JPH0797490B2 - High temperature battery - Google Patents

High temperature battery

Info

Publication number
JPH0797490B2
JPH0797490B2 JP62288544A JP28854487A JPH0797490B2 JP H0797490 B2 JPH0797490 B2 JP H0797490B2 JP 62288544 A JP62288544 A JP 62288544A JP 28854487 A JP28854487 A JP 28854487A JP H0797490 B2 JPH0797490 B2 JP H0797490B2
Authority
JP
Japan
Prior art keywords
active material
anode active
battery
alloy
corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62288544A
Other languages
Japanese (ja)
Other versions
JPH01132050A (en
Inventor
功 伊藤
利行 末広
裕保 小俣
耕一 渡辺
朋美 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP62288544A priority Critical patent/JPH0797490B2/en
Publication of JPH01132050A publication Critical patent/JPH01132050A/en
Publication of JPH0797490B2 publication Critical patent/JPH0797490B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/39Accumulators not provided for in groups H01M10/05-H01M10/34 working at high temperature
    • H01M10/3909Sodium-sulfur cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、高温電池の陽極活物質に接する陽極活物質容
器、陽極集電材料等に耐食性および靱性の優れたFe−Cr
−Ni合金を使用した高温電池に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention provides a Fe-Cr alloy excellent in corrosion resistance and toughness for anode active material containers, anode current collectors, etc. in contact with the anode active material of high temperature batteries.
-It relates to a high temperature battery using a Ni alloy.

[従来の技術] 高温電池の原理は、1966年米国フォード・モーター社に
より発表されたもので活物質としてナトリウム、硫黄を
用いることからナトリウム−硫黄電池ともよばれてい
る。
[Prior Art] The principle of a high-temperature battery was announced by Ford Motor Company of the United States in 1966, and is also called a sodium-sulfur battery because sodium and sulfur are used as active materials.

その構造は、第1図に示すごとく、1の陰極端子、2の
陰極活物質(ナトリウム)、3のナトリウムイオン伝導
性を有する固体電解質管(例えばベータアルミナ)、4
のカーボン又はグラファイトフェルトに含浸された陽極
活物質(例えば硫黄又は多硫化ナトリウム)、5の陽極
端子集電材料を兼ねた陽極活物質容器からなり、固体電
解質管の上部開放端には、陰極室と陽極室を気密に密封
する蓋を電気的に絶縁するための絶縁物8(例えばアル
ファアルミナ)がガラス9で接合されている。
As shown in FIG. 1, the structure is as follows: 1 cathode terminal, 2 cathode active material (sodium), 3 solid electrolyte tube having sodium ion conductivity (eg beta-alumina), 4
Of the anode active material (for example, sulfur or sodium polysulfide) impregnated with carbon or graphite felt of 5), the anode active material container also serving as the anode terminal current collecting material of 5, and the cathode chamber at the upper open end of the solid electrolyte tube. An insulator 8 (for example, alpha alumina) for electrically insulating the lid that hermetically seals the anode chamber is joined with glass 9.

作動温度は両極活物質の融点および固体電解質の電導度
を考慮し、通常300〜350℃である。
The operating temperature is usually 300 to 350 ° C in consideration of the melting points of the bipolar active materials and the electric conductivity of the solid electrolyte.

電池反応は、つぎの式に示すとおりである。The battery reaction is as shown in the following equation.

高温電池は、高性能の2次電池として電力負荷調整用電
気自動車電源用に各国で開発が進められているが、開発
のネックのひとつに、耐多硫化ナトリウム性の優れた陽
極活物質容器および陽極集電材料が必要であるという点
がある。
High-temperature batteries are being developed in various countries as high-performance secondary batteries for power supply of electric vehicles for power load adjustment. One of the bottleneck of development is the anode active material container with excellent sodium polysulfide resistance and There is a point that an anode current collecting material is necessary.

多硫化ナトリウムは非常に強い腐食作用をもち、陽極活
物質容器、陽極集電材料等が腐食されると硫化物が生成
される。腐食が進行すると、陽極活物質中の硫黄が硫化
のために消費され、活物質として作用する硫黄の量が減
り、電池容量が減少して寿命となる。
Sodium polysulfide has a very strong corrosive action, and sulfides are generated when the anode active material container, the anode current collecting material and the like are corroded. As the corrosion progresses, the sulfur in the anode active material is consumed for sulfurization, the amount of sulfur acting as the active material is reduced, and the battery capacity is reduced to reach the end of life.

又局部的に腐食が進行すると、陽極活物質容器等に穴が
あき、活物質が外部へ流出して寿命となる場合もある。
Further, if corrosion progresses locally, the anode active material container or the like may be punctured, and the active material may flow out to the end of its life.

陽極活物質容器および陽極集電材料等に要求される性能
は、激しい腐食作用をもつ陽極活物質に対し耐食性があ
り、かつ機械的強度がなくてはならず、加工性に優れて
いる材料が望ましい。さらに陽極集電を行なうときには
良好な電気伝導性も必要である。
Regarding the performance required for the anode active material container and the anode current collecting material, etc., a material that has corrosion resistance to the anode active material having a severe corrosive action and mechanical strength and is excellent in workability is required. desirable. Furthermore, good electrical conductivity is also required when conducting anode current collection.

一般にはSUS 304、モリブデン、クロムなどが陽極活物
質容器、陽極集電材料等として検討されているが、SUS
304では腐食の進行が速く、第2図に示すように、少な
い充放電サイクルで急激な電池容量の減少をきたす。
Generally, SUS 304, molybdenum, chromium, etc. are considered as the anode active material container, anode current collector material, etc.
In 304, the corrosion progresses rapidly, and as shown in FIG. 2, the battery capacity is rapidly reduced with a small number of charge / discharge cycles.

もリブデンの場合、陽極活物質組成がNa2S5付近の部分
放電状態で放電を打切る充放電サイクルのときは、全体
量としての腐食は少なく、第3図に示す様に電池容量の
減少は少ないが、局部的な腐食いわゆる孔食がおこり、
結局寿命は短かい。
Also, in the case of ribden, the total amount of corrosion is small during the charge-discharge cycle in which the discharge is stopped in the partial discharge state where the anode active material composition is near Na 2 S 5 , and the battery capacity decreases as shown in Fig. 3. Local corrosion, so-called pitting corrosion,
After all, the life is short.

そのうえ陽極活物質組成がNa2S3付近の完全放電状態ま
で放電する充放電サイクルのときは、腐食の進行が加速
され、第4図に示す様に、第3図に示した部分放電に比
較して電池容量減少は激しくなる。
In addition, during the charge / discharge cycle in which the anode active material composition is discharged to a complete discharge state near Na 2 S 3 , the progress of corrosion is accelerated, and as shown in FIG. 4, compared to the partial discharge shown in FIG. Then, the battery capacity decreases sharply.

クロムはNa2S5〜Na2S3の全域で全体量の腐食は少ない
が、孔食を生ずること、また極めて脆く、容器等に加工
すること現状技術では不可能に近いものであり、要求を
満足するものではない。
Chromium is less corrosion of the total amount in the whole of Na 2 S 5 ~Na 2 S 3 , that results in pitting, also it is extremely brittle, nearly impossible at present technology be processed into a container or the like, the request Is not satisfied.

本発明者らは、陽極活物質に対して耐食性があり、かつ
加工性にも優れた金属材料として、高純度高Cr−Fe合金
を提案した(特開昭58−152379号)。
The present inventors have proposed a high-purity, high-Cr-Fe alloy as a metal material that has corrosion resistance to an anode active material and is excellent in workability (Japanese Patent Laid-Open No. 58-152379).

この合金は、クロムと同様に全域での腐食が少なく、か
つ耐孔食性にも優れ、高温電池の長寿命化に有効であ
り、さらに陽極活物質容器に加工することも可能であ
る。
Similar to chromium, this alloy has little corrosion in the entire region and is also excellent in pitting corrosion resistance, effective in prolonging the service life of a high temperature battery, and can be processed into an anode active material container.

[発明が解決しようとする問題点] 高純度高Cr−Fe合金は、前述のように高温電池用として
優れた耐食性を有しているが、常温における靱性が悪い
ため、電池容器に成形する際の加工性に難点があり、さ
らに電池用の素材を製造する際にも問題がある。
[Problems to be Solved by the Invention] The high-purity high-Cr-Fe alloy has excellent corrosion resistance for high-temperature batteries as described above, but since it has poor toughness at room temperature, it cannot be molded into a battery container. Is difficult to process, and there is a problem in manufacturing a material for batteries.

本発明は、ナトリウム−硫黄高温電池の陽極活物質に接
する材料用として耐食性に優れ、かつ靱性に優れた合金
を提供することを目的とする。
An object of the present invention is to provide an alloy having excellent corrosion resistance and toughness for a material in contact with an anode active material of a sodium-sulfur high temperature battery.

[問題点を解決するための手段・作用] 本発明は、高純度Fe−Cr−Ni合金を使用した高温電池で
あって、必要に応じてTi,Nb,Zr,Vを添加したものであ
る。
[Means and Actions for Solving Problems] The present invention is a high-temperature battery using a high-purity Fe—Cr—Ni alloy, in which Ti, Nb, Zr, and V are added as necessary. .

以下に成分の限定理由を述べる。The reasons for limiting the components will be described below.

Crは60%を超えると鍛造〜冷却時の置割れ、冷間加工時
の延性不良等、材質が著しく劣化する。また40%未満で
は高温電池用としての耐食性が劣る。したがって40〜60
%とした。
If the Cr content exceeds 60%, the material is significantly deteriorated, such as cracking during forging to cooling and poor ductility during cold working. If it is less than 40%, the corrosion resistance for high temperature batteries is poor. Therefore 40-60
%.

Niは靱性改善の目的で添加し、6%を超えると安定的な
熱処理条件範囲が狭く、オーステナイト相が現出し、熱
間の加工性が劣化し、加工時に割れが生じる。また4%
以下では靱性の改善効果がみられない。4%超〜6%の
添加でvTrが0℃以下となる。
Ni is added for the purpose of improving toughness. If it exceeds 6%, the stable heat treatment condition range is narrow, an austenite phase appears, hot workability deteriorates, and cracks occur during processing. 4% again
Below, the effect of improving toughness is not observed. Addition of more than 4% to 6% makes vTr below 0 ° C.

Ni添加量についてさらに詳しく述べる。The amount of Ni added will be described in more detail.

高温電池用槽形状容器を作成する際、材質特性として靱
性が重要な因子となる。また本発明合金のようなCr含有
量の高いFe合金は、熱延材のコイル巻き取り時、および
冷間圧延の際に靱性の不足によって割れ、破断を起す場
合がある。
When making a tank-shaped container for high temperature batteries, toughness is an important factor as a material property. Further, an Fe alloy having a high Cr content, such as the alloy of the present invention, may crack and fracture due to lack of toughness during coiling of a hot rolled material and during cold rolling.

そこで本発明者は靱性改善につき検討を加えた結果、Ni
を適量添加することにより、常温近傍の靱性が著しく改
善される事を見い出され。
Therefore, the present inventor conducted a study on improvement of toughness and found that
It has been found that the toughness near room temperature is significantly improved by adding an appropriate amount of.

Fe−50Cr鋼にNiを添加し、シャルピー衝撃試験により得
た靱性に関する結果を第5図に示す。
Fig. 5 shows the results regarding the toughness obtained by the Charpy impact test by adding Ni to Fe-50Cr steel.

第5図はシャルピー衝撃値が2kgf・m/cm2を超える遷移
温度(vTrs)を示す。
Figure 5 shows the transition temperature (vTrs) at which the Charpy impact value exceeds 2 kgf · m / cm 2 .

この結果から、Niを4%超〜6%添加すると、vTrsが0
℃以下となる。またvTrsが50℃以下となるNi添加量は3
〜8%である。
From this result, vTrs becomes 0 when Ni is added more than 4% to 6%.
It will be below ℃. Also, the amount of Ni added when vTrs is 50 ° C or less is 3
~ 8%.

なおシャルピー衝撃値2kgf・m/cm2以上という条件は、
素材の製造行程に於て必要な靱性の目安であり、経験的
にこの条件を満す靱性が確保できれば、工業的に合金の
薄板製造および、造管が可能である。
The condition that the Charpy impact value is 2 kgf ・ m / cm 2 or more is
It is an index of the toughness necessary in the manufacturing process of the raw material, and if the toughness satisfying this condition can be empirically secured, it is possible to industrially manufacture the alloy thin plate and pipe-making.

Cが0.02%を超え、またはNが0.02%を超えると、粒界
に炭化物または窒化物が生成し、粒界腐食、孔食等の局
部腐食発生の原因となる。また加工性も劣化し、電池容
器形状への成形が困難となる。したがって、C,Nともに
0.02%以下とした。
If C exceeds 0.02% or N exceeds 0.02%, carbides or nitrides are generated at the grain boundaries, which causes local corrosion such as grain boundary corrosion and pitting corrosion. In addition, the workability also deteriorates, making it difficult to form the battery container. Therefore, both C and N
It was set to 0.02% or less.

さらに、Ti,Nb,Zr,Vのうち、いずれか1種または2種以
上を合計量で0.05〜0.5%添加したものは、さらに耐食
性および延性、靱性が改善される。
Furthermore, among Ti, Nb, Zr, and V, any one kind or two or more kinds added in a total amount of 0.05 to 0.5% further improves the corrosion resistance, ductility, and toughness.

Ti,Nb,Zr,Vを添加すると、クロム炭窒化物の粒界析出を
抑制するため、Cr欠乏層の生成を原因とする耐食性の劣
化を防ぎ、かつ延性、靱性が向上とする。
Addition of Ti, Nb, Zr, and V suppresses grain boundary precipitation of chromium carbonitrides, and thus prevents deterioration of corrosion resistance due to formation of Cr-deficient layer and improves ductility and toughness.

但し上限を超えて添加するとTi,Nb,Zr,Vを含有する金属
間化合物が生成し、延性,靱性が劣化し、さらには局部
腐食の原因となる。
However, if added in excess of the upper limit, an intermetallic compound containing Ti, Nb, Zr, and V will be formed, which will deteriorate ductility and toughness and cause local corrosion.

高温電池に於て本材料がさらされる環境は、前記のごと
く高温の多硫化ナトリウムである。陽極活物質は放電に
よりS(硫黄)あるいはNa2S5などのSのNaに対する比
の大きいところから、ほぼNa2S3の組成にまで変化する
が、Na2S3による腐食が最も激しく、陽極活物質容器
材、陽極集電材料等としては、Na2S3に対する十分な耐
食が必要である。
The environment to which this material is exposed in a high temperature battery is high temperature sodium polysulfide as described above. The anode active material is from where large ratio of Na S, such as S (sulfur) or Na 2 S 5 by the discharge, varies almost to the composition of Na 2 S 3, and most severely corroded by Na 2 S 3, Sufficient corrosion resistance to Na 2 S 3 is required for the anode active material container material, the anode current collecting material, and the like.

本発明合金は、このような腐食環境に十分耐えるもので
ある。
The alloy of the present invention sufficiently withstands such a corrosive environment.

[実施例] 以下に本発明合金と従来の金属材料の耐食性比較試験結
果を示す。
[Examples] The results of the corrosion resistance comparison test between the alloy of the present invention and the conventional metal material are shown below.

第1表に示す本発明の合金の1×8×30(mm)の試験片
を、15gのNa2S3と一緒にパイレックスガラス管に真空封
入し、350℃で384時間の腐食試験を行なった。
A 1 × 8 × 30 (mm) test piece of the alloy of the present invention shown in Table 1 was vacuum sealed in a Pyrex glass tube together with 15 g of Na 2 S 3 and subjected to a corrosion test at 350 ° C. for 384 hours. It was

試験片の重量減、表面積、比重より腐食厚さを求めた。
また顕微鏡により孔食の有無を調べた。
The corrosion thickness was determined from the weight loss, surface area and specific gravity of the test piece.
Moreover, the presence or absence of pitting corrosion was examined by a microscope.

結果を第2表に示す。The results are shown in Table 2.

これらの結果から本発明の合金は、比較合金鋼に比し腐
食厚さ、局部腐食の観点から耐Na2S3中耐食性が極めて
優れている事が判る。
From these results, it can be seen that the alloy of the present invention is extremely excellent in corrosion resistance in Na 2 S 3 in view of corrosion thickness and local corrosion as compared with the comparative alloy steel.

つぎに本発明合金を用いて、第1図の5に示された陽極
端子電体を兼ねた陽極活物質容器を作成し、ナトリウム
−硫黄電池を組立て、充放電サイクル試験を実施した。
Next, using the alloy of the present invention, an anode active material container also serving as an anode terminal electric body shown in FIG. 1 was prepared, a sodium-sulfur battery was assembled, and a charge / discharge cycle test was carried out.

試験温度は350℃で5時間率電流(陽極活物質容器の表
面電流密度として55mA/cm2)で3時間放電し、10分間休
止の後5時間で放電量の100%電気量を充電し、10分間
休止を1サイクルとする充放電条件である。
The test temperature was 350 ° C., discharge was performed for 3 hours at a rate current (55 mA / cm 2 as the surface current density of the anode active material container) for 3 hours, and after a 10-minute rest, 5 hours were charged with 100% of the discharge amount of electricity. The charging / discharging conditions are such that a pause of 10 minutes is one cycle.

450サイクルまでの各陽極活物質容器を用いた電池のサ
イクルに対する電池容量の変化および試験後の陽極活物
質容器の調査を行なった。
The change of the battery capacity with respect to the cycle of the battery using each anode active material container up to 450 cycles and the investigation of the anode active material container after the test were conducted.

第7図(a〜d)に本発明合金試料で作成した陽極活物
質容器を用いた電池の充放電サイクルに対する電池容量
変化を示した。
FIG. 7 (a to d) shows the battery capacity change with respect to the charge / discharge cycle of the battery using the anode active material container prepared from the alloy sample of the present invention.

同様の試験条件で行なったモリブデン、Crを陽極活物質
として使った電池の結果(第3図、6図)に比較しても
良好な電池容量変化である。
Even when compared with the results (FIGS. 3 and 6) of the battery using molybdenum and Cr as the positive electrode active material under the same test conditions, the battery capacity change is good.

また試験後の容器5の陽極活物質に接していた表面は、
本発明の合金試料はいずれも異常はなく、陽極活物質に
対してすぐれた耐食性を持っていた。
In addition, the surface of the container 5 that was in contact with the anode active material after the test was
All of the alloy samples of the present invention had no abnormality and had excellent corrosion resistance to the anode active material.

[発明の効果] 以上の説明のように、本発明は陽極活物質による陽極活
物質容器、陽極集電材料等の腐食を抑え、高温電池の長
寿命化をはかり、さらに靱性にも優れたものであり、そ
の工業的価値は非常に大なるものである。
EFFECTS OF THE INVENTION As described above, the present invention suppresses corrosion of the anode active material container, the anode current collecting material and the like due to the anode active material, prolongs the service life of the high temperature battery, and has excellent toughness. And its industrial value is enormous.

なお本発明は、陽極活物質に接する部分に用いる金属材
料に係るものであり、その構造および使用方法また被覆
の方法に関しては限定されるものではない。
The present invention relates to a metal material used in a portion in contact with the anode active material, and the structure, usage method and coating method are not limited.

【図面の簡単な説明】[Brief description of drawings]

第1図は高温電池の縦断面図、第2図はSUS304を陽極活
物質容器に用いた電池の容量特性のグラフ、第3図はモ
リブデンを陽極活物質容器に用いた電池の部分放電サイ
クル容量特性のグラフ、第4図はモリブデンを陽極活物
質容器に用いた電池の完全放電サイクル容量特性のグラ
フ、第5図は本発明の靱性に及ぼすNiの添加効果のグラ
フ、第6図は鉄−クロム−珪素合金を陽極活物質容器に
用いた電池の部分放電サイクル容量特性のグラフ、第7
図(a〜d)は本発明による合金試料を陽極活物質容器
に用いた電池の部分放電サイクル容量特性のグラフであ
る。 1……陰極端子、2……陰極活物質 3……固体電解質管、4……陽極活物質 5……陽極端子集電体を兼ねた陽極活物質容器 6……陽極蓋、7……陰極蓋 8……絶縁リング、9……ガラス
Fig. 1 is a vertical cross-sectional view of a high temperature battery, Fig. 2 is a graph of capacity characteristics of a battery using SUS304 as an anode active material container, and Fig. 3 is a partial discharge cycle capacity of a battery using molybdenum as an anode active material container. A graph of characteristics, FIG. 4 is a graph of complete discharge cycle capacity characteristics of a battery using molybdenum as an anode active material container, FIG. 5 is a graph of addition effect of Ni on toughness of the present invention, and FIG. Graph of partial discharge cycle capacity characteristics of battery using chromium-silicon alloy for anode active material container, No. 7
FIGS. 3A to 3D are graphs of partial discharge cycle capacity characteristics of a battery using the alloy sample according to the present invention as the anode active material container. 1 ... Cathode terminal, 2 ... Cathode active material 3 ... Solid electrolyte tube, 4 ... Anode active material 5 ... Anode terminal Anode active material container that also serves as current collector 6 ... Anode lid, 7 ... Cathode Lid 8 ... Insulating ring, 9 ... Glass

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01M 10/39 Z (72)発明者 渡辺 耕一 山口県光市大字島田3434 新日本製鐵株式 会社光製鐵所内 (72)発明者 村田 朋美 神奈川県川崎市中原区井田1618 新日本製 鐵株式会社第一技術研究所内 (56)参考文献 特開 昭59−177319(JP,A)─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 6 Identification number Internal reference number FI Technical indication location H01M 10/39 Z (72) Inventor Koichi Watanabe 3434 Shimada, Hikari City, Yamaguchi Prefecture Nippon Steel Co., Ltd. Hikari Steel Works (72) Inventor Tomomi Murata 1618 Ida, Nakahara-ku, Kawasaki-shi, Kanagawa Inside Nippon Steel Co., Ltd. Technical Research Institute (56) Reference JP-A-59-177319 (JP, A)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】陽極活物質に接する材料に重量%にて、C
r:40〜60%、Ni:4%超〜6%、C:0.02%以下、N:0.02%
以下、残部がFe及び不純物よりなるFe−Cr−Ni合金を使
用したことを特徴とする高温電池。
1. A material in contact with the positive electrode active material, in% by weight, C
r: 40-60%, Ni: over 4% -6%, C: 0.02% or less, N: 0.02%
Hereinafter, a high-temperature battery characterized by using an Fe-Cr-Ni alloy with the balance being Fe and impurities.
【請求項2】陽極活物質に接する材料に重量%にて、C
r:40〜60%、Ni:4%超〜6%、C:0.02%以下、N:0.02%
以下、さらに、Ti,Nb,Zr,Vのうちいずれか1種または2
種以上を合計量で0.05〜0.5%含み、残部がFe及び不純
物よりなるFe−Cr−Ni合金を使用したことを特徴とする
高温電池。
2. A material in contact with the positive electrode active material, in% by weight, contains C
r: 40-60%, Ni: over 4% -6%, C: 0.02% or less, N: 0.02%
Below, one or more of Ti, Nb, Zr, and V
A high temperature battery characterized by using an Fe-Cr-Ni alloy containing 0.05 to 0.5% in total of at least one species and the balance being Fe and impurities.
JP62288544A 1987-11-17 1987-11-17 High temperature battery Expired - Lifetime JPH0797490B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62288544A JPH0797490B2 (en) 1987-11-17 1987-11-17 High temperature battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62288544A JPH0797490B2 (en) 1987-11-17 1987-11-17 High temperature battery

Publications (2)

Publication Number Publication Date
JPH01132050A JPH01132050A (en) 1989-05-24
JPH0797490B2 true JPH0797490B2 (en) 1995-10-18

Family

ID=17731615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62288544A Expired - Lifetime JPH0797490B2 (en) 1987-11-17 1987-11-17 High temperature battery

Country Status (1)

Country Link
JP (1) JPH0797490B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100379249B1 (en) * 2000-08-29 2003-04-08 한국과학기술원 Sulfur Positive Electrodes in the Lithium Secondary Batteries and Method for Preparing the Same
JP3598985B2 (en) * 2001-03-21 2004-12-08 日本電気株式会社 Queue assignment system and queue assignment method for packet switch

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59177319A (en) * 1983-12-22 1984-10-08 Showa Denko Kk Manufacture of ferritic stainless steel plate

Also Published As

Publication number Publication date
JPH01132050A (en) 1989-05-24

Similar Documents

Publication Publication Date Title
JP2007538157A (en) Heat resistant steel
US5962160A (en) Sodium-sulfur battery, and a battery system using same
JPS62276767A (en) Electrochemical battery
JP3922154B2 (en) Stainless steel for polymer electrolyte fuel cell separator, method for producing the same, and polymer electrolyte fuel cell
US4123566A (en) NA/S Cell reactant container with metal aluminide coating
JPH0797490B2 (en) High temperature battery
JP7078185B2 (en) Ni-plated steel sheet and its manufacturing method
CN112322934B (en) Titanium alloy for bipolar plate of proton exchange membrane fuel cell
JPH0239065B2 (en)
TWI796499B (en) Stainless steel foil current collector for positive electrode of secondary battery
CN109216591A (en) Battery Ni material, cathode and battery shell material
JP3293482B2 (en) Cathode container material and cathode container for sodium-sulfur battery
JPH05320701A (en) Corrosion-resistant material
JP3307235B2 (en) Cathode container material and cathode container for sodium-sulfur battery
JP2001035457A (en) Sodium-sulfur battery
EP0819774B1 (en) Silver-alloyed or silver-titanium-alloyed zinc anode can for manganese dry battery
JPH1025531A (en) Positive electrode vessel material made of cobalt-base alloy for sodium-sulfur battery
EP1204778A1 (en) Air-side solid oxide fuel cell components
JPH0730428B2 (en) Molten salt corrosion resistant material
JP2564630B2 (en) Molten carbonate fuel cell
JP3211661B2 (en) Cathode container material made of Ni-based alloy for sodium-sulfur battery
JP2003253400A (en) Austenitic stainless steel for button-type lithium secondary battery case, and battery case using the same
KR20150074682A (en) Austenite stainless for fuel cell
CN115976365A (en) Titanium alloy for fuel cell bipolar plate and preparation method and application thereof
JPH0935745A (en) Sodium sulfur battery having positive container made of nickel base alloy