JPH08111516A - Solid state image sensor with built-in light source - Google Patents

Solid state image sensor with built-in light source

Info

Publication number
JPH08111516A
JPH08111516A JP6245162A JP24516294A JPH08111516A JP H08111516 A JPH08111516 A JP H08111516A JP 6245162 A JP6245162 A JP 6245162A JP 24516294 A JP24516294 A JP 24516294A JP H08111516 A JPH08111516 A JP H08111516A
Authority
JP
Japan
Prior art keywords
substrate
solid
image sensor
state image
transparent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6245162A
Other languages
Japanese (ja)
Other versions
JP3561302B2 (en
Inventor
Mitsufumi Kodama
光文 小玉
Michio Arai
三千男 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
TDK Corp
Original Assignee
Semiconductor Energy Laboratory Co Ltd
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd, TDK Corp filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP24516294A priority Critical patent/JP3561302B2/en
Priority to US08/541,871 priority patent/US5627364A/en
Publication of JPH08111516A publication Critical patent/JPH08111516A/en
Application granted granted Critical
Publication of JP3561302B2 publication Critical patent/JP3561302B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14678Contact-type imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14687Wafer level processing

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Facsimile Heads (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

PURPOSE: To obtain an inexpensive micro solid state image sensor with built-in light source in which any kind of transparent or opaque substrate can be employed at the solid state image sensor element part. CONSTITUTION: The solid state image sensor with built-in light source comprises thin film light emission elements 30 formed on a transparent substrate 21 and solid state image sensor elements 101 formed on a substrate 1. The transparent substrate 21 and the substrate 1 are integrated through a transparent adhesive 27 or the like while facing the sides arranged with the elements.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ファクシミリ等に用い
られるイメージセンサの光源一体型固体撮像装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid-state image pickup device integrated with a light source of an image sensor used in a facsimile or the like.

【0002】[0002]

【従来の技術】近年、ファクシミリはその普及に合わせ
て、より小型化、軽量化、低価格化が求められている。
ファクシミリ等に用いられているイメージセンサは大別
して非密着型、密着型、完全密着型の3種類がある。
2. Description of the Related Art In recent years, facsimiles have been required to be smaller, lighter, and cheaper in accordance with the spread thereof.
Image sensors used in facsimiles and the like are roughly classified into three types: non-contact type, contact type, and perfect contact type.

【0003】電荷結合素子(CCD)を用いた非密着型
は、すでに確立されている、シリコンウェハを用いたL
SI製造プロセスで生産できることやCCDチップが小
型で済むこともあって価格面で有利であるが、原稿を縮
小レンズ系を通してCCDに投影しているため、小型
化、軽量化に関しては他の2方式に比べ劣る。
The non-contact type using a charge coupled device (CCD) has already been established, and L using a silicon wafer is used.
It is advantageous in terms of price because it can be produced by the SI manufacturing process and the CCD chip can be small, but since the original is projected on the CCD through the reduction lens system, there are two other methods for downsizing and weight reduction. Inferior to.

【0004】また、密着型イメージセンサは縮小光学系
がいらないため小型化が比較的容易であるというメリッ
トがあり徐々に市場に受け入れられつつあるが、やや高
価であるということがその普及を阻んでいるという状態
である。また、セルフォックレンズアレイを用いて原稿
を固体撮像素子上に投影していることと光源として発光
ダイオード(LED)アレイがあるために、ある程度の
幅と厚さが必要(〜15mm)である。
Further, the contact type image sensor has a merit that it is relatively easy to miniaturize since it does not need a reduction optical system and is gradually gaining acceptance in the market, but its rather high price hinders its popularization. It is in the state of being. Further, since the original is projected on the solid-state image pickup device using the SELFOC lens array and a light emitting diode (LED) array is used as a light source, a certain width and thickness are required (up to 15 mm).

【0005】一方、完全密着型イメージセンサは密着型
イメージセンサと比してもさらに小型化が可能であり、
セルフォックレンズアレイと撮像素子の光学的な位置調
整が不必要であるため組立工程の簡素化が容易であると
いう特徴を持つ。しかしながら、密着型イメージセンサ
と同様にLED分の厚みはやはり必要である。また、完
全密着型イメージセンサは固体撮像素子が配置されてい
る基板の裏側から原稿に光を投射する必要があるため透
明基板上に固体撮像素子を形成する必要があり、シリコ
ンウェハ上に形成されるCCDやアルミナ基板などの光
を透過しない基板に形成された固体撮像素子を完全密着
型イメージセンサ構造にする事は困難であった。
On the other hand, the perfect contact image sensor can be further downsized as compared with the contact image sensor.
Since it is unnecessary to adjust the optical positions of the SELFOC lens array and the image sensor, the assembly process can be simplified easily. However, as in the contact image sensor, the thickness of the LED is still necessary. In addition, since the perfect contact image sensor needs to project light onto the original from the back side of the substrate on which the solid-state image sensor is arranged, it is necessary to form the solid-state image sensor on the transparent substrate, which is formed on the silicon wafer. It has been difficult to form a solid-state image sensor structure for a solid-state image sensor formed on a substrate that does not transmit light, such as a CCD or an alumina substrate.

【0006】以下、従来例を図面に基づいて説明する。
図7は、従来例の説明図であり、図7(a)は、従来の
密着型イメージセンサの説明である。図7(a)におい
て、筐体41内には、LEDハウス42とセルフォック
レンズアレイ29と固体撮像素子が載っている基板1が
設けてある。この密着型イメージセンサは、LEDハウ
ス42から発射された光が筐体41上の原稿(図示せ
ず)により反射し、この反射光がセルフォックレンズア
レイ29を通り基板1上の固体撮像素子に入力されるも
のである。
A conventional example will be described below with reference to the drawings.
FIG. 7 is an explanatory view of a conventional example, and FIG. 7A is an explanation of a conventional contact image sensor. In FIG. 7A, the substrate 1 in which the LED house 42, the SELFOC lens array 29, and the solid-state image sensor are mounted is provided in the housing 41. In this contact-type image sensor, the light emitted from the LED house 42 is reflected by a document (not shown) on the housing 41, and the reflected light passes through the SELFOC lens array 29 to the solid-state image sensor on the substrate 1. It is input.

【0007】この密着型イメージセンサは、図7(a)
下部の矢印で示すように、ある程度の幅と厚さが必要と
なる。図7(b)は、従来の完全密着型イメージセンサ
の説明であり、筐体41の上面には、固体撮像素子10
が載っている基板1が設けてあり、この基板1には光を
透過するためのスリット40が設けてある。また、筐体
41の下面には、LEDハウス42が設けてある。この
完全密着型イメージセンサは、LEDハウスから発射さ
れた光が基板1に設けた光を透過させるためのスリット
40を通り原稿(図示せず)より反射し、この反射光が
固体撮像素子10に入力されるものである。
This contact type image sensor is shown in FIG.
Some width and thickness is required, as indicated by the arrow at the bottom. FIG. 7B is a description of a conventional perfect contact image sensor, in which the solid-state image sensor 10 is provided on the upper surface of the housing 41.
Is provided with a substrate 1 on which a slit 40 for transmitting light is provided. An LED house 42 is provided on the lower surface of the housing 41. In this perfect contact type image sensor, the light emitted from the LED house passes through a slit 40 for transmitting the light provided on the substrate 1 and is reflected by a document (not shown), and the reflected light is reflected by the solid-state image sensor 10. It is input.

【0008】この完全密着型イメージセンサは、図7
(b)下部の上下の矢印のように、LEDハウス分の厚
さが必要となる。
This perfect contact type image sensor is shown in FIG.
(B) The thickness of the LED house is required as indicated by the upper and lower arrows at the bottom.

【0009】[0009]

【発明が解決しようとする課題】上記従来のものにおい
ては、次のような課題があった。非密着型のイメージセ
ンサは、原稿を縮小レンズ系を通してCCDに投影して
いるため、小型化、軽量化ができなかった。また、密着
型イメージセンサは、光源としてLEDハウスがあるた
め、ある程度以上小型化することができなかった。さら
に、完全密着型イメージセンサは、LEDハウス分の厚
さが必要であり、また、固体撮像素子は、透明基板上に
形成する必要があった。
The above-mentioned conventional ones have the following problems. Since the non-contact type image sensor projects the original document onto the CCD through the reduction lens system, the size and weight cannot be reduced. Further, since the contact type image sensor has an LED house as a light source, it cannot be downsized to a certain extent. Further, the perfect contact type image sensor needs to have a thickness corresponding to the LED house, and the solid-state image sensor needs to be formed on a transparent substrate.

【0010】以上、イメージセンサの大きさを制限して
いるものはレンズや光源などの光学系であることが分か
った。即ち、さらにイメージセンサの小型化を達成する
ためには、光学系を小型化する事が必要であることが分
かる。また、これらの光学系は製造コストという点から
見ても固体撮像素子本体と同等かそれ以上の割合を占め
ており、光学系のコストダウンが低価格化に非常に重要
であるといえる。加えて、イメージセンサの固体撮像素
子部を基板の種類を問わずに製造できるようになればさ
らにコストダウンを図ることが可能になる。
As described above, it has been found that what limits the size of the image sensor is an optical system such as a lens or a light source. In other words, it is necessary to reduce the size of the optical system in order to further reduce the size of the image sensor. Further, these optical systems occupy a ratio equal to or higher than that of the solid-state image pickup device main body from the viewpoint of manufacturing cost, and it can be said that cost reduction of the optical system is very important for lowering the cost. In addition, if the solid-state image pickup device portion of the image sensor can be manufactured regardless of the type of substrate, the cost can be further reduced.

【0011】本発明は、固体撮像素子部を透明、非透明
の基板の種類を問わず製造でき、超小型でかつ安価なイ
メージセンサを実現することを目的とする。
It is an object of the present invention to realize an image sensor which is ultra-compact and inexpensive, in which the solid-state image pickup device section can be manufactured regardless of the type of transparent or non-transparent substrate.

【0012】[0012]

【課題を解決するための手段】上記目的を達成するた
め、本発明では次のように構成した。図1は、本発明の
1実施例構成図である。図1において、基板1上に固体
撮像素子10と固体撮像素子10の読み取り駆動回路2
0を形成し、さらに透明基板21上に薄膜発光素子30
を形成する。次に、これらの基板1と透明基板21と
を、それぞれ素子が配置された面が合わされるように透
明体である接着剤27等で一体化(接着又はモールド)
する。
In order to achieve the above object, the present invention is configured as follows. FIG. 1 is a configuration diagram of an embodiment of the present invention. In FIG. 1, a solid-state image sensor 10 and a read drive circuit 2 for the solid-state image sensor 10 are provided on a substrate 1.
0, and further the thin film light emitting device 30 is formed on the transparent substrate 21.
To form. Next, the substrate 1 and the transparent substrate 21 are integrated (bonded or molded) with an adhesive 27 or the like which is a transparent body so that the surfaces on which the elements are arranged are aligned.
To do.

【0013】[0013]

【作用】上記構成に基づく本発明の作用を説明する。薄
膜発光素子30のエレクトロルミネセンス(以下、EL
という)膜24から発射された光は、原稿28で反射さ
れ、固体撮像素子10で光電変換され、この光電変換さ
れた出力が読み取り駆動回路20に入力される。この駆
動回路20から原稿の濃淡画像に応じた信号が得られる
ものである。
The operation of the present invention based on the above configuration will be described. Electroluminescence of the thin film light emitting device 30 (hereinafter, EL
The light emitted from the film 24 is reflected by the original 28, photoelectrically converted by the solid-state image sensor 10, and the photoelectrically converted output is input to the reading drive circuit 20. A signal according to the grayscale image of the original is obtained from this drive circuit 20.

【0014】この構成において、薄膜発光素子30は、
例えば薄膜面状体の有機EL素子で構成されるので、透
明基板21上にフラットに設置することができ、薄膜発
光素子面を固体撮像素子面と貼り合わせることにより超
小型の固体撮像装置(イメージセンサ)を安価に得るこ
とができる。
In this structure, the thin film light emitting device 30 is
For example, since it is composed of a thin film planar organic EL device, it can be installed flat on the transparent substrate 21, and by bonding the thin film light emitting device surface to the solid state imaging device surface, a microminiature solid state imaging device (image Sensor) can be obtained at low cost.

【0015】[0015]

【実施例】【Example】

〔本発明の第1実施例の説明〕本発明の第1実施例を図
1〜図5に基づき説明する。図1は本発明の1実施例構
成図、図2はフォトトランジスタの説明図、図3、図4
は固体撮像素子の形成工程説明図、図5は薄膜EL素子
の形成工程説明図である。
[Description of First Embodiment of the Present Invention] A first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a configuration diagram of an embodiment of the present invention, FIG. 2 is an explanatory diagram of a phototransistor, and FIGS.
FIG. 5 is an explanatory diagram of a solid-state image sensor forming process, and FIG. 5 is an explanatory diagram of a thin-film EL element forming process.

【0016】図1は完全密着型の固体撮像装置であり、
以下、図1の説明をする。基板1上に固体撮像素子10
と固体撮像素子10の読み取り駆動回路20を形成し、
更に薄板ガラスである透明基板21上に薄膜発光素子3
0を形成する。次にこの基板1と透明基板21とを、そ
れぞれ素子が配置された面が合わされるように例えば、
エポキシ系接着剤、紫外線硬化型の接着剤等の透明の接
着剤27で接着するものである。この場合、読み取る原
稿28は透明基板21に接触するものである。
FIG. 1 shows a solid contact type solid-state image pickup device,
Hereinafter, FIG. 1 will be described. Solid-state image sensor 10 on substrate 1
And a read drive circuit 20 of the solid-state image sensor 10 is formed,
Further, the thin film light emitting device 3 is formed on the transparent substrate 21 which is thin glass.
Form 0. Next, the substrate 1 and the transparent substrate 21, for example, so that the surfaces on which the elements are arranged are aligned, for example,
A transparent adhesive 27 such as an epoxy adhesive or an ultraviolet curable adhesive is used for adhesion. In this case, the original 28 to be read comes into contact with the transparent substrate 21.

【0017】図2は、固体撮像素子10に用いるフォト
トランジスタの説明図である。図2において、1は基板
であり、例えばガラス基板、石英基板、セラミックス
(Al 2 3 )、シリコン基板(多結晶又は単結晶)等
である。2は絶縁膜であり、基板1がシリコン基板の場
合は、熱酸化工程を使用して形成できる。3は活性層、
4はゲート絶縁膜、5はゲート電極、6は層間絶縁膜、
7は金属配線電極、8はいわゆるソース・ドレイン領域
である不純物導入部である。
FIG. 2 shows a photo used in the solid-state image sensor 10.
It is explanatory drawing of a transistor. In FIG. 2, 1 is a substrate
And, for example, glass substrate, quartz substrate, ceramics
(Al 2O3), Silicon substrate (polycrystal or single crystal), etc.
Is. 2 is an insulating film, and when the substrate 1 is a silicon substrate
If so, it can be formed using a thermal oxidation process. 3 is an active layer,
4 is a gate insulating film, 5 is a gate electrode, 6 is an interlayer insulating film,
7 is a metal wiring electrode, 8 is a so-called source / drain region
Is the impurity introduction part.

【0018】このフォトトランジスタは、薄膜トランジ
スタ(TFT)を製造するプロセスとほぼ同時に構成す
ることのできる薄膜フォトトランジスタを用いるもので
ある。この薄膜フォトトランジスタが固体撮像装置の光
電変換素子(固体撮像素子)となるものである。図2で
は、入力光は上面より入力され活性層3で光電変換する
ものである。
This phototransistor uses a thin film phototransistor which can be formed almost at the same time as the process of manufacturing a thin film transistor (TFT). This thin film phototransistor serves as a photoelectric conversion element (solid-state image pickup element) of the solid-state image pickup device. In FIG. 2, the input light is input from the upper surface and photoelectrically converted in the active layer 3.

【0019】図3は、固体撮像素子の形成工程説明図
(1)、図4は、固体撮像素子の形成工程説明図(2)
である。以下、図3、図4に基づいて説明する。基板1
として例えば安価なグレードの低い単結晶シリコン基板
又は多結晶シリコン基板を用い、熱酸化により300n
mの熱酸化シリコン膜を形成する。こうして形成した酸
化シリコン膜は使用したシリコン基板1のグレードによ
っては不純物を含む場合があるため、更に200nmの
清浄な酸化シリコン膜を減圧気相成長(LPCVD)法
で成膜して絶縁膜2を形成する(図3(a)参照)。
FIG. 3 is an explanatory view (1) of a solid-state image sensor forming process, and FIG. 4 is an explanatory view (2) of a solid-state image sensor forming process.
Is. Hereinafter, description will be given based on FIGS. 3 and 4. Board 1
For example, an inexpensive low-grade single crystal silicon substrate or a polycrystalline silicon substrate is used, and 300 n is obtained by thermal oxidation.
m thermal oxide silicon film is formed. The silicon oxide film thus formed may contain impurities depending on the grade of the silicon substrate 1 used. Therefore, a clean silicon oxide film of 200 nm is further formed by the low pressure vapor deposition (LPCVD) method to form the insulating film 2. Formed (see FIG. 3A).

【0020】この後に活性層3として200nmの膜厚
の非晶質(アモルファス)シリコンをプラズマCVD法
により成膜する。このときの成膜条件は反応ガスとして
シランを用い、反応温度200℃、ガス圧5.3Pa、
RF(高周波)電力35Wで被着速度6nm/minで
行い、更に600℃で20時間加熱することで非晶質シ
リコンは固相成長し、結晶性を有するようになる(図3
(b)参照)。なお、このプラズマCVD法のかわりに
LPCVD法を用いることもできる。
Thereafter, as the active layer 3, a 200 nm-thick amorphous silicon film is formed by the plasma CVD method. The film forming conditions at this time were silane used as a reaction gas, a reaction temperature of 200 ° C., a gas pressure of 5.3 Pa,
By performing RF (high frequency) power of 35 W at a deposition rate of 6 nm / min, and further heating at 600 ° C. for 20 hours, amorphous silicon grows in a solid phase and becomes crystalline (FIG. 3).
(B)). An LPCVD method may be used instead of the plasma CVD method.

【0021】こうして得られた多結晶シリコン活性層3
を島状にパターニングする(図3(c)参照)。引き続
きゲート酸化シリコン膜4が例えば100nmになるよ
うに多結晶シリコン活性層3の熱酸化を行う(図3
(d)参照)。
Polycrystalline silicon active layer 3 thus obtained
Is patterned into an island shape (see FIG. 3C). Subsequently, the polycrystalline silicon active layer 3 is thermally oxidized so that the gate silicon oxide film 4 becomes, for example, 100 nm (FIG. 3).
(D)).

【0022】この酸化シリコン膜4の形成後速やかにL
PCVD法により、ゲート電極5としてリン(P)を1
×1020atoms/cm3 程度以上ドーピングしたn
+ ポリシリコン(poly−Si)を約200nm成膜
する(図3(e)参照)。
Immediately after the formation of the silicon oxide film 4, L
Phosphorus (P) is used as the gate electrode 5 by the PCVD method.
N doped with about 10 20 atoms / cm 3 or more
+ Polysilicon (poly-Si) is deposited to a thickness of about 200 nm (see FIG. 3E).

【0023】次に、ドライエッチング法によりゲート電
極5をパターニングし、引き続き、コンタクト層を形成
する活性層3上の酸化シリコン膜4を一部ないし全部取
り除く(図3(f)参照)。
Next, the gate electrode 5 is patterned by the dry etching method, and then the silicon oxide film 4 on the active layer 3 forming the contact layer is partially or completely removed (see FIG. 3 (f)).

【0024】イオン注入あるいはイオンドーピング法に
よる不純物の導入を行い不純物導入部8を形成する。N
型に対してはリン(P)を60KVの加速電圧で1×1
15atoms/cm2 打ち込む(図4(a)参照)。
またP型に対しては不純物の導入を行いたくない部分を
フォトレジスト9で被覆して更にボロン(B)を40K
Vの加速電圧で5×1015atoms/cm2 のドーズ
量を打ち込んだ後(図4(b)参照)、これら導入した
不純物を活性化するため窒素雰囲気中において600℃
のアニール温度で12時間の熱処理を行う。
Impurities are introduced by ion implantation or ion doping to form an impurity introduction part 8. N
Phosphorus (P) is applied to the mold at an acceleration voltage of 60 KV 1 × 1
Implanting 0 15 atoms / cm 2 (see FIG. 4A).
Further, for the P type, a portion where the introduction of impurities is not desired is covered with a photoresist 9 and boron (B) is added to 40K.
After implanting a dose of 5 × 10 15 atoms / cm 2 with an accelerating voltage of V (see FIG. 4B), 600 ° C. in a nitrogen atmosphere to activate the introduced impurities.
Heat treatment is performed for 12 hours at the annealing temperature.

【0025】次に、常圧CVD法により層間絶縁膜6と
して酸化シリコン膜あるいはPSG(Phospho
Silicate Glass)膜を約800nm成膜
した後(図4(c)参照)、コンタクトホールを開孔し
(図4(d)参照)、アルミニウム(Al)7をスパッ
タ法で成膜する(図4(e)参照)。その後、パターニ
ングしてAl配線を施す(図4(f)参照)。最後に電
気特性を改善するために350℃の水素雰囲気中で1時
間のアニール処理を行う。これにより、所望の固体撮像
装置、即ち、固体撮像素子10と読み取り駆動回路20
を同時に得ることができる。
Next, a silicon oxide film or PSG (Phospho) is used as the interlayer insulating film 6 by the atmospheric pressure CVD method.
After forming a Silicate Glass film with a thickness of about 800 nm (see FIG. 4C), a contact hole is opened (see FIG. 4D), and aluminum (Al) 7 is formed with a sputtering method (see FIG. 4). (See (e)). After that, patterning is performed to provide Al wiring (see FIG. 4F). Finally, in order to improve electric characteristics, annealing treatment is performed in a hydrogen atmosphere at 350 ° C. for 1 hour. As a result, a desired solid-state imaging device, that is, the solid-state imaging device 10 and the reading drive circuit 20 are obtained.
Can be obtained at the same time.

【0026】図5は、薄膜EL素子の形成工程説明図で
ある。図5において、透明基板21として厚さが50〜
200μmの薄板ガラス基板を用いる。この透明基板の
厚さは、200μm以上になると隣の反射光が固体撮像
素子10に混じり込むことになり、分解能が悪くなり、
50μmより薄いと基板としての強度が保持できなくな
る。まず、この透明基板21の洗浄を行う(図5(a)
参照)。
FIG. 5 is an explanatory view of a process of forming a thin film EL element. In FIG. 5, the transparent substrate 21 has a thickness of 50 to
A 200 μm thin glass substrate is used. When the thickness of this transparent substrate is 200 μm or more, adjacent reflected light is mixed into the solid-state image sensor 10, resulting in poor resolution.
If the thickness is less than 50 μm, the strength of the substrate cannot be maintained. First, the transparent substrate 21 is washed (FIG. 5A).
reference).

【0027】次に、透明基板21上に透明電極22とな
るITO(インジウムすず酸化物)を成膜し(図5
(b)参照)、このITO膜をパターニングし(図5
(c)参照)、その上に絶縁膜23を形成する。この絶
縁膜23は例えばSiO2 が主成分であるSOG(Sp
in On Glass)膜を成膜する(図5(d)参
照)。この時、必要に応じて水素化処理を行いITOの
特性を良好にする(抵抗を小さくし、光の透明率を向上
する)。
Next, ITO (Indium Tin Oxide) to be the transparent electrode 22 is formed on the transparent substrate 21 (see FIG. 5).
(See (b)), and patterning this ITO film (see FIG. 5).
(See (c)), and the insulating film 23 is formed thereon. The insulating film 23 is SiO 2 is a main component for example SOG (Sp
An in-on glass) film is formed (see FIG. 5D). At this time, hydrogenation treatment is performed as necessary to improve the characteristics of ITO (reduce resistance and improve light transparency).

【0028】次に、この絶縁膜23をパターニングし
(図5(e)参照)、有機EL膜24を抵抗加熱でマス
ク蒸着する(図5(f)参照)。この有機EL膜24
は、図5(f)のように例えば電子輸送層24−1、正
孔輸送層24−2、発光層24−3の3層よりなる。
Next, the insulating film 23 is patterned (see FIG. 5E), and the organic EL film 24 is mask-deposited by resistance heating (see FIG. 5F). This organic EL film 24
5F is composed of, for example, three layers of an electron transport layer 24-1, a hole transport layer 24-2, and a light emitting layer 24-3.

【0029】さらにMgAg(マグネシウム銀合金)膜
25を蒸着し(図5(g)参照)、その後、配線電極2
6としてAlを蒸着又はスパッタリング等で成膜する
(図5(h)参照)。
Further, a MgAg (magnesium-silver alloy) film 25 is vapor-deposited (see FIG. 5G), and then the wiring electrode 2 is formed.
As 6 is formed a film of Al by vapor deposition or sputtering (see FIG. 5 (h)).

【0030】このAl膜をパターニングし配線電極26
を形成し、薄膜EL(発光)素子30を形成する(図5
(i)参照)。この薄膜EL素子30を図4(f)の固
体撮像装置とを接着することにより図1で示したように
完全密着型の光源一体型固体撮像装置を超小型で安価に
得ることができる。
The Al film is patterned to form the wiring electrode 26.
To form a thin film EL (light emitting) device 30 (FIG. 5).
(See (i)). By bonding this thin-film EL element 30 to the solid-state image pickup device of FIG. 4F, the light source integrated solid-state image pickup device of complete contact type as shown in FIG.

【0031】〔第2実施例の説明〕図6は第2実施例の
説明図であり、密着型の固体撮像装置を示す。図6にお
いて、基板1上に固体撮像素子10と駆動回路20を形
成し、透明基板21上に薄膜発光素子30を形成し、次
に、この基板1と透明基板21とを、それぞれの素子が
配置された面が合わされるように透明の接着剤27で接
着するものであり、図1で示すものと同じ構成のため、
同様に製造することができる。
[Explanation of Second Embodiment] FIG. 6 is an explanatory view of the second embodiment, showing a contact type solid-state imaging device. In FIG. 6, the solid-state imaging device 10 and the driving circuit 20 are formed on the substrate 1, the thin-film light emitting device 30 is formed on the transparent substrate 21, and then the substrate 1 and the transparent substrate 21 are respectively connected to each other. It is adhered with a transparent adhesive 27 so that the arranged surfaces are aligned, and because it has the same configuration as that shown in FIG. 1,
It can be manufactured similarly.

【0032】この場合、原稿28の読み取りは、セルフ
ォックレンズアレイ29を介して行われる。これによ
り、セルフォックレンズアレイ29により焦点深度が深
くなるため、透明基板21は、図1のように薄板ガラス
を使用する必要はなく、200μm以上の普通のガラス
基板を使用することができる。
In this case, the reading of the original 28 is performed via the SELFOC lens array 29. As a result, the depth of focus is increased by the SELFOC lens array 29, so that it is not necessary to use thin glass as the transparent substrate 21 as in FIG. 1, and an ordinary glass substrate of 200 μm or more can be used.

【0033】このため、セルフォックレンズアレイ29
は必要になるが透明基板21として安価なものを使用す
ることができる。また前記説明では、有機EL膜を電子
輸送層、正孔輸送層、発光層の3層構成のものについて
行ったが、本発明は勿論これに限定されるものではな
く、例えば、電子輸送層(発光層)と正孔輸送層又は、
電子輸送層と正孔輸送層(発光層)の如き2層構成のも
のを使用してもよい。
Therefore, the Selfoc lens array 29
However, an inexpensive substrate can be used as the transparent substrate 21. In the above description, the organic EL film has a three-layer structure including an electron transport layer, a hole transport layer, and a light emitting layer, but the present invention is not limited to this, and for example, an electron transport layer ( Light emitting layer) and a hole transport layer, or
A two-layer structure such as an electron transport layer and a hole transport layer (light emitting layer) may be used.

【0034】[0034]

【発明の効果】以上説明したように本発明によれば次の
ような効果がある。 (1)固体撮像装置の固体撮像素子部の基板は透明でな
くともよいため、固体撮像素子を基板の種類を問わずに
製造することができ、コストダウンを図ることができ
る。
As described above, the present invention has the following effects. (1) Since the substrate of the solid-state imaging device section of the solid-state imaging device does not have to be transparent, the solid-state imaging device can be manufactured regardless of the type of the substrate, and the cost can be reduced.

【0035】(2)薄膜発光素子が形成された透明基板
と、固体撮像素子が形成された基板とを接着することに
より超小型で安価な光源一体型固体撮像装置を供給する
ことができる。
(2) By bonding the transparent substrate on which the thin film light emitting element is formed and the substrate on which the solid state image pickup element is formed, it is possible to supply an ultra-compact and inexpensive solid state image pickup device with integrated light source.

【0036】(3)薄膜発光素子の薄膜発光部は、発光
ダイオードのような、点光源と異なり、面光源のため、
読み取り原稿をむらなく照射することができる。上記効
果の外、各請求項に対して次のような効果がある。
(3) Unlike a point light source such as a light emitting diode, the thin film light emitting portion of the thin film light emitting element is a surface light source,
The scanned document can be evenly illuminated. In addition to the above effects, the following effects are obtained for each claim.

【0037】(4)請求項1及び2に記載された発明に
よれば、薄膜発光素子が形成された透明基板と、固体撮
像素子が形成された基板とを透明接着剤等で一体化する
ことにより超小型で安価に製造することができる。
(4) According to the invention described in claims 1 and 2, the transparent substrate on which the thin film light emitting device is formed and the substrate on which the solid-state image pickup device is formed are integrated with a transparent adhesive or the like. Thus, it can be manufactured at a very small size and at low cost.

【0038】(5)請求項3に記載された発明によれ
ば、透明基板の厚さを50〜200μmとすることによ
り完全密着型とすることができる。 (6)請求項4に記載された発明によれば、薄膜ガラス
でない安価な透明基板を使用することができる。
(5) According to the invention described in claim 3, a perfect adhesion type can be obtained by setting the thickness of the transparent substrate to 50 to 200 μm. (6) According to the invention described in claim 4, an inexpensive transparent substrate that is not thin film glass can be used.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の1実施例構成図である。FIG. 1 is a configuration diagram of an embodiment of the present invention.

【図2】本発明の1実施例におけるフォトトランジスタ
の説明図である。
FIG. 2 is an explanatory diagram of a phototransistor according to an embodiment of the present invention.

【図3】本発明の1実施例における固体撮像素子の形成
工程説明図(1)である。
FIG. 3 is an explanatory diagram (1) of a process of forming a solid-state image sensor according to one embodiment of the present invention.

【図4】本発明の1実施例における固体撮像素子の形成
工程説明図(2)である。
FIG. 4 is an explanatory view (2) of a process of forming a solid-state image sensor according to the first embodiment of the present invention.

【図5】本発明の1実施例における薄膜EL素子の形成
工程説明図である。
FIG. 5 is a diagram illustrating a process of forming a thin film EL element according to an example of the present invention.

【図6】本発明の第2実施例の説明図である。FIG. 6 is an explanatory diagram of a second embodiment of the present invention.

【図7】従来例の説明図である。FIG. 7 is an explanatory diagram of a conventional example.

【符号の説明】[Explanation of symbols]

1 基板 10 固体撮像素子 20 読み取り駆動回路 21 透明基板 24 エレクトロルミネセンス(EL)膜 27 透明接着剤 28 原稿 30 薄膜発光素子 DESCRIPTION OF SYMBOLS 1 Substrate 10 Solid-state imaging device 20 Reading drive circuit 21 Transparent substrate 24 Electroluminescence (EL) film 27 Transparent adhesive 28 Original document 30 Thin film light emitting device

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 透明基板上に形成した薄膜発光素子と、 基板上に形成した固体撮像素子とを備え、 それぞれの素子を配置した面が合わされるように、前記
透明基板と前記基板とを透明体で一体化することを特徴
とした光源一体型固体撮像装置。
1. A thin film light emitting device formed on a transparent substrate, and a solid-state imaging device formed on the substrate, wherein the transparent substrate and the transparent substrate are transparent so that the surfaces on which the respective devices are arranged are aligned. A solid-state imaging device integrated with a light source characterized by being integrated with the body.
【請求項2】 前記透明基板と前記基板とを一体化する
透明体として、透明接着剤を使用することを特徴とした
請求項1記載の光源一体型固体撮像装置。
2. The light source integrated solid-state image pickup device according to claim 1, wherein a transparent adhesive is used as a transparent body that integrates the transparent substrate and the substrate.
【請求項3】 50〜200μmの厚さの透明基板上に
形成した薄膜発光素子と、 基板上に形成した固体撮像素子とを備え、 それぞれの素子を配置した面が合わされるように、前記
透明基板と前記基板とを接着することを特徴とした完全
密着型の光源一体型固体撮像装置。
3. A thin film light emitting device formed on a transparent substrate having a thickness of 50 to 200 μm, and a solid-state image pickup device formed on the substrate, wherein the transparent surface is arranged so that the surfaces on which the respective devices are arranged are aligned. A complete contact type light source integrated solid-state imaging device, characterized in that a substrate and the substrate are bonded together.
【請求項4】 透明基板上に形成した薄膜発光素子と、 基板上に形成した固体撮像素子とを備え、 それぞれの素子を配置した面が合わされるように、前記
透明基板と前記基板とを接着することを特徴とした密着
型の光源一体型固体撮像装置。
4. A thin film light emitting device formed on a transparent substrate, and a solid-state imaging device formed on the substrate, wherein the transparent substrate and the substrate are bonded so that the surfaces on which the respective devices are arranged are aligned. A solid-state imaging device integrated with a light source, which is a contact type.
JP24516294A 1994-10-11 1994-10-11 Solid-state imaging device with integrated light source Expired - Fee Related JP3561302B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP24516294A JP3561302B2 (en) 1994-10-11 1994-10-11 Solid-state imaging device with integrated light source
US08/541,871 US5627364A (en) 1994-10-11 1995-10-10 Linear array image sensor with thin-film light emission element light source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24516294A JP3561302B2 (en) 1994-10-11 1994-10-11 Solid-state imaging device with integrated light source

Publications (2)

Publication Number Publication Date
JPH08111516A true JPH08111516A (en) 1996-04-30
JP3561302B2 JP3561302B2 (en) 2004-09-02

Family

ID=17129540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24516294A Expired - Fee Related JP3561302B2 (en) 1994-10-11 1994-10-11 Solid-state imaging device with integrated light source

Country Status (1)

Country Link
JP (1) JP3561302B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003100450A (en) * 2001-06-20 2003-04-04 Semiconductor Energy Lab Co Ltd Light emitting equipment and its producing method
EP1122792A3 (en) * 2000-01-31 2005-11-23 Semiconductor Energy Laboratory Co., Ltd. Contact type area sensor and display device having contact type area sensor
JP2007067381A (en) * 2005-08-05 2007-03-15 Semiconductor Energy Lab Co Ltd Light emitting device and manufacturing method thereof
US7420208B2 (en) 2001-06-20 2008-09-02 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and method of manufacturing the same
US7728326B2 (en) 2001-06-20 2010-06-01 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and electronic apparatus
US8610155B2 (en) 2008-11-18 2013-12-17 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device, method for manufacturing the same, and cellular phone

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010153449A (en) 2008-12-24 2010-07-08 Seiko Epson Corp Light source integrated photoelectric conversion apparatus

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1122792A3 (en) * 2000-01-31 2005-11-23 Semiconductor Energy Laboratory Co., Ltd. Contact type area sensor and display device having contact type area sensor
US7525523B2 (en) 2000-01-31 2009-04-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising pixel having light receiving portion and display portion
US8456459B2 (en) 2000-01-31 2013-06-04 Semiconductor Energy Laboratory Co., Ltd. Adhesion type area sensor and display device having adhesion type area sensor
US8830217B2 (en) 2000-01-31 2014-09-09 Semiconductor Energy Laboratory Co., Ltd. Adhesion type area sensor and display device having adhesion type area sensor
JP2003100450A (en) * 2001-06-20 2003-04-04 Semiconductor Energy Lab Co Ltd Light emitting equipment and its producing method
US9178168B2 (en) 2001-06-20 2015-11-03 Semiconductor Energy Laboratory Co., Ltd. White light emitting device
US7420208B2 (en) 2001-06-20 2008-09-02 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and method of manufacturing the same
US7728326B2 (en) 2001-06-20 2010-06-01 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and electronic apparatus
US9276224B2 (en) 2001-06-20 2016-03-01 Semiconductor Energy Laboratory Co., Ltd. Organic light emitting device having dual flexible substrates
US9166180B2 (en) 2001-06-20 2015-10-20 Semiconductor Energy Laboratory Co., Ltd. Light emitting device having an organic light emitting diode that emits white light
US8138502B2 (en) 2005-08-05 2012-03-20 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and manufacturing method thereof
KR101298949B1 (en) * 2005-08-05 2013-08-23 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light-emitting device and manufacturing method thereof
US8497512B2 (en) 2005-08-05 2013-07-30 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and manufacturing method thereof
JP2007067381A (en) * 2005-08-05 2007-03-15 Semiconductor Energy Lab Co Ltd Light emitting device and manufacturing method thereof
US8610155B2 (en) 2008-11-18 2013-12-17 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device, method for manufacturing the same, and cellular phone
US10269883B2 (en) 2008-11-18 2019-04-23 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device method for manufacturing the same, and cellular phone
US10600853B2 (en) 2008-11-18 2020-03-24 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device, method for manufacturing the same, and cellular phone
US10896941B2 (en) 2008-11-18 2021-01-19 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device, method for manufacturing the same, and cellular phone
US11289558B2 (en) 2008-11-18 2022-03-29 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device, method for manufacturing the same, and cellular phone
US11818925B2 (en) 2008-11-18 2023-11-14 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device, method for manufacturing the same, and cellular phone

Also Published As

Publication number Publication date
JP3561302B2 (en) 2004-09-02

Similar Documents

Publication Publication Date Title
US5627364A (en) Linear array image sensor with thin-film light emission element light source
US5262654A (en) Device for reading an image having a common semiconductor layer
US8338867B2 (en) Highly sensitive photo-sensing element and photo-sensing device using the same
CN100448017C (en) Organic light emitting display device and method of fabricating the same
US5574293A (en) Solid state imaging device using disilane
US4517733A (en) Process for fabricating thin film image pick-up element
US4351856A (en) Semiconductor device and method of manufacturing the same
JP3561302B2 (en) Solid-state imaging device with integrated light source
US6452212B1 (en) Semiconductor device and method for operating the same
JP3628730B2 (en) Line light emitting device photosensitive drum integrated cartridge
JP3981055B2 (en) Image sensor with light source
JP3501379B2 (en) Image sensor with light source
KR100634543B1 (en) Single crystalline silicon tft organic light emitting display and fabrication method thereof
JPH08111742A (en) Light source integrated type solid-state image pickup device
US5731600A (en) Image sensor device on insulating surface
JPS6140143B2 (en)
JPH02143573A (en) Photoelectric conversion device
JP2899052B2 (en) Thin film semiconductor device
US6011291A (en) Video display with integrated control circuitry formed on a dielectric substrate
JP2823853B2 (en) Manufacturing method of image reading device
JP3404025B2 (en) Image sensor
JPH0426789B2 (en)
JP2805830B2 (en) Method for manufacturing semiconductor device
JP3247119B2 (en) Image sensor
JP2692144B2 (en) Line sensor

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040528

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090604

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100604

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100604

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110604

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110604

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120604

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120604

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees