圧検出
手段4と同様に検出信号をディジタル値として制御手段
8に検出信号を送る。
The output voltage and output current of the solar cell 1 are
The voltage signal and the current signal detected by the voltage detection unit 4 and the current detection unit 5 are input to the control unit 8. The voltage detecting means 4 divides the output voltage of the solar cell with a resistor, A / D converts it into a digital value, and then controls means 8
Send to At this time, it is desirable that the output circuit of the solar cell and the transmission circuit of the detection signal be insulated by a photocoupler or the like in order to avoid mixing of noise. The current detecting means 5 converts a current into a voltage by a hall element or a standard resistor or the like, and sends the detection signal to the control means 8 as a digital value like the voltage detecting means 4.

【0028】太陽からの日射量は光量検出手段6で検出
され、光量信号は演算手段7に入力される。光量検出手
段6としては、CdSやSiなどの光電変換素子や日射
量計などがある。CdSなどの安価な光電変換素子を用
いれば、低コストなシステムを構成できる。勿論、光量
検出手段6に補助太陽電池を用いてもよい。
The amount of solar radiation from the sun is detected by the light amount detecting means 6, and the light amount signal is input to the calculating means 7. As the light amount detecting means 6, there is a photoelectric conversion element such as CdS or Si or an insolation meter. A low-cost system can be configured by using an inexpensive photoelectric conversion element such as CdS. Needless to say, an auxiliary solar cell may be used as the light amount detection means 6.

【0029】演算手段7は、検出された光量信号を入力
とし、演算手段7が有している所定の関数特性に従って
第1の指令信号i1 を出力する。なお、光量検出手段6
よりディジタル値を送出し、演算手段7の関数特性によ
る演算をディジタル値により行なう場合、所望の関数特
性を容易に実現することができる。
The calculating means 7 receives the detected light amount signal as an input and outputs a first command signal i 1 according to a predetermined functional characteristic of the calculating means 7. The light amount detecting means 6
When a digital value is sent out more and the calculation by the function characteristic of the calculation means 7 is performed by the digital value, a desired function characteristic can be easily realized.

【0030】制御手段8は、検出された電圧信号および
電流信号をもとに、太陽電池1から最大出力が得られる
ように、第2の指令信号i2 を出力する。制御手段8は
制御用マイクロコンピュータにより構成され、CPU、
RAM、ROMおよび入出力ポート等を備えている。ま
た、先程の演算手段7もディジタル値を入力する場合は
制御用コンピュータにより実現することができる。この
際、制御手段8と同一のマイクロコンピュータでも実現
可能である。
The control means 8 outputs the second command signal i 2 based on the detected voltage signal and current signal so that the solar cell 1 can obtain the maximum output. The control means 8 comprises a control microcomputer, a CPU,
It has a RAM, a ROM and an input / output port. Also, the arithmetic means 7 can be realized by a control computer when inputting a digital value. At this time, the same microcomputer as the control means 8 can be used.

【0031】演算手段7から出力された第1の指令信号
1 および制御手段8から出力された第2の指令信号i
2 は加算手段9に入力され、加算手段9より第3の指令
信号i3 を出力する。第3の指令信号i3 は電力変換装
置2に入力され、電力変換装置2の出力指令値となる。
加算手段9は、指令信号がディジタル値であれば、マイ
クロコンピュータにおいて実現できる。勿論、制御手段
8および/または演算手段7と同一のマイクロコンピュ
ータでもよい。
The first command signal i 1 output from the computing means 7 and the second command signal i output from the control means 8
2 is input to the adding means 9, and the adding means 9 outputs the third command signal i 3 . The third command signal i 3 is input to the power conversion device 2 and becomes an output command value of the power conversion device 2.
The adding means 9 can be realized by a microcomputer if the command signal has a digital value. Of course, the same microcomputer as the control means 8 and / or the calculation means 7 may be used.

【0032】次に、本制御方式によりどのようにして最
大電力が得られるかを説明する。
Next, how the maximum power is obtained by this control method will be described.

【0033】演算手段7の関数特性は図2の実線で示さ
れている。図2の横軸は検出された光量信号であり、縦
軸は第1の指令信号i1 である。演算手段7の入出力間
には比例定数kの比例関係がある。演算手段7はこの関
係に従い第1の指令信号i1を出力する。今、日射量が
50mW/m2 の場合を考える。光量検出手段6は日射
計であり、その出力には光量信号「50」を送信する。
よって、第1の指令信号i1 は、図2の実線に示される
特性に従って、i1 =「50」となる。
The function characteristic of the calculating means 7 is shown by the solid line in FIG. The horizontal axis of FIG. 2 is the detected light amount signal, and the vertical axis is the first command signal i 1 . There is a proportional relationship of the proportional constant k between the input and output of the calculating means 7. The calculation means 7 outputs the first command signal i 1 according to this relationship. Now, consider the case where the amount of solar radiation is 50 mW / m 2 . The light amount detecting means 6 is a pyranometer, and transmits a light amount signal "50" to its output.
Therefore, the first command signal i 1 becomes i 1 = “50” according to the characteristic shown by the solid line in FIG.

【0034】ところが、最適な出力指令値は、図2の2
つの点線ではさまれた領域に分布し、温度変化や季節変
動などにより変動する。したがって、第1の指令信号i
1 をそのまま出力指令値とすると常に最適な出力指令値
とはならず、必ずしも太陽電池から最大の出力は得られ
ない。いま、最適な指令値が図2の一点鎖線とすると、
日射量が50mW/m2 の時の最適な指令値は「55」
であり、最適な指令値と第1の指令信号i1 の間には
「5」ほどの隔たりがある。
However, the optimum output command value is 2 in FIG.
It is distributed in the area between the two dotted lines and changes due to temperature changes and seasonal fluctuations. Therefore, the first command signal i
When 1 is used as the output command value as it is, the optimum output command value is not always obtained, and the maximum output cannot always be obtained from the solar cell. Now, assuming that the optimum command value is the one-dot chain line in FIG.
The optimum command value when the amount of solar radiation is 50 mW / m 2 is “55”
Therefore, there is a gap of "5" between the optimum command value and the first command signal i 1 .

【0035】そこで、制御手段8が機能する。制御手段
8には、いわゆる山登り法のアルゴリズムを搭載したマ
イクロコンピュータが備わっており、その山登り法に従
って、制御手段8は第2の指令信号i2 を変化させる。
第1の指令信号i1 と第2の指令信号i2 を加算して得
られる第3の指令信号i3 が出力指令値となるので、第
2の指令信号i2 を変化させれば太陽電池の動作点も変
わり、その動作点に応じた電力が取り出される。そし
て、第2の指令信号i2 が「5」(第3の指令信号i3
が「55」)で太陽電池から最大の電力が取り出され、
第2の指令信号i2 は微小変化しながら約「5」とな
る。
Therefore, the control means 8 functions. The control means 8 is provided with a microcomputer equipped with a so-called hill-climbing algorithm, and the control means 8 changes the second command signal i 2 according to the hill-climbing method.
Since the third command signal i 3 obtained by adding the first command signal i 1 and the second command signal i 2 becomes the output command value, if the second command signal i 2 is changed, the solar cell Also changes its operating point, and electric power corresponding to the operating point is extracted. Then, the second command signal i 2 is “5” (the third command signal i 3
Is "55"), the maximum power is taken out from the solar cell,
The second command signal i 2 becomes about “5” while slightly changing.

【0036】次に、日射量が50mW/m2 から100
mW/m2 に急激に増加した場合について説明する。
Next, the amount of solar radiation is 50 mW / m 2 to 100
A case where the power consumption is rapidly increased to mW / m 2 will be described.

【0037】演算手段7は、図2の実線の特性に従い、
第1の指令信号i1 =「100」を出力する。この時の
第2の指令信号i2 は「5」付近なので、第3の指令信
号i3 は約「105」となる。日射量が100mW/m
2 の時の最適な指令値は「110」であるから、このま
までは第3の指令信号i3 は最適な指令値に対して
「5」ほど小さくなる。
The computing means 7 follows the characteristics of the solid line in FIG.
The first command signal i 1 = “100” is output. Since the second command signal i 2 at this time is near “5”, the third command signal i 3 becomes about “105”. The amount of solar radiation is 100 mW / m
Since the optimum command value when the two are "110", the command signal i 3 of the third in this state becomes smaller as "5" for optimum command value.

【0038】制御手段8は、上記山登り法に従って第2
の指令信号i2 を微小変化させながら太陽電池から最大
の出力が得られる第2の指令信号i2 を常時探索してお
り、日射量が変化して第1の指令信号i1 および出力電
力が変化した場合もそれに追従して太陽電池から最大の
出力が得られる新たな第2の指令信号i2 を探す。その
結果、第2の指令信号i2 は約「10」となり、第3の
指令信号i3 は「110」となり、加算手段9から電力
変換装置2には、太陽電池から最大電力を取り出すこと
ができる出力指令値「110」が送られる。
The control means 8 uses the second method according to the above hill climbing method.
Of which searches the command signal i 2 at all times a command signal i 2 from the solar cell a second maximum output is obtained while slightly changed, the first command signal i 1 and the output power of solar radiation amount is changed Even if it changes, a new second command signal i 2 that can obtain the maximum output from the solar cell is searched for following the change. As a result, the second command signal i 2 becomes about “10”, the third command signal i 3 becomes “110”, and the maximum power can be extracted from the solar cell to the power conversion device 2 from the addition means 9. A possible output command value "110" is sent.

【0039】その次に、日射量が100mW/m2 から
70mW/m2 に急激に減少した場合について説明す
る。
[0039] Subsequently, a description will be given of a case where solar radiation is suddenly reduced from 100 mW / m 2 to 70 mW / m 2.

【0040】演算手段7は、図2の実線の特性に従い、
第1の指令信号i1 =「70」を出力する。この時の第
2の指令信号i2 は「10」付近なので、第3の指令信
号i3 は約「80」となる。日射量が70mW/m2
時の最適な指令値は77であるから、このままでは第3
の指令信号i3 は最適な指令値に対して「3」ほど大き
くなる。
The calculating means 7 follows the characteristics indicated by the solid line in FIG.
The first command signal i 1 = “70” is output. Since the second command signal i 2 at this time is near “10”, the third command signal i 3 becomes about “80”. The optimum command value when the amount of solar radiation is 70 mW / m 2 is 77.
The command signal i 3 of is larger than the optimum command value by “3”.

【0041】制御手段8は、日射量が変化して第3の指
令信号i3 および出力電力が変化した後も太陽電池から
最大の出力が得られる新たな第2の指令信号i2 を探
す。その結果、第2の指令信号i2 は約「7」となり、
第3の指令信号i3 は「77」となり、加算手段9から
電力変換装置2には、太陽電池から最大電力を取り出す
ことができる出力指令値「77」が送られる。
The control means 8 searches for a third command signal i 3 due to a change in the amount of solar radiation and a new second command signal i 2 for obtaining the maximum output from the solar cell even after the output power changes. As a result, the second command signal i 2 becomes about “7”,
The third command signal i 3 becomes “77”, and the output command value “77” capable of extracting the maximum power from the solar cell is sent from the adding means 9 to the power conversion device 2.

【0042】このように、日射量をもとに演算された第
1の指令信号i1 と太陽電池の電圧・電流を検出して変
化させる第2の指令信号i2 を加算した第3の指令信号
3を電力変換装置2の出力指令値とすることにより、
通常は精度よく最適動作点を追従して太陽電池から最大
出力を取り出し、日射量が急激に変動する場合において
も、日射量をもとに演算された第1の指令信号i1 が日
射の変動に応じた値となるので、第3の指令信号i3
速やかに最適な出力指令値に近づき、その後、第2の指
令信号i2 を微小変化させて探索することで、素早く第
3の指令信号i3 を最適な出力指令値にする。よって、
日射急変時にも、太陽電池の最適動作点を迅速かつ高精
度に追従できる。
As described above, the third command obtained by adding the first command signal i 1 calculated based on the amount of solar radiation and the second command signal i 2 for detecting and changing the voltage / current of the solar cell is added. By setting the signal i 3 as the output command value of the power conversion device 2,
Usually, even when the maximum output is extracted from the solar cell by accurately following the optimum operating point and the amount of solar radiation changes rapidly, the first command signal i 1 calculated based on the amount of solar radiation changes the amount of solar radiation. Therefore, the third command signal i 3 quickly approaches the optimum output command value, and then the second command signal i 2 is slightly changed to search for the third command signal i 3. The signal i 3 is set to the optimum output command value. Therefore,
The optimum operating point of the solar cell can be swiftly and accurately tracked even when the solar radiation changes suddenly.

【0043】また、光量検出手段6として太陽電池1と
ほぼ同じ特性を持つ光電変換素子を用いれば、日射変動
時においても、正確に第1の指令信号i1 が出力され、
速やかに最適動作点を追尾できる。
If a photoelectric conversion element having substantially the same characteristics as the solar cell 1 is used as the light amount detecting means 6, the first command signal i 1 is accurately output even when the solar radiation changes.
The optimum operating point can be quickly tracked.

【0044】第2の実施例 次に、本発明の第2の実施例について説明する。図3は
本発明の第2の実施例に係る太陽光発電システムの構成
を示している。図3のシステムは、図1のものに対し、
光量検出手段6から出力される光量信号を、演算手段7
だけでなく制御手段8にも入力し、光量が急激変化した
場合は第2の指令信号を変化させないようにした点が相
違する。他の構成は図1と同様である。
Second Embodiment Next, a second embodiment of the present invention will be described. FIG. 3 shows the configuration of a solar power generation system according to the second embodiment of the present invention. The system of FIG. 3 is different from that of FIG.
The light amount signal output from the light amount detecting means 6 is calculated by the calculating means 7
Not only that, it is input to the control means 8 as well, and the second command signal is not changed when the light amount changes abruptly. Other configurations are the same as those in FIG.

【0045】次に、本実施例の制御方式がどのようにし
て最大電力を得るかを説明する。
Next, how the control system of this embodiment obtains the maximum power will be described.

【0046】演算手段7の関数特性は、第1の実施例と
同様に図2の実線で示されている。図2の横軸は検出さ
れた光量信号であり、縦軸は第1の指令信号i1 であ
る。演算手段7の入出力間には比較定数kの比例関係が
ある。演算手段7はこの関係に従い第1の指令信号i1
を出力する。今、日射量が50mW/m2 の場合を考え
る。光量検出手段6は日射計であり、その出力には光量
信号「50」を送信する。よって、第1の指令信号i1
は、図2の実線に示される特性に従って、i1 =「5
0」となる。
The function characteristic of the calculating means 7 is shown by the solid line in FIG. 2 as in the first embodiment. The horizontal axis of FIG. 2 is the detected light amount signal, and the vertical axis is the first command signal i 1 . There is a proportional relationship of the comparison constant k between the input and output of the calculation means 7. The calculation means 7 follows the above relationship and outputs the first command signal i 1
Is output. Now, consider the case where the amount of solar radiation is 50 mW / m 2 . The light amount detecting means 6 is a pyranometer, and transmits a light amount signal "50" to its output. Therefore, the first command signal i 1
Is i 1 = “5” according to the characteristic shown by the solid line in FIG.
0 ".

【0047】いま、最適な指令値が第1の実施例と同様
に図2の一点鎖線とすると、日射量が50mW/m2
時の最適な指令値は「55」であり、最適な指令値と第
1の指令信号i1 の間には「5」ほどの隔たりがある。
Assuming that the optimum command value is the one-dot chain line of FIG. 2 as in the first embodiment, the optimum command value is "55" when the amount of solar radiation is 50 mW / m 2 , and the optimum command value is There is a gap of "5" between the value and the first command signal i 1 .

【0048】そこで、制御手段8が機能する。制御手段
8には、いわゆる山登り法のアルゴリズムを搭載したマ
イクロコンピュータが備わっており、その山登り法に従
って、制御手段8は第2の指令信号i2 を変化させる。
第1の指令信号i1 と第2の指令信号i2 を加算して得
られる第3の指令信号i3 が出力指令値となるので、第
2の指令信号i2 を変化させれば太陽電池の動作点も変
わり、その動作点に応じた電力が取り出される。そし
て、第2の指令信号i2 が「5」(第3の指令信号i3
が「55」)で太陽電池から最大の電力が取り出され、
第2の指令信号i2 は微小変化しながら約「5」とな
る。
Therefore, the control means 8 functions. The control means 8 is provided with a microcomputer equipped with a so-called hill-climbing algorithm, and the control means 8 changes the second command signal i 2 according to the hill-climbing method.
Since the third command signal i 3 obtained by adding the first command signal i 1 and the second command signal i 2 becomes the output command value, if the second command signal i 2 is changed, the solar cell Also changes its operating point, and electric power corresponding to the operating point is extracted. Then, the second command signal i 2 is “5” (the third command signal i 3
Is "55"), the maximum power is taken out from the solar cell,
The second command signal i 2 becomes about “5” while slightly changing.

【0049】次に、日射量が50mW/m2 から100
mW/m2 に緩やかに増加した場合について説明する。
Next, the amount of solar radiation is from 50 mW / m 2 to 100.
A case where the power consumption is gradually increased to mW / m 2 will be described.

【0050】演算手段7は、図2の実線の特性に従い、
第1の指令信号i1 =「100」を出力する。この時の
第2の指令信号i2 は「5」付近なので、第3の指令信
号i3 は約「105」となる。日射量が100mW/m
2 の時の最適な指令値は図2の一点鎖線より「110」
であるから、このままでは第3の指令信号i3 は最適な
指令値に対して「5」ほど小さくなる。
The calculating means 7 follows the characteristics of the solid line in FIG.
The first command signal i 1 = “100” is output. Since the second command signal i 2 at this time is near “5”, the third command signal i 3 becomes about “105”. The amount of solar radiation is 100 mW / m
Optimum command value at 2 than one-dot chain line in FIG. 2, "110"
Therefore, in this state, the third command signal i 3 becomes smaller than the optimum command value by "5".

【0051】制御手段8は、第2の指令信号i2 を微小
変化させながら太陽電池から最大の出力が得られる第2
の指令信号i2 探索しているが、日射量変動が緩やかな
場合はその探索を継続する。したがって、日射量が変動
し太陽電池から最大の出力が得られる第2の指令信号i
2 が変化すると、上記探索により新たな第2の指令信号
2 を探す。その結果、第2の指令信号i2 は約「1
0」となり、第3の指令信号i3 は「110」となり、
加算手段9から電力変換装置2には、太陽電池から最大
電力を取り出すことができる出力指令値が送られる。
The control means 8 controls the second command signal i.sub.2 so as to obtain the maximum output from the solar cell while slightly changing the second command signal i.sub.2.
Although the command signal i 2 is searched for, the search is continued if the variation in the amount of solar radiation is moderate. Therefore, the second command signal i in which the amount of solar radiation fluctuates and the maximum output from the solar cell is obtained
When 2 changes, a new second command signal i 2 is searched for by the above search. As a result, the second command signal i 2 is approximately "1".
0 ”, the third command signal i 3 becomes“ 110 ”,
An output command value capable of extracting the maximum power from the solar cell is sent from the adding means 9 to the power conversion device 2.

【0052】その次に、日射量が100mW/m2 から
70mW/m2 に急激に減少した場合について説明す
る。
[0052] Subsequently, a description will be given of a case where solar radiation is suddenly reduced from 100 mW / m 2 to 70 mW / m 2.

【0053】演算手段7は、図2の実線の特性に従い、
第1の指令信号i1 =「70」を出力する。この時の第
2の指令信号i2 は「10」付近なので、第3の指令信
号i3 は約「80」となる。日射量が100mW/m2
の時の最適な指令値は「77」であるから、このままで
は第3の指令信号i3 は最適な指令値に対して「3」ほ
ど大きくなる。
The calculation means 7 follows the characteristics of the solid line in FIG.
The first command signal i 1 = “70” is output. Since the second command signal i 2 at this time is near “10”, the third command signal i 3 becomes about “80”. The amount of solar radiation is 100 mW / m 2
Since the optimum command value when a "77", the command signal i 3 of the third in this state increases as "3" for optimum command value.

【0054】この時、日射変動が急峻であるので、制御
手段8は一時動作を停止する。停止している間は、停止
直前の第2の指令信号i2 を保持・出力し続ける。そし
て、日射変動の速度がある閾値以下になると、制御手段
8は再び動作を開始し、第2の指令信号i2 を微小変化
させて探索を行ない、太陽電池から最大の出力が得られ
る第2の指令信号i2 を探す。その結果、第2の指令信
号i2 は約「7」となり、第3の指令信号i3 は「7
7」となり、加算手段9から電力変換装置2には、太陽
電池から最大電力を取り出すことができる出力指令値が
送られる。
At this time, since the solar radiation fluctuation is steep, the control means 8 suspends the temporary operation. During the stop, the second command signal i 2 immediately before the stop is kept and output. Then, when the speed of the solar radiation fluctuation becomes equal to or lower than a certain threshold value, the control means 8 restarts the operation, minutely changes the second command signal i 2 to perform the search, and the maximum output is obtained from the solar cell. Search for the command signal i 2 . As a result, the second command signal i 2 becomes about “7” and the third command signal i 3 becomes “7”.
7 ”, and the output command value capable of extracting the maximum power from the solar cell is sent from the adding means 9 to the power conversion device 2.

【0055】このように、日射量をもとに演算された第
1の指令信号i1 と太陽電池の電圧・電流を検出して変
化させる第2の指令信号i2 を加算した第3の指令信号
3を電力変換装置2の出力指令値とすることにより、
通常は精度よく最適動作点を追従して太陽電池から最大
出力を取り出すことができる。また、日射量が急激に変
動する場合においても、日射量をもとに演算された第1
の指令信号i1 が日射の変動に応じた値となると同時に
第2の指令信号i2 は日射量急変となる直前の値を保持
するので、第3の指令信号i3 は速やかに最適な出力指
令値に近づき、その後日射の変化が緩やかになってか
ら、第2の指令信号i2 を微小変化させて探索すること
で、素早く第3の指令信号i3 を最適な出力指令値にす
る。よって、日射急変時にも、誤動作を起こすことな
く、太陽電池の最適動作点を迅速かつ高精度に追従でき
る。
As described above, the third command is obtained by adding the first command signal i 1 calculated based on the amount of solar radiation and the second command signal i 2 for detecting and changing the voltage / current of the solar cell. By setting the signal i 3 as the output command value of the power conversion device 2,
Usually, the maximum output can be taken out from the solar cell by accurately following the optimum operating point. Even when the amount of solar radiation fluctuates rapidly, the first value calculated based on the amount of solar radiation
Since the command signal i 2 command signal i 1 at the same time a second becomes a value corresponding to the variation of the solar radiation holds the value immediately before the insolation sudden change, a third command signal i 3 is promptly optimal output By approaching the command value and then gradually changing the amount of solar radiation, the second command signal i 2 is slightly changed to search, thereby quickly setting the third command signal i 3 to the optimum output command value. Therefore, even when the solar radiation suddenly changes, the optimum operating point of the solar cell can be swiftly and accurately followed without causing a malfunction.

【0056】第3の実施例 本発明の第3の実施例について説明する。本発明の太陽
光発電システムの構成は、図4に示されるように、図1
のシステムに記憶手段10を付加したものである。この
他に、図3のシステムに記憶手段10を付加した構成に
してもよい。また、演算手段7、制御手段8および加算
手段9は同一の制御用マイクロコンピュータにより実現
する方が好ましい。通常の動作は、第1の実施例あるい
は第2の実施例と同じであり、第1の実施例や第2の実
施例との違いは演算手段7の関数特性の設定にある。
Third Embodiment A third embodiment of the present invention will be described. As shown in FIG. 4, the configuration of the solar power generation system of the present invention is as shown in FIG.
The storage means 10 is added to the above system. In addition to this, the system of FIG. 3 may be added with the storage unit 10. Further, it is preferable that the calculation means 7, the control means 8 and the addition means 9 are realized by the same control microcomputer. The normal operation is the same as in the first or second embodiment, and the difference from the first or second embodiment lies in the setting of the function characteristic of the calculating means 7.

【0057】それでは、演算手段7の関数特性の設定に
ついて説明する。
Now, the setting of the function characteristic of the calculating means 7 will be described.

【0058】図5の実線は、演算手段7の関数特性の初
期設定とする。演算手段7は、この関数特性に従って第
1の指令信号i1 を出力する。ある所定期間、このまま
で制御を行なうと同時に、この時の光量信号と第3の指
令信号i3 を制御用マイクロコンピュータ内のRAMあ
るいは他の記憶手段に記録する。所定期間に記憶された
光量信号と第3の指令信号i3 との関係を近似できるよ
うな関数を演算により求め、これを新たな演算手段7の
関数特性とする。光量信号と第3の指令信号i3 の関係
を近似する関数を求める方法は種々あるが、例えば、最
小二乗法による直線近似や、領域区分を行なったうえで
領域ごとに直線近似を行なう方法などがある。記録値か
ら近似関数を求めるのは、制御用マイクロコンピュータ
の仕事量が少ない時、例えば、夜間に行なう方が好まし
い。また、演算を行なう所定期間は種々考えられるが、
一週間ごと、一か月ごと、あるいは季節ごとでもよい。
The solid line in FIG. 5 is the initial setting of the function characteristic of the calculating means 7. The calculating means 7 outputs the first command signal i 1 according to this function characteristic. The control is performed as it is for a predetermined period, and at the same time, the light amount signal and the third command signal i 3 at this time are recorded in the RAM or other storage means in the control microcomputer. A function capable of approximating the relationship between the light amount signal stored in the predetermined period and the third command signal i 3 is obtained by calculation, and this is used as the function characteristic of the new calculation means 7. There are various methods for obtaining a function that approximates the relationship between the light amount signal and the third command signal i 3 , but for example, a linear approximation by the least squares method, a method of performing area division, and then performing a linear approximation for each area, etc. There is. The approximation function is preferably obtained from the recorded value when the control microcomputer has a small amount of work, for example, at night. There are various possible predetermined periods for calculation,
It may be weekly, monthly or seasonal.

【0059】今、所定期間の記録結果が図5中の〇印で
あり、最小二乗法により演算手段7の関数特性をもとめ
ると、図5の点線のような結果が得られる。これによ
り、図5から明らかなように、初期設定値と比較して第
1の指令信号i1 がより正確な最適な出力指令値に近い
ので、太陽電池1の最適動作点を迅速かつ高精度に追従
できる。
Now, the recording result for the predetermined period is marked with a circle in FIG. 5, and when the function characteristic of the calculating means 7 is obtained by the least square method, the result as shown by the dotted line in FIG. 5 is obtained. As a result, as is clear from FIG. 5, the first command signal i 1 is closer to the more accurate and optimal output command value as compared with the initial setting value, so that the optimum operating point of the solar cell 1 can be quickly and highly accurately determined. Can follow.

【0060】このように、第3の実施例の特徴は、太陽
電池1と光量検出手段6の特性が変わっても、演算手段
7の関数特性を実際の運転データをもとに変更すること
である。これにより、光量検出手段6に太陽電池とは特
性が異なる安価な光電変換素子を用いても、太陽電池1
の最適動作点を迅速かつ高精度に追従することができ
る。
As described above, the feature of the third embodiment is that, even if the characteristics of the solar cell 1 and the light amount detecting means 6 are changed, the function characteristics of the calculating means 7 are changed based on the actual operation data. is there. As a result, even if an inexpensive photoelectric conversion element having a characteristic different from that of the solar cell is used for the light amount detection means 6, the solar cell 1
The optimum operating point can be tracked quickly and with high accuracy.

【0061】[0061]

【発明の効果】以上述べてきたように、本発明の、太陽
電池、該太陽電池からの電力を負荷に供給する電力変換
手段、該太陽電池の電流値を検出する電流検出手段、該
太陽電池の電圧値を検出する電圧検出手段および日射量
を検出する光量検出手段を具備する太陽光発電システム
の、前記電流検出手段と前記電圧検出手段と前記光量検
出手段からの値に基づいて前記電力変換手段を制御する
電力制御装置の電力制御方式において、前記日射量から
所定の関数特性により第1の指令信号を算出する工程
と、前記太陽電池の動作点を変動させて電圧値および電
流値を取り込み、電流値と電圧値の積として求まる電力
値が最大となるよう第2の指令信号を出力する工程と、
第1の指令信号および第2の指令信号を加算し第3の指
令信号を出力する工程を有し、第3の指令信号により前
記電力変換手段の出力を制御する電力制御方式では、以
下の効果を有する。
As described above, the solar cell of the present invention, the power conversion means for supplying the electric power from the solar cell to the load, the current detection means for detecting the current value of the solar cell, and the solar cell. Power conversion based on the values from the current detection unit, the voltage detection unit, and the light amount detection unit of a solar power generation system including a voltage detection unit that detects the voltage value of In a power control system of a power control device for controlling the means, a step of calculating a first command signal from the amount of solar radiation according to a predetermined functional characteristic, and a voltage value and a current value are fetched by changing an operating point of the solar cell. , A step of outputting a second command signal so that the electric power value obtained as the product of the current value and the voltage value becomes maximum,
In the power control method including the step of adding the first command signal and the second command signal and outputting the third command signal, and controlling the output of the power conversion means by the third command signal, the following effects are obtained. Have.

【0062】日射量を出力指令値に反映させること
で、日射変動時においても迅速に最適動作点に到達で
き、太陽電池から最大電力を取り出すことができる。 また、日射量を出力指令値に反映させる部分とは別の
箇所で、最適動作点の探索動作を行なうことにより、よ
り正確に最適動作点を追尾でき、太陽電池から最大電力
を取り出すことができる。 光量検出手段として安価な光電変換素子を用いると、
低コストにシステムを構成できる。 また光量検出手段に太陽電池とほぼ同じ特性を用いれ
ば、日射変動時においてもより正確かつ迅速に最適動作
点に到達でき、太陽電池から最大電力を取り出すことが
できる。 変化速度に応じて最適動作点探索動作を作動/停止さ
せれば、探索の誤動作を全く起こさずに最適動作点を追
尾するので、システムはより安定した動作を行なう。 日射量から第1の指令信号を算出する関数を実測デー
タをもとに変更すれば、日射変動時においても迅速に最
適動作点に到達でき、太陽電池から最大電力を取り出す
ことができる。
By reflecting the amount of solar radiation in the output command value, the optimum operating point can be reached quickly even when the solar radiation fluctuates, and the maximum power can be taken out from the solar cell. In addition, by performing a search operation for an optimum operating point at a position different from the part where the amount of solar radiation is reflected in the output command value, the optimum operating point can be tracked more accurately, and maximum power can be taken out from the solar cell. . If an inexpensive photoelectric conversion element is used as the light amount detection means,
The system can be configured at low cost. Further, if the light quantity detecting means has almost the same characteristics as the solar cell, the optimum operating point can be reached more accurately and quickly even when the solar radiation changes, and the maximum power can be taken out from the solar cell. If the optimum operating point searching operation is activated / stopped in accordance with the changing speed, the optimum operating point is tracked without causing any malfunction of the search, so that the system performs more stable operation. If the function for calculating the first command signal from the amount of solar radiation is changed based on the actual measurement data, the optimum operating point can be reached quickly even when the solar radiation fluctuates, and the maximum power can be taken out from the solar cell.

【0063】このように本発明の電力制御方式は大変有
用であり、特に、商用系統と連系する太陽光発電システ
ムでは、その効果は非常に大きい。
As described above, the power control system of the present invention is very useful, and its effect is very large especially in the solar power generation system connected to the commercial system.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の第1の実施例に係る電力制御方法を
使用した太陽光発電システムのブロック構成図である。
FIG. 1 is a block configuration diagram of a photovoltaic power generation system using a power control method according to a first embodiment of the present invention.

【図2】 図1および図3のシステムにおける電力制御
方法の光量信号と第1の指令信号との関係を説明するた
めのグラフである。
FIG. 2 is a graph for explaining the relationship between a light amount signal and a first command signal in the power control method in the system of FIGS. 1 and 3.

【図3】 本発明の第2の実施例に係る電力制御方法を
使用した太陽光発電システムのブロック構成図である。
FIG. 3 is a block configuration diagram of a photovoltaic power generation system using a power control method according to a second embodiment of the present invention.

【図4】 本発明の第3の実施例に係る電力制御方法を
使用した太陽光発電システムのブロック構成図である。
FIG. 4 is a block configuration diagram of a solar power generation system using a power control method according to a third embodiment of the present invention.

【図5】 図4のシステムにおける電力制御方法の光量
信号と第1の指令信号の関係を説明するための図であ
る。
5 is a diagram for explaining a relationship between a light amount signal and a first command signal in a power control method in the system of FIG.

【図6】 従来の電力制御方法による最適動作点探索の
説明図である。
FIG. 6 is an explanatory diagram of searching for an optimum operating point by a conventional power control method.

【符号の説明】[Explanation of symbols]

1:太陽電池、2:電力変換装置、3:負荷、4:電圧
検出手段、5:電流検出手段、6:光量検出手段、7:
演算手段、8:制御手段、9:加算手段、10:記憶手
段。
1: solar cell, 2: power converter, 3: load, 4: voltage detecting means, 5: current detecting means, 6: light amount detecting means, 7:
Calculation means, 8: control means, 9: addition means, 10: storage means.

Claims (11)

【特許請求の範囲】[Claims] 【請求項01】 太陽電池と、該太陽電池からの電力を
負荷に供給する電力変換手段と、該太陽電池の出力電流
を検出する電流検出手段と、該太陽電池の出力電圧を検
出する電圧検出手段と、光量検出手段と、該光量検出手
段からの光量検出信号を所定の関数特性に従って第1の
指令信号に変換する演算手段と、前記電流検出手段から
の電流信号と前記電圧検出手段からの電圧信号との積と
して求まる電力が最大となるよう第2の指令信号を出力
する制御手段と、前記第1の指令信号と前記第2の指令
信号を加算して第3の指令信号を作成する加算手段とを
有し、前記第3の指令信号を前記電力変換手段の出力指
令値とすることを特徴とする太陽光発電システム。
A solar cell, power conversion means for supplying electric power from the solar cell to a load, current detection means for detecting an output current of the solar cell, and voltage detection for detecting an output voltage of the solar cell. Means, a light amount detecting means, a calculating means for converting the light amount detecting signal from the light amount detecting means into a first command signal in accordance with a predetermined functional characteristic, a current signal from the current detecting means and a voltage detecting means from the voltage detecting means. Control means for outputting the second command signal so that the electric power obtained as the product of the voltage signal becomes maximum, and the third command signal is created by adding the first command signal and the second command signal. A solar power generation system, comprising: an addition unit, and using the third command signal as an output command value of the power conversion unit.
【請求項02】 前記光量検出手段として光電変換素子
を用いることを特徴とする請求項1記載の太陽光発電シ
ステム。
2. The photovoltaic power generation system according to claim 1, wherein a photoelectric conversion element is used as the light amount detecting means.
【請求項03】 前記光量検出手段として前記太陽電池
とほぼ同じ特性を持つ光電変換素子を用いることを特徴
とする請求項2記載の太陽光発電システム。
The photovoltaic power generation system according to claim 2, wherein a photoelectric conversion element having substantially the same characteristics as the solar cell is used as the light amount detecting means.
【請求項04】 前記光量検出手段からの光量検出信号
およびその変化分の少なくとも一方に応じて前記第2の
指令信号の変更を禁止する手段をさらに有することを特
徴とする請求項1ないし3の何れかに記載の太陽光発電
システム。
4. The method according to claim 1, further comprising means for prohibiting the change of the second command signal in accordance with at least one of the light amount detection signal from the light amount detecting means and the change amount thereof. The solar power generation system according to any one.
【請求項05】 少なくとも前記光量検出信号と前記第
2および第3の指令信号の一方とを記憶する記憶手段
と、記憶された値をもとに前記演算手段の関数特性を変
更する手段とをさらに有することを特徴とする請求項1
ないし4の何れかに記載の太陽光発電システム。
05. Storage means for storing at least the light amount detection signal and one of the second and third command signals; and means for changing the functional characteristic of the calculation means based on the stored value. The method according to claim 1, further comprising:
The solar power generation system according to any one of 1 to 4.
【請求項06】 太陽電池と、該太陽電池からの電力を
負荷に供給する電力変換手段と、該太陽電池の出力電流
を検出する電流検出手段と、該太陽電池の出力電圧を検
出する電圧検出手段と、光量検出手段とを具備する太陽
光発電システムの、前記太陽電池から最大の電力を取り
出すべく前記電力変換手段を制御する電力制御装置であ
って、前記光量検出手段からの光量検出信号を所定の関
数特性に従って第1の指令信号に変換する演算手段と、
前記電流検出手段からの電流信号と前記電圧検出手段か
らの電圧信号との積として求まる電力が最大となるよう
第2の指令信号を出力する制御手段と、前記第1の指令
信号と前記第2の指令信号を加算して第3の指令信号を
作成し出力する加算手段とを有し、前記第3の指令信号
を前記電力変換手段の出力指令値とすることを特徴とす
る電力制御装置。
06. A solar cell, power conversion means for supplying electric power from the solar cell to a load, current detection means for detecting an output current of the solar cell, and voltage detection for detecting an output voltage of the solar cell. And a power control device for controlling the power conversion means in order to extract the maximum power from the solar cell of a photovoltaic power generation system including a light quantity detection means, and a light quantity detection signal from the light quantity detection means. Arithmetic means for converting into a first command signal according to a predetermined function characteristic;
Control means for outputting a second command signal so that electric power obtained as a product of a current signal from the current detection means and a voltage signal from the voltage detection means becomes maximum, the first command signal and the second command signal. And an adder that creates a third command signal and outputs the third command signal, and the third command signal is an output command value of the power converter.
【請求項07】 前記光量検出手段からの光量検出信号
値およびその変化分の少なくとも一方に応じて前記第2
の指令信号の変更を禁止する手段をさらに有することを
特徴とする請求項6の電力制御装置。
The second amount of light is detected according to at least one of a light amount detection signal value from the light amount detecting means and a change amount thereof.
7. The power control device according to claim 6, further comprising means for prohibiting a change of the command signal of.
【請求項08】 少なくとも前記光量検出信号と前記第
2および第3の指令信号の一方とを記憶する記憶手段
と、記憶された値をもとに前記演算手段の関数特性を変
更する手段とをさらに有することを特徴とする請求項6
または請求項7の電力制御装置。
08. Storage means for storing at least the light amount detection signal and one of the second and third command signals; and means for changing the functional characteristic of the calculation means based on the stored value. 7. The method according to claim 6, further comprising:
Alternatively, the power control device according to claim 7.
【請求項09】 太陽電池と、該太陽電池からの電力を
負荷に供給する電力変換手段と、該太陽電池の電流値を
検出する電流検出手段と、該太陽電池の電圧値を検出す
る電圧検出手段と、太陽電池への入射光量を検出する光
量検出手段とを具備する太陽光発電システムの、前記太
陽電池から最大の電力を取り出すべく前記電力変換手段
を制御する電力制御方法であって、所定の関数特性に従
って前記光量から第1の指令信号を算出する工程と、前
記太陽電池の動作点を変動させてその出力電圧値および
電力値を取り込み、これら電流値と電圧値の積として求
まる電力値が最大となるよう第2の指令信号を出力する
工程と、第1の指令信号および第2の指令信号を加算し
て第3の指令信号を作成し出力する工程とを有し、第3
の指令信号により前記電力変換手段の出力を制御するこ
とを特徴とする電力制御方法。
A solar cell, a power conversion means for supplying electric power from the solar cell to a load, a current detection means for detecting a current value of the solar cell, and a voltage detection for detecting a voltage value of the solar cell. A power control method for controlling the power conversion means to extract maximum power from the solar cell in a photovoltaic power generation system including means and a light quantity detection means for detecting the amount of light incident on the solar cell, the method comprising: A step of calculating a first command signal from the light amount according to a function characteristic of, and an output voltage value and an electric power value of the operating point of the solar cell are changed to take in the electric power value obtained as a product of the current value and the voltage value. And a step of outputting the second command signal so as to maximize, and a step of adding the first command signal and the second command signal to generate and outputting the third command signal.
The power control method is characterized in that the output of the power conversion means is controlled by the command signal.
【請求項10】 太陽電池と、該太陽電池からの電力を
負荷に供給する電力変換手段と、該太陽電池の電流値を
検出する電流検出手段と、該太陽電池の電圧値を検出す
る電圧検出手段と、太陽電池への入射光量を検出する光
量検出手段とを備えた太陽光発電システムの、前記太陽
電池から最大の電力を取り出すべく前記電力変換手段を
制御する電力制御方法であって、所定の関数特性に従っ
て前記光量から第1の指令信号を算出する工程と、前記
太陽電池の動作点を変動させてその出力電圧値および電
流値を取り込み、これらの電流値と電圧値の積として求
まる電力値が最大となるよう第2の指令信号を出力し、
かつ光量およびその変化分の少なくとも1つに応じて前
記第2の指令信号の変更を禁止する工程と、第1の指令
信号および第2の指令信号を加算して第3の指令信号を
作成し出力する工程を有し、第3の指令信号により前記
電力変換手段の出力を制御することを特徴とする電力制
御方法。
10. A solar cell, power conversion means for supplying electric power from the solar cell to a load, current detection means for detecting a current value of the solar cell, and voltage detection for detecting a voltage value of the solar cell. A power control method for controlling the power conversion means to extract maximum power from the solar cell in a photovoltaic power generation system including means and a light quantity detection means for detecting the amount of light incident on the solar cell, A step of calculating a first command signal from the light amount according to a function characteristic of, and an operating point of the solar cell is varied to capture an output voltage value and a current value thereof, and electric power obtained as a product of the current value and the voltage value. Output the second command signal so that the value becomes maximum,
And a step of inhibiting the change of the second command signal according to at least one of the light amount and its change, and adding the first command signal and the second command signal to create a third command signal. A power control method comprising the step of outputting, and controlling the output of the power conversion means by a third command signal.
【請求項11】 少なくとも光量検出信号と第2および
第3の指令信号の一方とを記憶する工程と、記憶された
値をもとに前記第1の指令信号を算出する工程の関数特
性を変更する工程とをさらに有することを特徴とする請
求項9または請求項10の電力制御方法。
11. The function characteristic of at least the step of storing the light amount detection signal and one of the second and third command signals and the step of calculating the first command signal based on the stored value is changed. The power control method according to claim 9 or 10, further comprising:
JP6287141A 1994-10-28 1994-10-28 Photovoltaic power generation system, device and method for controlling power for the same Pending JPH08123563A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6287141A JPH08123563A (en) 1994-10-28 1994-10-28 Photovoltaic power generation system, device and method for controlling power for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6287141A JPH08123563A (en) 1994-10-28 1994-10-28 Photovoltaic power generation system, device and method for controlling power for the same

Publications (1)

Publication Number Publication Date
JPH08123563A true JPH08123563A (en) 1996-05-17

Family

ID=17713605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6287141A Pending JPH08123563A (en) 1994-10-28 1994-10-28 Photovoltaic power generation system, device and method for controlling power for the same

Country Status (1)

Country Link
JP (1) JPH08123563A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2259871A1 (en) * 2004-04-30 2006-10-16 Torytrans, S.L. Control system of dc/cc converters for photovoltaic cells with search of the point of maximum power based on microcontroller. (Machine-translation by Google Translate, not legally binding)
KR20060114087A (en) * 2005-04-27 2006-11-06 최진영 Electric power control device
JP2010117744A (en) * 2008-11-11 2010-05-27 Sharp Corp Solar photovoltaic power generator and solar photovoltaic power generation system
WO2010121211A2 (en) * 2009-04-17 2010-10-21 National Semiconductor Corporation System and method for over-voltage protection of a photovoltaic system with distributed maximum power point tracking
US7962249B1 (en) 2008-05-14 2011-06-14 National Semiconductor Corporation Method and system for providing central control in an energy generating system
US7969133B2 (en) 2008-05-14 2011-06-28 National Semiconductor Corporation Method and system for providing local converters to provide maximum power point tracking in an energy generating system
WO2011089959A1 (en) * 2010-01-19 2011-07-28 オムロン株式会社 Mppt controller, solar battery control device, solar power generation system, mppt control program, and control method for mppt controller
US7991511B2 (en) 2008-05-14 2011-08-02 National Semiconductor Corporation Method and system for selecting between centralized and distributed maximum power point tracking in an energy generating system
JP2011181055A (en) * 2010-02-08 2011-09-15 Minoru Murano Dc electric power source utilization system
US8139382B2 (en) 2008-05-14 2012-03-20 National Semiconductor Corporation System and method for integrating local maximum power point tracking into an energy generating system having centralized maximum power point tracking
JP2012514805A (en) * 2009-01-07 2012-06-28 パワー−ワン イタリイ ソチエタ ペル アチオーニ Method and system for extracting power from renewable energy sources
US8279644B2 (en) 2008-05-14 2012-10-02 National Semiconductor Corporation Method and system for providing maximum power point tracking in an energy generating system
US8289183B1 (en) 2008-04-25 2012-10-16 Texas Instruments Incorporated System and method for solar panel array analysis
US8294451B2 (en) 2007-12-03 2012-10-23 Texas Instruments Incorporated Smart sensors for solar panels
US8421400B1 (en) 2009-10-30 2013-04-16 National Semiconductor Corporation Solar-powered battery charger and related system and method
US8686332B2 (en) 2011-03-07 2014-04-01 National Semiconductor Corporation Optically-controlled shunt circuit for maximizing photovoltaic panel efficiency
US8884465B2 (en) 2009-04-17 2014-11-11 National Semiconductor Corporation System and method for over-voltage protection in a photovoltaic system
US9077206B2 (en) 2008-05-14 2015-07-07 National Semiconductor Corporation Method and system for activating and deactivating an energy generating system
US9979226B2 (en) 2013-11-06 2018-05-22 Toyota Jidosha Kabushiki Kaisha Solar battery controller
US10153383B2 (en) 2008-11-21 2018-12-11 National Semiconductor Corporation Solar string power point optimization

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2259871A1 (en) * 2004-04-30 2006-10-16 Torytrans, S.L. Control system of dc/cc converters for photovoltaic cells with search of the point of maximum power based on microcontroller. (Machine-translation by Google Translate, not legally binding)
KR20060114087A (en) * 2005-04-27 2006-11-06 최진영 Electric power control device
US8294451B2 (en) 2007-12-03 2012-10-23 Texas Instruments Incorporated Smart sensors for solar panels
US8289183B1 (en) 2008-04-25 2012-10-16 Texas Instruments Incorporated System and method for solar panel array analysis
US9077206B2 (en) 2008-05-14 2015-07-07 National Semiconductor Corporation Method and system for activating and deactivating an energy generating system
US7962249B1 (en) 2008-05-14 2011-06-14 National Semiconductor Corporation Method and system for providing central control in an energy generating system
US7969133B2 (en) 2008-05-14 2011-06-28 National Semiconductor Corporation Method and system for providing local converters to provide maximum power point tracking in an energy generating system
US7991511B2 (en) 2008-05-14 2011-08-02 National Semiconductor Corporation Method and system for selecting between centralized and distributed maximum power point tracking in an energy generating system
US8279644B2 (en) 2008-05-14 2012-10-02 National Semiconductor Corporation Method and system for providing maximum power point tracking in an energy generating system
US8139382B2 (en) 2008-05-14 2012-03-20 National Semiconductor Corporation System and method for integrating local maximum power point tracking into an energy generating system having centralized maximum power point tracking
JP2010117744A (en) * 2008-11-11 2010-05-27 Sharp Corp Solar photovoltaic power generator and solar photovoltaic power generation system
US10153383B2 (en) 2008-11-21 2018-12-11 National Semiconductor Corporation Solar string power point optimization
JP2012514805A (en) * 2009-01-07 2012-06-28 パワー−ワン イタリイ ソチエタ ペル アチオーニ Method and system for extracting power from renewable energy sources
WO2010121211A2 (en) * 2009-04-17 2010-10-21 National Semiconductor Corporation System and method for over-voltage protection of a photovoltaic system with distributed maximum power point tracking
WO2010121211A3 (en) * 2009-04-17 2011-03-10 National Semiconductor Corporation System and method for over-voltage protection of a photovoltaic system with distributed maximum power point tracking
US8884465B2 (en) 2009-04-17 2014-11-11 National Semiconductor Corporation System and method for over-voltage protection in a photovoltaic system
US8810068B2 (en) 2009-04-17 2014-08-19 National Semiconductor Corporation System and method for over-voltage protection of a photovoltaic system with distributed maximum power point tracking
US8421400B1 (en) 2009-10-30 2013-04-16 National Semiconductor Corporation Solar-powered battery charger and related system and method
WO2011089959A1 (en) * 2010-01-19 2011-07-28 オムロン株式会社 Mppt controller, solar battery control device, solar power generation system, mppt control program, and control method for mppt controller
US20120296584A1 (en) * 2010-01-19 2012-11-22 Omron Corporation Mppt controller, solar battery control device, solar power generation system, mppt control program, and control method for mppt controller
CN102687089A (en) * 2010-01-19 2012-09-19 欧姆龙株式会社 MPPT controller,solar battery control device, solar power generation system,mppt control program,and control method for mppt controller
JP2011170835A (en) * 2010-01-19 2011-09-01 Omron Corp Mppt controller, solar battery control device, solar power generation system, mppt control program, and control method for mppt controller
EP2527949A4 (en) * 2010-01-19 2016-01-27 Omron Tateisi Electronics Co Mppt controller, solar battery control device, solar power generation system, mppt control program, and control method for mppt controller
JP2011181055A (en) * 2010-02-08 2011-09-15 Minoru Murano Dc electric power source utilization system
US8686332B2 (en) 2011-03-07 2014-04-01 National Semiconductor Corporation Optically-controlled shunt circuit for maximizing photovoltaic panel efficiency
US9979226B2 (en) 2013-11-06 2018-05-22 Toyota Jidosha Kabushiki Kaisha Solar battery controller

Similar Documents

Publication Publication Date Title
JPH08123563A (en) Photovoltaic power generation system, device and method for controlling power for the same
JP2810630B2 (en) Solar cell power control device, power control system, power control method, and voltage / current output characteristic measurement method
Miyatake et al. Control characteristics of a fibonacci-search-based maximum power point tracker when a photovoltaic array is partially shaded
JP3382434B2 (en) Battery power supply voltage control device and voltage control method
JP3554116B2 (en) Power control device and solar power generation system using the same
Muljadi PV water pumping with a peak-power tracker using a simple six-step square-wave inverter
US7420354B2 (en) Method and apparatus for controlling power drawn from an energy converter
KR102242814B1 (en) String-optima having possible output optimal equal voltage
US9297879B2 (en) Method for tracking a solar generator to the sun, control for a solar plant and solar plant
JP2000112545A (en) Photovoltaic power generation system
JPH06348352A (en) Power controller and power control method
JPH08227324A (en) Photovoltaic power generator
Alqarni et al. Maximum power point tracking for photovoltaic system: modified perturb and observe algorithm
JP3563865B2 (en) Solar cell power controller
CN103197718B (en) The maximum power output control method of photovoltaic array and system
US10256743B2 (en) Method and apparatus for regulating an electrical power source based on global and local maximum load power
JP5862639B2 (en) Solar cell control device
Xu et al. Proposal for an active PV array to improve system efficiency during partial shading
Kandemir et al. Conventional and soft-computing based MPPT methods comparisons in direct and indirect modes for single stage PV systems
JP3359206B2 (en) Battery power control device
JPS63181015A (en) Control system for maximum output of photovoltaic power generator
Atik et al. Comparison of four MPPT techniques for PV systems
CN111198592A (en) Photovoltaic maximum power point tracking method and device
Belkasmi et al. Improved dual-axis tracker using a fuzzy-logic based controller
Routray et al. A brief review and comparative analysis of two classical MPPT techniques