JPH0799326A - Micromechanic sensor and its preparation - Google Patents

Micromechanic sensor and its preparation

Info

Publication number
JPH0799326A
JPH0799326A JP6121315A JP12131594A JPH0799326A JP H0799326 A JPH0799326 A JP H0799326A JP 6121315 A JP6121315 A JP 6121315A JP 12131594 A JP12131594 A JP 12131594A JP H0799326 A JPH0799326 A JP H0799326A
Authority
JP
Japan
Prior art keywords
silicon
layer
micromechanical sensor
displacement
oxide layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6121315A
Other languages
Japanese (ja)
Other versions
JP3616659B2 (en
Inventor
Joerg Muchow
ムホフ イェルク
Horst Muenzel
ミュンツェル ホルスト
Michael Dr Offenberg
オッフェンベルク ミヒャエル
Winfried Waldvogel
ヴァルトフォーゲル ヴィンフリート
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6489558&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH0799326(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of JPH0799326A publication Critical patent/JPH0799326A/en
Application granted granted Critical
Publication of JP3616659B2 publication Critical patent/JP3616659B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H11/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties
    • G01H11/06Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties by electric means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0042Constructional details associated with semiconductive diaphragm sensors, e.g. etching, or constructional details of non-semiconductive diaphragms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0051Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance
    • G01L9/0052Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance of piezoresistive elements
    • G01L9/0054Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance of piezoresistive elements integral with a semiconducting diaphragm
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0072Transmitting or indicating the displacement of flexible diaphragms using variations in capacitance
    • G01L9/0073Transmitting or indicating the displacement of flexible diaphragms using variations in capacitance using a semiconductive diaphragm
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/0802Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/12Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by alteration of electrical resistance
    • G01P15/123Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by alteration of electrical resistance by piezo-resistive elements, e.g. semiconductor strain gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/125Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by capacitive pick-up
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0822Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
    • G01P2015/0825Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass
    • G01P2015/0828Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass the mass being of the paddle type being suspended at one of its longitudinal ends

Abstract

PURPOSE: To provide a micromechanic sensor that is stable mechanically, can be manufactured easily, and can be formed in one piece with a bipolar process or a mixing process without any additional expenses. CONSTITUTION: A sensor consists of a support made of a silicon substrate 1 and an epitaxy layer 5 that is made of silicon covering the silicon substrate 1. One portion of the epitaxy layer 5 is released as at least one micromechanic displacement part 12-15 by the etching process, the released displacement parts 12-15 are made of polycrystal silicon, and the silicon migrates to the single crystal silicon at the connection part to the silicon substrate 1 of a support region.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、シリコン基板からなる
支持体と、このシリコン基板に被覆されたシリコンから
なるエピタクシー層とからなり、このエピタクシー層の
一部がエッチング工程により少なくとも1つのマイクロ
メカニック変位部分として開放されており、この部分が
支持領域の少なくとも一方でシリコン基板と連結されて
おり、かつセンサに力が作用するとほかのセンサ構造に
対して変位可能であり、この変位を評価する手段を有す
る、特に振動、傾き、加速度または圧力を測定するため
のマイクロメカニックセンサから出発する。
BACKGROUND OF THE INVENTION The present invention comprises a support made of a silicon substrate and an epitaxy layer made of silicon coated on the silicon substrate, a part of the epitaxy layer being formed by at least one etching process. It is open as a micromechanical displacement part, this part is connected to the silicon substrate at at least one of the support areas, and it can be displaced with respect to other sensor structures when a force is applied to the sensor. Starting from a micromechanical sensor for measuring vibrations, tilts, accelerations or pressures, in particular having means for

【0002】[0002]

【従来の技術】ドイツ特許出願番号第4000903.
3.09号からシリコンマイクロ工学をベースとして製
造される加速度センサとしてのマイクロメカニックセン
サが公知である。このセンサはシリコン基板からなる支
持体と、このシリコン基板に被覆されたシリコンからな
るエピタクシー層とからなり、エッチング工程によりエ
ピタクシー層の一部がマイクロメカニック変位部分とし
て舌状片の形で開放されている。そのために1つ以上の
舌状片が1つ以上のウェブに掛けられており、かつセン
サに力が作用するとその他のセンサ構造に対して変位す
る。更にこの変位を評価する手段が備えられている。ド
イツ特許出願番号第4003473.9.09号から、
形式および配置において、およびエッチング工程のため
に単結晶のシリコンウェーハの結晶学的角度を配慮する
ことが更に公知である。
2. Description of the Related Art German Patent Application No. 400903.
From 3.09, a micromechanical sensor as an acceleration sensor manufactured based on silicon microtechnology is known. This sensor consists of a support made of a silicon substrate and an epitaxy layer made of silicon coated on the silicon substrate, and a part of the epitaxy layer is opened in the form of a tongue as a micromechanical displacement portion by the etching process. Has been done. To that end, one or more tongues are hooked onto one or more webs and are displaced relative to other sensor structures when a force is applied to the sensor. Furthermore, means for evaluating this displacement are provided. From German Patent Application No. 4003473.9.09,
It is further known to take into account the crystallographic angle of single crystal silicon wafers in form and arrangement and for the etching process.

【0003】舌状片の変位を評価する手段としてそれぞ
れ舌状片から電気的に絶縁された電極が配置されてお
り、従って舌状片と電極との容量の変動が測定可能であ
る。
As a means for assessing the displacement of the tongue, electrodes are arranged which are electrically insulated from the tongue, so that the capacitance variation between the tongue and the electrode can be measured.

【0004】エピタクシー層の構成部分としての舌状片
の開放は裏面エッチングにより実施する。これは通常の
バイポーラ工程に比べて付加的な工程である。
The opening of the tongue as part of the epitaxy layer is carried out by backside etching. This is an additional process compared to the normal bipolar process.

【0005】国際公開WO92/03740号明細書か
ら、シリコン基板からなる支持体に低圧化学蒸着法(L
PCVD,Low Pressure Chemical Vapor Disposed)で
接触窓を有する酸化珪素層上の多結晶のシリコンからな
る層を被覆することは公知である。酸化珪素層はエッチ
ング工程により除去し、それにより多結晶のシリコン層
がシリコン基板から間隔をおいて舌状片としてまたは電
極として接触窓に形成された支持体上に存在する。機械
的応力の乏しいLPCVD−ポリの析出速度は約60Å
/分であり、従って約1μ/分のエピタクシーポリシリ
コンの析出速度に比べてきわめて低い。そのため製造費
用の理由から比較的薄いLPCVD層のみが製造可能で
あり、それにより特に横型加速度センサの作動能力は舌
状片の相当する低い層密度により制限される。この場合
に従来のバイポーラ工程に比べて更に付加的なシリコン
析出が必要である。
From the specification of WO92 / 03740, a low pressure chemical vapor deposition method (L
It is known to coat a layer of polycrystalline silicon on a silicon oxide layer having a contact window by PCVD, Low Pressure Chemical Vapor Disposed). The silicon oxide layer is removed by an etching process, whereby a polycrystalline silicon layer is present on the support, which is spaced apart from the silicon substrate, as tongues or as electrodes, in the contact window. LPCVD with low mechanical stress-The deposition rate of poly is about 60Å
/ Min and is therefore very low compared to the deposition rate of epitaxy polysilicon of about 1 μ / min. Therefore, for reasons of manufacturing costs, only relatively thin LPCVD layers can be manufactured, which limits the actuation capacity of lateral acceleration sensors, in particular, by the correspondingly low layer density of the tongue. In this case, an additional silicon deposition is required as compared with the conventional bipolar process.

【0006】[0006]

【発明の構成】これに対して、開放された変位部分が多
結晶のシリコンからなり、このシリコンが支持領域のシ
リコン基板への連結部分で単結晶のシリコンに移行して
いることを特徴とする本発明によるセンサは、多結晶の
シリコンからなる開放された変位部分の製造または機械
的に活性の層の製造が付加的な費用をかけずにバイポー
ラ工程またはMOS工程の範囲内で可能であり、付加的
なシリコン析出を必要としないという利点を有する。エ
ピタクシーはシリコンからなる単結晶の層を製造するた
めの公知の特別な工程であり、これに対して本発明にお
いては多結晶の(酸化珪素上の)またはほかの非結晶質
の層を析出するエピタクシー層を使用し、この層は従来
のバイポーラ工程に従って被覆する。
On the other hand, the open displacement portion is made of polycrystalline silicon, and this silicon is transferred to single crystal silicon at the connecting portion to the silicon substrate in the supporting region. The sensor according to the invention enables the production of open displacement parts or the production of mechanically active layers of polycrystalline silicon within a bipolar process or a MOS process without additional costs, It has the advantage that no additional silicon deposition is required. Epitaxy is a well-known special process for producing monocrystalline layers of silicon, whereas in the present invention polycrystalline (on silicon oxide) or other amorphous layers are deposited. An epitaxial layer is used, which is coated according to conventional bipolar processes.

【0007】エピタクシー析出速度はLPCVD工程に
比べてきわめて高く、従って本発明により10〜30μ
mの比較的厚い層を実現することができ、これは横型セ
ンサの作動能力を増加する。
The epitaxy deposition rate is much higher than that of the LPCVD process, and is therefore 10-30 μm according to the invention.
A relatively thick layer of m can be realized, which increases the actuation capacity of the lateral sensor.

【0008】請求項2以下に記載の手段により請求項1
記載のセンサの有利な構成が可能である。本発明による
センサの特別の利点は、本発明による方法が種々の構成
に普遍的に使用可能であり、特に片持舌状片および縁部
領域を支持されたプレートを多数の層で重なって配置す
ることが可能であることである。もう1つの大きな利点
は、同じ工程を使用して著しい付加的費用をかけずに同
一の支持体にマイクロメカニックセンサの他に集積電子
回路、特に変位の評価回路が製造可能であることであ
る。同様に、その他の製造工程といっしょに同一の支持
体上のその他の電子部材からのマイクロメカニックセン
サ部材の電気的絶縁が可能である。
Claim 2 By the means described in claim 2 and below,
Advantageous configurations of the described sensor are possible. A particular advantage of the sensor according to the invention is that the method according to the invention can be universally used in different configurations, in particular the cantilever tongue and the plate supported edge region are arranged in a number of layers. It is possible to do. Another major advantage is that integrated electronic circuits, in particular displacement evaluation circuits, can be manufactured in addition to micromechanical sensors on the same support using the same process without significant additional expense. Similarly, it is possible to electrically insulate the micromechanical sensor member from other electronic components on the same support together with other manufacturing steps.

【0009】[0009]

【実施例】本発明を図面により詳細に説明する。The present invention will be described in detail with reference to the drawings.

【0010】図1にはシリコン基板からなる支持体1が
示されており、この基板に酸化珪素層2が被覆され、こ
の酸化珪素層2の周囲にシリコン基板1に対する接触窓
開口3,4が製造されている。
FIG. 1 shows a support 1 made of a silicon substrate, which is covered with a silicon oxide layer 2 and contact window openings 3, 4 for the silicon substrate 1 are provided around the silicon oxide layer 2. Being manufactured.

【0011】酸化珪素層2はドープされていないかまた
は燐、硼素または砒素がドープされていてもよい。ドー
ピングは有利にはこの酸化珪素層2を比較的後で除去す
る際により短いエッチング工程を生じるかまたは機械的
に運動するSi構造のドーピングに使用することもでき
る。
The silicon oxide layer 2 may be undoped or doped with phosphorus, boron or arsenic. Doping can advantageously also be used for doping Si structures which result in shorter etching steps in the removal of this silicon oxide layer 2 relatively later or mechanical movement.

【0012】酸化物層に選択的になおほかの層、たとえ
ば窒化珪素またはポリシリコンを被覆することができ
る。
The oxide layer can optionally be coated with yet another layer, for example silicon nitride or polysilicon.

【0013】図1bによりほかの工程で支持体1または
酸化珪素層2および接触窓開口3,4にシリコンからな
るエピタクシー層5を析出する。エピタクシーはシリコ
ンからなる単結晶の層を製造するためのそれ自体公知の
特別の工程である。本発明による工程においては、エピ
タクシー層5は支持領域6,7でのみシリコン基板1上
に単結晶で成長する。これに対して、酸化珪素層2上
に、領域8に矢印9の幅にほぼ相当してエピタクシー層
が多結晶で成長する(ハッチングにより示される)。
According to FIG. 1b, an epitaxy layer 5 of silicon is deposited on the support 1 or the silicon oxide layer 2 and the contact window openings 3, 4 by another process. Epitaxy is a special process known per se for producing monocrystalline layers of silicon. In the process according to the invention, the epitaxy layer 5 is grown as a single crystal on the silicon substrate 1 only in the support regions 6, 7. On the other hand, on the silicon oxide layer 2, an epitaxy layer is grown in polycrystal in the region 8 corresponding to the width of the arrow 9 (indicated by hatching).

【0014】前記支持体はシリコンウェーハとして有利
には結晶方向に配向されている。(100)方向の配向
はMOS工程およびBICMOS工程のために技術的に
重要であり、配向(111)はバイポーラ工程のために
重要である。配向(110)は技術的にあまり重要でな
い。
As a silicon wafer, the support is preferably oriented in the crystallographic direction. Orientation in the (100) direction is technically important for MOS and BICMOS processes, and orientation (111) is important for bipolar processes. The orientation (110) is technically less important.

【0015】多結晶のエピタクシー層(領域8)の特性
を改良するために、酸化珪素層2にエピタクシーの前に
ポリスタート層10を被覆し、これは図1aで破線で示
されている。
In order to improve the properties of the polycrystalline epitaxy layer (region 8), the silicon oxide layer 2 is coated with a polystart layer 10 before epitaxy, which is shown in dashed lines in FIG. 1a. .

【0016】センサの特別な構成においては、基板上の
開放してエッチングしたセンサ物質の下側にpn接合に
より立体的に制限される導線または対抗電極が必要であ
る。電気的に不動態化するために、犠牲酸化物を析出す
る前に耐HF性の誘電層を基板に析出することができる
(たとえば窒化物)。この層は犠牲酸化物エッチングに
より開放されるpn接合を介した多くのもれ電流を回避
する。
A special configuration of the sensor requires a conductor or counter electrode that is sterically restricted by a pn junction underneath the open and etched sensor material on the substrate. A HF resistant dielectric layer can be deposited on the substrate (eg, nitride) prior to depositing the sacrificial oxide for electrical passivation. This layer avoids much leakage current through the pn junction opened by the sacrificial oxide etch.

【0017】領域8内の多結晶のエピタクシー層からマ
イクロメカニック変位部分を開放する。そのために、1
cに示されるように、トレンチング工程で多結晶のエピ
タクシー層8を貫通して深く狭いエッチング溝、いわゆ
るトレンチを掘る。そのために、たとえばレジストとし
て相当するマスクが必要である。トレンチの製造は、高
い異方性を有する乾燥エッチング工程として異方性のプ
ラズマエッチング技術を使用して行う。図示された5個
のトレンチ11により、4個の舌状の変位部分12,1
3,14,15の横方向の構造限界部をエッチングによ
り除去する。
The micromechanical displacement portion is released from the polycrystalline epitaxy layer in the region 8. For that, 1
As shown in c, a deep and narrow etching groove, a so-called trench, is dug through the polycrystalline epitaxial layer 8 in the trenching process. Therefore, for example, a corresponding mask is required as a resist. Fabrication of trenches is performed using anisotropic plasma etching techniques as a highly anisotropic dry etching process. Due to the five trenches 11 shown, four tongue-shaped displacement parts 12, 1
The lateral structural limit portions 3, 14 and 15 are removed by etching.

【0018】ほかの工程で犠牲層としての酸化珪素層2
を除去する。この除去はフッ化水素酸(HF)を使用し
たシリコンに比べて高い選択性をもって実施される。
Silicon oxide layer 2 as a sacrificial layer in another process
To remove. This removal is performed with high selectivity compared to silicon using hydrofluoric acid (HF).

【0019】従って、図1dから明らかなように、マイ
クロメカニックセンサ16が多結晶のシリコンからなる
変位部分12,13,14,15とともに製造可能であ
り、これらの部分は支持領域でシリコン基板1への連結
部分で単結晶のシリコンに移行している。センサに力が
作用するとこれらの変位部分12,13,14,15は
ほかのセンサ構造、特にシリコン基板1に対して変位す
る。この変位を測定目的のために容量式にまたはピエゾ
抵抗により評価することができる。
Therefore, as is apparent from FIG. 1d, the micromechanical sensor 16 can be manufactured together with the displacement parts 12, 13, 14, 15 made of polycrystalline silicon, these parts being attached to the silicon substrate 1 in the support region. In the connection part of, it is converted to single crystal silicon. When a force is applied to the sensor, these displaced portions 12, 13, 14, 15 are displaced with respect to other sensor structures, particularly the silicon substrate 1. This displacement can be evaluated capacitively or by piezoresistance for measuring purposes.

【0020】明らかなように、上記の方法は酸化珪素層
2、ほかの層10およびエピタクシー層5を交互に被覆
することにより幾重にも重ね合わせて使用することがで
き、従って相当するエッチング工程により変位部分1
2,13,14,15の多くの層が重ね合わせて製造可
能である。そのような構成は特に容量式の加速度センサ
に適している。
Obviously, the above method can be used in multiple superpositions by alternately coating the silicon oxide layer 2, the other layers 10 and the epitaxy layer 5, and thus the corresponding etching steps. Displaced by 1
Many layers of 2, 13, 14 and 15 can be manufactured in superposition. Such a configuration is particularly suitable for a capacitive acceleration sensor.

【0021】エピタクシー層の析出速度はかなり速く、
従ってエピタクシー層厚さおよびそれとともに変位部分
12,13,14,15の厚さが10〜30μmの厚さ
で実現可能である。
The deposition rate of the epitaxy layer is quite fast,
Therefore, it is possible to realize the epitaxy layer thickness and the displacement portions 12, 13, 14, 15 with the thickness of 10 to 30 μm.

【0022】図1a〜図1dの図面の後で、具体的なマ
イクロメカニックセンサ16の製造および構成を図2a
〜図2eによりこれと並んだトランジスタ17のバイポ
ーラ工程の集積可能性と関連して説明する。このトラン
ジスタは典型的にはIC回路のために、特にセンサ16
の変位部分の機械的変位のための評価回路として存在す
る。
After the drawings of FIGS. 1a-1d, the fabrication and construction of a specific micromechanical sensor 16 is shown in FIG. 2a.
2e will be described in connection with the integration possibilities of the bipolar process of the associated transistor 17. This transistor is typically for IC circuits, especially for sensor 16
It exists as an evaluation circuit for the mechanical displacement of the displacement part of.

【0023】図2aには出発部材としてp−ドープした
シリコン基板からなる支持体1が示されている。
FIG. 2a shows as a starting element a support 1 made of a p-doped silicon substrate.

【0024】図2にはn+拡散(埋め込み層拡散、Burie
d Layer Diffusion)およびp拡散(以下の絶縁拡散)
によるバイポーラ技術の通常の製造工程が示されてい
る。図2bの左側の領域に示された層2および10は図
1の層2および10に相当する。右側の部分に示された
酸化珪素層18(右側の領域ではトランジスタが生じる
べきである)はほかの工程のために除去されるが、これ
に対して酸化珪素層2は存在する接触窓とともに残され
る。その後、図2cで示されるように、この構造の上に
n−エピタクシー層5を被覆し、この層は残された酸化
珪素層2の上に領域8に矢印9の長さに相当して多結晶
で成長する。
In FIG. 2, n + diffusion (buried layer diffusion, Burie
d Layer Diffusion) and p diffusion (the following insulation diffusion)
The normal manufacturing process of the bipolar technology according to US Pat. Layers 2 and 10 shown in the left-hand region of FIG. 2b correspond to layers 2 and 10 of FIG. The silicon oxide layer 18 shown in the right-hand part (where the transistor should occur in the right-hand area) is removed for another process, whereas the silicon oxide layer 2 remains with the existing contact windows. Be done. Then, as shown in FIG. 2c, an n-epitaxial layer 5 is coated on this structure, which layer corresponds to the length of the arrow 9 in the region 8 on the remaining silicon oxide layer 2. It grows in polycrystal.

【0025】引き続き図2dに相当してp−ベース拡散
部分20と同様にp−絶縁拡散部分19により電気的絶
縁を実施する。更にn+コレクタ接続拡散部分21およ
びn+エミッタ拡散部分を公知の方法でバイポーラ工程
に相当して取り付ける。更に上方の酸化珪素層23を被
覆する。
2d, electrical insulation is carried out by means of the p-insulating diffusion part 19 as well as the p-base diffusion part 20. Further, the n + collector connection diffusion portion 21 and the n + emitter diffusion portion are attached by a known method corresponding to the bipolar process. Further, the upper silicon oxide layer 23 is covered.

【0026】図2eによるほかの工程では舌状の変位部
分12の横方向の構造境界部にトレンチ11を掘り、か
つ下側表面を開放するために酸化珪素層2を犠牲層とし
てフッ化水素酸を使用して腐食させて除去する。更に接
触開口およびセンサ16の接続部分の金属被覆およびト
ランジスタ17のトランジスタ接続部分E、B、Cを製
造する。
In another process according to FIG. 2e, a trench 11 is dug in the lateral structural boundary of the tongue-shaped displacement portion 12 and the silicon oxide layer 2 is used as a sacrificial layer to open the lower surface, and hydrofluoric acid is used. To corrode and remove. Furthermore, the contact openings and the metallization of the connection part of the sensor 16 and the transistor connection parts E, B, C of the transistor 17 are manufactured.

【0027】従って、図2eにより舌状の変位部分12
を有するマイクロメカニックセンサ16を製造し、この
部分は空気間隙24の内部で力が作用すると変位可能で
ある。接続部分25および26を介して容量の変化を測
定し、評価することができる。
Therefore, according to FIG. 2e, the tongue-shaped displacement part 12
Of the micromechanical sensor 16 is manufactured, which is displaceable when a force is applied inside the air gap 24. The change in capacitance can be measured and evaluated via the connections 25 and 26.

【0028】図3aおよび3bでは図2a〜2e左側に
よる製造工程に相当してセンサ16が詳細に示されてい
る。そのために図3bは平面図3aの線27に沿った相
当する断面図を示す。
3a and 3b, the sensor 16 is shown in detail corresponding to the manufacturing process according to the left side of FIGS. To that end, FIG. 3b shows a corresponding cross-sectional view along line 27 in plan view 3a.

【0029】図3aから、トレンチング工程を使用して
トレンチ溝11を製造し、この溝が変位部分12として
のプレート状の構造を限定し、この部材が2つのウェブ
28、29を介してほかの構造と連結されていることが
明らかである。従ってセンサは有利には支持体平面に対
して垂直に作動する加速度センサとして使用可能であ
る。
From FIG. 3 a, a trench groove 11 is produced using a trenching process, which defines a plate-like structure as the displacement part 12, which member is connected via two webs 28, 29 to each other. It is clear that it is linked to the structure of The sensor can thus be used as an acceleration sensor, which preferably operates perpendicular to the plane of the support.

【0030】図4によるほかの構成においてはプレート
状の、ほぼ正方形の変位部分30が角部で4つのウェブ
31、32、33、34を介して保持されている。その
ような構成は特に容量式の加速度センサとして適してい
る。
In another configuration according to FIG. 4, a plate-shaped, substantially square displacement part 30 is held at the corners by means of four webs 31, 32, 33, 34. Such a configuration is particularly suitable as a capacitive acceleration sensor.

【0031】図5による第3の構成の平面図から、前記
技術を使用してセンサ内の、場合により導電性の条片3
5を介して接続された多数の電極36を有する構成も実
現可能であることが認められる。この固定した電極36
に対して前記方法により製造された、開放されたシリコ
ン材料37が作動する。この材料には電極が備えられて
おり、この電極は固定された電極36の間に突出してい
る。従って、横方向の加速度による材料37の変位は容
量式に感知することができる。
From the top view of the third configuration according to FIG. 5, a strip 3 of conductors, possibly conductive, in the sensor using the above technique is shown.
It will be appreciated that configurations having multiple electrodes 36 connected via 5 are also feasible. This fixed electrode 36
To the open silicon material 37 produced by the above method is activated. This material is provided with electrodes which project between the fixed electrodes 36. Therefore, the displacement of the material 37 due to the lateral acceleration can be sensed capacitively.

【図面の簡単な説明】[Brief description of drawings]

【図1】a〜dは種々の製造工程におけるセンサの断面
図である。
1A to 1D are cross-sectional views of a sensor in various manufacturing processes.

【図2】a〜eは種々の製造工程におけるバイポーラ工
程によるトランジスタと連結したセンサの断面図であ
る。
2A to 2E are cross-sectional views of a sensor connected to a transistor by a bipolar process in various manufacturing processes.

【図3】aは本発明によるセンサの平面図である。bは
このセンサの断面図である。
FIG. 3a is a plan view of a sensor according to the present invention. b is a sectional view of this sensor.

【図4】本発明によるセンサの第2の実施例の平面図で
ある。
FIG. 4 is a plan view of a second embodiment of the sensor according to the present invention.

【図5】本発明によるセンサの第3の実施例の平面図で
ある。
FIG. 5 is a plan view of a third embodiment of the sensor according to the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 ホルスト ミュンツェル ドイツ連邦共和国 ロイトリンゲン グル オバッハシュトラーセ 60 (72)発明者 ミヒャエル オッフェンベルク ドイツ連邦共和国 チュービンゲン オプ デア グラーフェンハルデ 17 (72)発明者 ヴィンフリート ヴァルトフォーゲル ドイツ連邦共和国 キルヒェンテリンスフ ルト ハルデンヴェーク 33 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Horst Münzel, Federal Republic of Germany Reutlingen Gru Obachstraße 60 (72) Inventor Michael Offenberg, Germany, Tübingen Obdeer Grafenharde 17 (72) Inventor Vin Fleet Waldvogel Germany Kirchentellingsfurth Hardenweg 33

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】 シリコン基板(1)からなる支持体と、
このシリコン基板(1)に被覆されたシリコンからなる
エピタクシー層(5)とからなり、このエピタクシー層
(5)の一部がエッチング工程により少なくとも1つの
マイクロメカニック変位部分(12〜15、30、3
6)として開放されており、この部分が支持領域の少な
くとも一方でシリコン基板(1)と連結されており、か
つセンサ(16)に力が作用するとほかのセンサ構造に
対して変位可能であり、この変位を評価する手段を有す
るマイクロメカニックセンサ(16)において、開放さ
れた変位部分(12〜15、30、37)が多結晶のシ
リコンからなり、このシリコンが支持領域のシリコン基
板(1)への連結部分で単結晶のシリコンに移行してい
ることを特徴とするマイクロメカニックセンサ。
1. A support comprising a silicon substrate (1),
The silicon substrate (1) is covered with an epitaxy layer (5) made of silicon, and a part of the epitaxy layer (5) is formed by an etching process to form at least one micromechanical displacement part (12 to 15, 30). Three
6) is open, this part is connected to the silicon substrate (1) on at least one of the support areas and is displaceable with respect to other sensor structures when a force is applied to the sensor (16), In the micromechanical sensor (16) having means for evaluating this displacement, the open displacement parts (12 to 15, 30, 37) are made of polycrystalline silicon, and this silicon is transferred to the silicon substrate (1) in the supporting region. A micromechanical sensor characterized by migrating to single crystal silicon at the connection part of.
【請求項2】 変位の評価を容量式にまたはピエゾ抵抗
により実施する請求項1記載のマイクロメカニックセン
サ。
2. The micromechanical sensor according to claim 1, wherein the displacement is evaluated by a capacitance method or a piezo resistance.
【請求項3】 変位部分が1つ以上の片持舌状片(12
〜15、36)からなる請求項1または2記載のマイク
ロメカニックセンサ。
3. A cantilevered piece (12) having one or more displacement parts.
15. The micromechanical sensor according to claim 1 or 2, comprising:
【請求項4】 変位部分が縁部領域で支持されたプレー
ト(30)からなる請求項1または2記載のマイクロメ
カニックセンサ。
4. Micromechanical sensor according to claim 1 or 2, wherein the displacement part comprises a plate (30) supported in the edge region.
【請求項5】 互いに重なったエピタクシー層からなる
変位部分の多数の層が開放されている請求項1から4ま
でのいずれか1項記載のマイクロメカニックセンサ。
5. The micromechanical sensor according to claim 1, wherein a large number of layers of the displacement portion, which are composed of epitaxy layers that overlap each other, are open.
【請求項6】 支持体(1)がシリコンウェーハとして
結晶学的方向(111)または(100)に配向されて
いる請求項1から5までのいずれか1項記載のマイクロ
メカニックセンサ。
6. The micromechanical sensor according to claim 1, wherein the support (1) is oriented as a silicon wafer in the crystallographic direction (111) or (100).
【請求項7】 同一の支持体(1)上にマイクロメカニ
ックセンサ(16)の他に集積電子回路(17)が配置
されている請求項1から6までのいずれか1項記載のマ
イクロメカニックセンサ。
7. The micromechanical sensor according to claim 1, wherein an integrated electronic circuit (17) is arranged on the same support (1) in addition to the micromechanical sensor (16). .
【請求項8】 同一の支持体(1)上のほかの構成部材
(17)からマイクロメカニックセンサ部分(16)が絶
縁拡散部分(19)によりまたはトレンチングにより電
気的に絶縁されている請求項7記載のマイクロメカニッ
クセンサ。
8. Other components on the same support (1)
Micromechanical sensor according to claim 7, wherein the micromechanical sensor part (16) is electrically insulated from the (17) by an insulating diffusion part (19) or by trenching.
【請求項9】 請求項1から8までのいずれか1項記載
のマイクロメカニックセンサを製造する方法において、
マイクロメカニック変位部分(12〜15、30、3
6)を開放すべきであるシリコン基板(1)に酸化珪素
層(2)を被覆し、その際この酸化珪素層(2)の周囲
にシリコン基板(1)に対する接触窓開口(3、4)を
製造し、酸化珪素層(2)および接触窓開口(3、4)
にシリコンからなるエピタクシー層(5)を析出させ、
このエピタクシー層を酸化珪素層(2)上では多結晶で
(領域8)および接触窓開口(3、4)の領域ではシリ
コン基板(1)への直接連結部分として単結晶で(領域
6、7)成長させ、犠牲層としての、多結晶のエピタク
シー層領域(8)の下側の酸化珪素層(2)をエッチン
グ工程により除去することを特徴とするマイクロメカニ
ックセンサの製造方法。
9. A method of manufacturing a micromechanical sensor according to claim 1, wherein
Micromechanic displacement part (12-15, 30, 3
6) The silicon substrate (1), from which the silicon substrate (1) is to be opened, is coated with a silicon oxide layer (2), the contact window openings (3, 4) for the silicon substrate (1) being provided around this silicon oxide layer (2). A silicon oxide layer (2) and contact window openings (3, 4)
An epitaxy layer (5) made of silicon is deposited on
This epitaxy layer is polycrystalline (region 8) on the silicon oxide layer (2) and monocrystalline (region 6, in the region of the contact window openings (3, 4) as a direct connection to the silicon substrate (1). 7) A method of manufacturing a micromechanical sensor, which comprises growing and removing the silicon oxide layer (2) below the polycrystalline epitaxy layer region (8) as a sacrificial layer by an etching process.
【請求項10】 酸化珪素層(2)を除去する前にトレ
ンチング工程で、トレンチ(11)としての狭いエッチ
ング溝の形の変位部分(12〜15、30、36、3
7)の横方向の構造境界部を異方性のプラズマエッチン
グ技術を使用して多結晶のエピタクシー層(8)を貫通
させてエッチングにより除去する請求項9記載の方法。
10. Displacement portions (12-15, 30, 36, 3 in the form of narrow etching trenches as trenches (11) in a trenching step before removing the silicon oxide layer (2).
10. The method according to claim 9, wherein the lateral structural boundaries of 7) are removed by etching through the polycrystalline epitaxy layer (8) using anisotropic plasma etching techniques.
【請求項11】 酸化珪素層(2)にエピタクシーの前
にポリスタート層(10)を被覆する請求項9または1
0記載の方法。
11. The silicon oxide layer (2) is coated with a polystart layer (10) before epitaxy.
The method described in 0.
【請求項12】 犠牲酸化物を析出させる前に電気的不
動態化のために耐HF性の誘電層を基板に析出させる請
求項9から11までのいずれか1項記載の方法。
12. The method according to claim 9, wherein a HF-resistant dielectric layer is deposited on the substrate for electrical passivation prior to depositing the sacrificial oxide.
【請求項13】 酸化珪素層(2)をドープする請求項
9から12までのいずれか1項記載の方法。
13. The method according to claim 9, wherein the silicon oxide layer (2) is doped.
【請求項14】 酸化珪素層(2)の除去をフッ化水素
酸を使用して実施する請求項9から13までのいずれか
1項記載の方法。
14. The method according to claim 9, wherein the removal of the silicon oxide layer (2) is carried out using hydrofluoric acid.
【請求項15】 マイクロメカニックセンサ(16)の
製造工程を利用して同一の支持体(1)上に集積電子回
路(17)を製造する請求項9から14までのいずれか
1項記載の方法。
15. The method according to claim 9, wherein the integrated electronic circuit (17) is manufactured on the same support (1) using the manufacturing process of the micromechanical sensor (16). .
JP12131594A 1993-06-03 1994-06-02 Micromechanical sensor and manufacturing method thereof Expired - Lifetime JP3616659B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4318466.9 1993-06-03
DE4318466A DE4318466B4 (en) 1993-06-03 1993-06-03 Method for producing a micromechanical sensor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2004260214A Division JP3762928B2 (en) 1993-06-03 2004-09-07 Micromechanical sensor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH0799326A true JPH0799326A (en) 1995-04-11
JP3616659B2 JP3616659B2 (en) 2005-02-02

Family

ID=6489558

Family Applications (2)

Application Number Title Priority Date Filing Date
JP12131594A Expired - Lifetime JP3616659B2 (en) 1993-06-03 1994-06-02 Micromechanical sensor and manufacturing method thereof
JP2004260214A Expired - Lifetime JP3762928B2 (en) 1993-06-03 2004-09-07 Micromechanical sensor and manufacturing method thereof

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2004260214A Expired - Lifetime JP3762928B2 (en) 1993-06-03 2004-09-07 Micromechanical sensor and manufacturing method thereof

Country Status (3)

Country Link
JP (2) JP3616659B2 (en)
DE (1) DE4318466B4 (en)
FR (1) FR2707043B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004230546A (en) * 2002-12-30 2004-08-19 Robert Bosch Gmbh Method for releasing surface micromachined structure in epitaxial reactor
JP2004260187A (en) * 2003-02-26 2004-09-16 Robert Bosch Gmbh Pressure sensor device and its manufacturing method
JP2004304189A (en) * 2003-03-31 2004-10-28 Robert Bosch Gmbh Method of protecting encapsulated sensor structure using stack packaging

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19530736B4 (en) * 1995-02-10 2007-02-08 Robert Bosch Gmbh Acceleration sensor and method for manufacturing an acceleration sensor
FR2732467B1 (en) * 1995-02-10 1999-09-17 Bosch Gmbh Robert ACCELERATION SENSOR AND METHOD FOR MANUFACTURING SUCH A SENSOR
DE19526691A1 (en) * 1995-07-21 1997-01-23 Bosch Gmbh Robert Process for the production of acceleration sensors
DE19537814B4 (en) * 1995-10-11 2009-11-19 Robert Bosch Gmbh Sensor and method for producing a sensor
DE19632060B4 (en) * 1996-08-09 2012-05-03 Robert Bosch Gmbh Method for producing a rotation rate sensor
DE19643893A1 (en) 1996-10-30 1998-05-07 Siemens Ag Ultrasonic transducers in surface micromechanics
DE69726718T2 (en) * 1997-07-31 2004-10-07 St Microelectronics Srl Method of manufacturing highly sensitive integrated acceleration and gyroscopic sensors and sensors manufactured in this way
EP0979992B1 (en) * 1998-08-11 2003-10-08 Infineon Technologies AG Method of Manufacturing a Micromechanical Sensor
US6379989B1 (en) * 1998-12-23 2002-04-30 Xerox Corporation Process for manufacture of microoptomechanical structures
DE10017976A1 (en) 2000-04-11 2001-10-18 Bosch Gmbh Robert Micromechanical component and corresponding manufacturing method
US6479315B1 (en) 2000-11-27 2002-11-12 Microscan Systems, Inc. Process for manufacturing micromechanical and microoptomechanical structures with single crystal silicon exposure step
US6506620B1 (en) 2000-11-27 2003-01-14 Microscan Systems Incorporated Process for manufacturing micromechanical and microoptomechanical structures with backside metalization
US6479311B1 (en) 2000-11-27 2002-11-12 Microscan Systems, Inc. Process for manufacturing micromechanical and microoptomechanical structures with pre-applied patterning
DE10114036A1 (en) 2001-03-22 2002-10-02 Bosch Gmbh Robert Process for the production of micromechanical sensors and sensors produced therewith
DE10122765A1 (en) * 2001-05-10 2002-12-05 Campus Micro Technologies Gmbh Electroacoustic transducer for generating or detecting ultrasound, transducer array and method for manufacturing the transducer or transducer array
JP4552883B2 (en) * 2006-04-19 2010-09-29 株式会社デンソー Vibration detection method
DE102008044371B4 (en) 2008-12-05 2016-10-27 Robert Bosch Gmbh Method for producing a sensor arrangement
JP5835285B2 (en) * 2013-07-24 2015-12-24 横河電機株式会社 Vibrating transducer and manufacturing method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4371421A (en) * 1981-04-16 1983-02-01 Massachusetts Institute Of Technology Lateral epitaxial growth by seeded solidification
JPH0712086B2 (en) * 1984-01-27 1995-02-08 株式会社日立製作所 Method for manufacturing diaphragm sensor
US4893509A (en) * 1988-12-27 1990-01-16 General Motors Corporation Method and product for fabricating a resonant-bridge microaccelerometer
US5095401A (en) * 1989-01-13 1992-03-10 Kopin Corporation SOI diaphragm sensor
DE4000903C1 (en) * 1990-01-15 1990-08-09 Robert Bosch Gmbh, 7000 Stuttgart, De
DE4003473A1 (en) * 1990-02-06 1991-08-08 Bosch Gmbh Robert CRYSTAL-ORIENTED MOTION SENSOR AND METHOD FOR THE PRODUCTION THEREOF
EP0543901B1 (en) * 1990-08-17 1995-10-04 Analog Devices, Inc. Monolithic accelerometer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004230546A (en) * 2002-12-30 2004-08-19 Robert Bosch Gmbh Method for releasing surface micromachined structure in epitaxial reactor
JP2004260187A (en) * 2003-02-26 2004-09-16 Robert Bosch Gmbh Pressure sensor device and its manufacturing method
JP2004304189A (en) * 2003-03-31 2004-10-28 Robert Bosch Gmbh Method of protecting encapsulated sensor structure using stack packaging

Also Published As

Publication number Publication date
JP3616659B2 (en) 2005-02-02
DE4318466B4 (en) 2004-12-09
JP2005062196A (en) 2005-03-10
DE4318466A1 (en) 1994-12-08
FR2707043B1 (en) 1999-02-19
JP3762928B2 (en) 2006-04-05
FR2707043A1 (en) 1994-12-30

Similar Documents

Publication Publication Date Title
US6076404A (en) Micromechanical sensor including a single-crystal silicon support
JPH0799326A (en) Micromechanic sensor and its preparation
US6030850A (en) Method for manufacturing a sensor
US6428713B1 (en) MEMS sensor structure and microfabrication process therefor
US5792675A (en) Method for manufacturing an accelerometer sensor of crystalline material
US6388300B1 (en) Semiconductor physical quantity sensor and method of manufacturing the same
US8558327B2 (en) Micromechanical component and corresponding production method
KR100348177B1 (en) Isolation Method for Single Crystalline Silicon Micro Machining using Deep Trench Dielectric Layer
US20020096727A1 (en) Micromechanical component and method of manufacturing a micromechanical component
KR100414570B1 (en) Isolation Method for Single Crystalline Silicon Micro Structure Using Triple Layers
JPH09501231A (en) Electrostatic force balance type silicon accelerometer
USRE41856E1 (en) Process for manufacturing high-sensitivity accelerometric and gyroscopic integrated sensors, and sensor thus produced
JPH08510094A (en) Integrated micromechanical sensor device and manufacturing method thereof
US6521965B1 (en) Integrated pressure sensor
US7550358B2 (en) MEMS device including a laterally movable portion with piezo-resistive sensing elements and electrostatic actuating elements on trench side walls, and methods for producing the same
JPS5944875A (en) Semiconductor device having beam structure
US6379990B1 (en) Method of fabricating a micromechanical semiconductor configuration
JP4174853B2 (en) Manufacturing method of semiconductor dynamic quantity sensor and manufacturing method of semiconductor pressure sensor
JP3633555B2 (en) Semiconductor dynamic quantity sensor
KR100405176B1 (en) An Electrical Isolation Method for Single-Crystalline Silicon MEMS Using Localized SOI Structure
JPH11220138A (en) Semiconductor dynamic quantity sensor and manufacture thereof
JP3638470B2 (en) Semiconductor acceleration sensor
JP3580285B2 (en) Manufacturing method of semiconductor dynamic quantity sensor
JP3638469B2 (en) Semiconductor acceleration sensor
JPH10223914A (en) Manufacture of semiconductor micromachine

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040507

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040610

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040907

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041108

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071112

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111112

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 9

EXPY Cancellation because of completion of term