JPH0783640A - Inclination detector and robot provided with the same detection device - Google Patents

Inclination detector and robot provided with the same detection device

Info

Publication number
JPH0783640A
JPH0783640A JP23388393A JP23388393A JPH0783640A JP H0783640 A JPH0783640 A JP H0783640A JP 23388393 A JP23388393 A JP 23388393A JP 23388393 A JP23388393 A JP 23388393A JP H0783640 A JPH0783640 A JP H0783640A
Authority
JP
Japan
Prior art keywords
light receiving
light
detecting means
irradiation point
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP23388393A
Other languages
Japanese (ja)
Inventor
Yuichi Murase
有一 村瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP23388393A priority Critical patent/JPH0783640A/en
Publication of JPH0783640A publication Critical patent/JPH0783640A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To detect the inclination of a measuring object by a single irradiation point regarding an inclination detector which is used suitably for an autonomous robot which performs a required operation to a separated operating object. CONSTITUTION:The detector is provided with a beam light projecting part 101 which projects a beam light to a measuring object, light-receiving parts 102 which receive reflected light from the irradiation point of the measuring object by the beam light projecting part 101 and with received light amount detection means 103 which measure light-receiving amounts of the light-receiving parts 102. A plurality of light-receiving parts 102 and received light amount detection means 103 are installed for the same irradiation point, and an inclination detection means 104 which detects the inclination of the measuring object according to relative relationship of a plurality of received light amounts detected is installed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】(目次) 産業上の利用分野 従来の技術(図17〜図21) 発明が解決しようとする課題 課題を解決するための手段(図1〜図6) 作用(図1〜図6) 実施例 ・第1実施例の説明(図7〜図10) ・第2実施例の説明(図11) ・第3実施例の説明(図12) ・第4実施例の説明(図13) ・第5実施例の説明(図14〜図16) 発明の効果(Table of Contents) Industrial Application Field of the Prior Art (FIGS. 17 to 21) Problems to be Solved by the Invention Means for Solving the Problems (FIGS. 1 to 6) Actions (FIGS. 1 to 6) Example • Description of first example (FIGS. 7 to 10) • Description of second example (FIG. 11) • Description of third example (FIG. 12) • Description of fourth example (FIG. 13) Description of fifth embodiment (FIGS. 14 to 16)

【0002】[0002]

【産業上の利用分野】本発明は、離隔した作業対象に対
し所要の作業を行なう自律型ロボットに用いて好適の傾
斜角検出装置及びこの傾斜角検出装置を備えたロボット
に関する。かかる傾斜角検出装置は、自律型ロボットに
装備され、作業対象面への距離および作業対象面の傾斜
を計測し、マイクロコンピュータ等を用いたフィードバ
ック制御により自動的に正対姿勢をとらせるような動作
のために用いられる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a tilt angle detecting device suitable for an autonomous robot for performing a required work on a work object separated from the work object and a robot equipped with the tilt angle detecting device. Such an inclination angle detecting device is installed in an autonomous robot, measures the distance to the work target surface and the tilt of the work target surface, and automatically takes a facing posture by feedback control using a microcomputer or the like. Used for movement.

【0003】[0003]

【従来の技術】従来の傾斜角検出装置は、図17〜図2
1に示すように構成されているが、図17はその受光部
の構造を示す摸式的断面図、図18はその受光部の動作
を説明するための摸式図、図19はその要部構成を示す
摸式的ブロック図、図20はその傾斜角度検出動作を説
明するための摸式図、図21はビーム投光に対する反射
光量特性を示す摸式図である。
2. Description of the Related Art A conventional tilt angle detecting device is shown in FIGS.
17 is a schematic sectional view showing the structure of the light receiving portion, FIG. 18 is a schematic diagram for explaining the operation of the light receiving portion, and FIG. 19 is a main portion thereof. 20 is a schematic block diagram showing the configuration, FIG. 20 is a schematic diagram for explaining the tilt angle detecting operation, and FIG. 21 is a schematic diagram showing the reflected light amount characteristic with respect to the beam projection.

【0004】図17,図18において、1はフォトセン
シングデバイス(以下、PSDと表記する)で、このP
SD1は入射光の強さに対応した出力電流が得られるも
のである。すなわち、PSD1は、P層2,I層(平板
状シリコン)3,N層4、電極5,6をそなえて構成さ
れており、これにより、入射した光は光電変換され、P
層2に付けられた電極から分割出力されるようになって
いる。
In FIGS. 17 and 18, reference numeral 1 is a photo-sensing device (hereinafter referred to as PSD).
SD1 is for obtaining an output current corresponding to the intensity of incident light. That is, the PSD 1 is configured to include a P layer 2, an I layer (plate-like silicon) 3, an N layer 4, and electrodes 5 and 6, whereby incident light is photoelectrically converted to P.
The electrodes attached to the layer 2 are adapted to be separately output.

【0005】また、入射位置において、光エネルギーに
比例した電荷が発生し、発生した電荷が光電流として抵
抗層(P層2)を通り、電極より出力されることによ
り、光電変換が行なわれる。ここで、抵抗層は全面に均
一な抵抗値を持つように作られているので、光電流は電
極までの距離に逆比例して分割され取り出される。
Further, at the incident position, a charge proportional to the light energy is generated, and the generated charge passes through the resistance layer (P layer 2) as a photocurrent and is output from the electrode, whereby photoelectric conversion is performed. Here, since the resistance layer is made to have a uniform resistance value over the entire surface, the photocurrent is divided and taken out in inverse proportion to the distance to the electrode.

【0006】したがって、電極間の距離をL、光電流を
0 、各電極5,6から取り出される電流をI1
2 ,入射光位置の偏位をΔLとすれば、次の様な関係
が成立する。 I0 =I1 +I2 ・・・(1) I1 :I2 =(L/2−ΔL):(L/2+ΔL) ・・(2) これにより、 ΔL=L(I2 −I1 )/2(I1 +I2 )・・・(3) となり、電流I1 ,I2 により入射光の偏位ΔLが算出
されることがわかる。
Therefore, the distance between the electrodes is L, the photocurrent is I 0 , the currents extracted from the electrodes 5 and 6 are I 1 ,
If I 2 and the deviation of the incident light position are ΔL, the following relationship is established. I 0 = I 1 + I 2 (1) I 1 : I 2 = (L / 2−ΔL) :( L / 2 + ΔL) ··· (2) As a result, ΔL = L (I 2 −I 1 ). / 2 (I 1 + I 2 ) ... (3), and it can be seen that the deviation ΔL of the incident light is calculated by the currents I 1 and I 2 .

【0007】このようなPSD1が、カメラのオートフ
ォーカスをはじめとして、光学式測距装置等に幅広く使
われており、図19はその概略構成を示している。すな
わち、この図19において、7は測定対象、101は投
光部、102は受光部であり、投光部101から照射さ
れたレーザー光が、測定対象7に反射され、この反射光
が受光部102に受光されるようになっている。
Such a PSD 1 is widely used in an optical distance measuring device and the like, including auto focus of a camera, and FIG. 19 shows its schematic configuration. That is, in FIG. 19, 7 is a measurement target, 101 is a light projecting unit, and 102 is a light receiving unit. The laser light emitted from the light projecting unit 101 is reflected by the measurement target 7, and this reflected light is received by the light receiving unit. The light is received by 102.

【0008】投光部101は、投光レンズ8,LED
9,LED駆動回路10をそなえており、LED駆動回
路10により駆動されるLED9からレーザー光が、測
定対象7に焦点を合わせるべく、投光レンズ8を介し照
射されるようになっている。また、受光部102は、受
光レンズ11,PSD1,距離検出手段12をそなえて
おり、これにより、受光レンズ11を通じて受光される
反射光がPSD1に入射され、前述のようにして光電変
換された電流I1 ,I2 が距離検出手段12に入力され
て、受光部102から照射点へ至る距離が検出されるよ
うになっている。
The light projecting section 101 includes a light projecting lens 8 and an LED.
9, an LED drive circuit 10 is provided, and laser light is emitted from an LED 9 driven by the LED drive circuit 10 through a light projecting lens 8 so as to focus on the measurement target 7. Further, the light receiving unit 102 includes a light receiving lens 11, a PSD 1, and a distance detecting means 12, whereby the reflected light received through the light receiving lens 11 is incident on the PSD 1 and the current photoelectrically converted as described above. I 1 and I 2 are input to the distance detecting means 12 and the distance from the light receiving unit 102 to the irradiation point is detected.

【0009】ここで、距離検出手段12は、アンプ1
3,14,信号処理回路15,16,距離演算回路1
7,信号変換回路18をそなえて構成されており、この
ような構成により、電流I1 ,I2 がアンプ13,14
で増幅され、信号処理回路15,16で処理されて、距
離演算回路17に入力され、距離演算回路17におい
て、前述の(3)式を用いたΔLを算出する演算が行な
われるとともに、測定対象への距離L0 をΔLから算出
する演算が行なわれて、信号変換回路18におけるA/
D変換等の処理の後、出力されるようになっている。
Here, the distance detecting means 12 is the amplifier 1
3, 14, signal processing circuits 15, 16, distance calculation circuit 1
7. The signal conversion circuit 18 is provided. With such a configuration, the currents I 1 and I 2 are transmitted to the amplifiers 13 and 14, respectively.
Amplified by, processed by the signal processing circuits 15 and 16 and input to the distance calculation circuit 17, and in the distance calculation circuit 17, the calculation for calculating ΔL using the above-mentioned equation (3) is performed and the measurement target is measured. A calculation of calculating the distance L 0 from ΔL to Δ /
It is designed to be output after processing such as D conversion.

【0010】上述のようにして、測定対象7への距離L
0 が検出されるが、測定対象7の傾斜角θは、従来、図
20に示す摸式図におけるようにして算出されている。
すなわち、図20において、201,202は距離セン
サで、距離センサ201,202は、前述した投光部1
01および受光部102をそなえたもので、そのそれぞ
れにおいて、測定対象7への距離d1,d2が検出され
るようになっている。
As described above, the distance L to the measuring object 7
Although 0 is detected, the tilt angle θ of the measurement target 7 is conventionally calculated as in the schematic diagram shown in FIG.
That is, in FIG. 20, 201 and 202 are distance sensors, and the distance sensors 201 and 202 are the above-mentioned light projecting unit 1.
01 and the light receiving unit 102, the distances d1 and d2 to the measurement target 7 are detected in each of them.

【0011】そして、次式(4)により、傾斜角θが算
出される。 θ=arctan〔(d1−d2)/L〕・・・(4)
Then, the inclination angle θ is calculated by the following equation (4). θ = arctan [(d1-d2) / L] (4)

【0012】[0012]

【発明が解決しようとする課題】従来、上述のようにし
て距離L0 および傾斜角θが検出され、ロボット等の動
作が行なわれていたが、このような従来の手段では、次
のような課題がある。 図19に示す従来型距離センサでは、一点の照射によ
る測定対象の傾斜角θ検出を行なうことができず、所要
以上の間隔をおいた照射点ごとに距離センサ201,2
02を設置する必要がある。
Conventionally, the distance L 0 and the inclination angle θ are detected and the operation of the robot or the like is performed as described above. However, such a conventional means uses the following method. There are challenges. The conventional distance sensor shown in FIG. 19 cannot detect the inclination angle θ of the measurement target by irradiating one point, and the distance sensors 201, 201 are provided for each irradiating point with an interval longer than required.
02 must be installed.

【0013】検出される傾斜角θの精度は、照射点の
間隔に依存しており、所要の精度を得るためには、その
精度に見合った広さの測定対象面が必要となる。また、
測定対象面にボルトの頭部があるなど局部的な突起等が
あると正確な測定を行なえず、安定した動作を期待でき
ない。 投光部101を複数個必要とするため、省電力化、小
型化が困難である。
The accuracy of the detected tilt angle θ depends on the distance between the irradiation points, and in order to obtain the required accuracy, a surface to be measured having a width commensurate with the accuracy is required. Also,
If there is a local protrusion such as the head of a bolt on the surface to be measured, accurate measurement cannot be performed and stable operation cannot be expected. Since a plurality of light projecting units 101 are required, it is difficult to save power and downsize.

【0014】本発明は、このような課題に鑑み創案され
たもので、単一の照射点により測定対象の傾斜角を検出
できるようにした、傾斜角検出装置及びこの傾斜角検出
装置を備えたロボットを提供することを目的とする。
The present invention was devised in view of the above problems, and provided with a tilt angle detecting device and a tilt angle detecting device capable of detecting the tilt angle of a measuring object by a single irradiation point. The purpose is to provide a robot.

【0015】[0015]

【課題を解決するための手段】このため、請求項1に記
載の傾斜角検出装置は、図1の原理構成図に示すように
構成されている。図1において、101はビーム投光部
で、このビーム投光部101は測定対象7に対しビーム
光を照射するものである。102は受光部で、この受光
部102はビーム投光部101による測定対象7の照射
点7Aからの反射光を受光するものである。103は受
光量検出手段で、この受光量検出手段103は受光部1
02の受光量を計量するものである。そして、受光部1
02および受光量検出手段103が同一照射点に対し複
数個設けられている。
For this reason, the tilt angle detecting device according to the first aspect of the present invention is constructed as shown in the principle block diagram of FIG. In FIG. 1, reference numeral 101 denotes a beam projecting unit, which irradiates the measuring object 7 with the beam light. Reference numeral 102 denotes a light receiving unit, which receives reflected light from the irradiation point 7A of the measurement target 7 by the beam projecting unit 101. Reference numeral 103 denotes a received light amount detecting means, and this received light amount detecting means 103 is a light receiving portion 1
The amount of received light of 02 is measured. Then, the light receiving unit 1
02 and a plurality of received light amount detection means 103 are provided for the same irradiation point.

【0016】104は傾斜角検出手段で、この傾斜角検
出手段104は複数の受光量検出手段103により検出
された複数の受光量の相対関係により測定対象7の傾斜
角を検出するものである。また、請求項2に記載の傾斜
角検出装置は、図2の原理構成図に示すように構成され
ている。
Reference numeral 104 is an inclination angle detecting means, and the inclination angle detecting means 104 detects the inclination angle of the measuring object 7 based on the relative relationship of the plurality of received light amounts detected by the plurality of received light amount detecting means 103. Further, the tilt angle detecting device according to the second aspect is configured as shown in the principle configuration diagram of FIG.

【0017】図2においても、101はビーム投光部
で、このビーム投光部101は測定対象7に対しビーム
光を照射するものであり、102は受光部で、この受光
部102はビーム投光部101による測定対象7の照射
点7Aからの反射光を受光するものであり、103は受
光量検出手段で、この受光量検出手段103は受光部1
02の受光量を計量するものであるが、受光部102お
よび受光量検出手段103は同一照射点に対し1対個設
けられている。
In FIG. 2 as well, 101 is a beam projecting section, which irradiates the measuring object 7 with beam light, 102 is a light receiving section, and this light receiving section 102 is a beam projecting section. The light unit 101 receives the reflected light from the irradiation point 7A of the measurement target 7, and 103 is a received light amount detection means, and this received light amount detection means 103 is the light receiving unit 1
The light receiving amount of the light receiving part 02 and the light receiving amount detecting means 103 are provided one by one for the same irradiation point.

【0018】また、受光部102はビーム投光部101
の投光軸に関し対向する状態で配設されている。104
は傾斜角検出手段で、この傾斜角検出手段104は1対
の受光量検出手段103により検出された1対の受光量
の相対関係を反射光量分布の偏在に対応させて測定対象
7の傾斜角を検出するものである。
The light receiving section 102 is a beam projecting section 101.
Are arranged so as to face each other with respect to the light projecting axis. 104
Is an inclination angle detecting means, and the inclination angle detecting means 104 makes the relative relationship between the pair of received light amounts detected by the pair of received light amount detecting means 103 correspond to the uneven distribution of the reflected light amount distribution, and the inclination angle of the measuring object 7. Is to detect.

【0019】12は距離検出手段で、この距離検出手段
12はビーム投光部101から照射点へ至る距離を検出
するものである。また、105は1次元傾き成分検出手
段で、この1次元傾き成分検出手段105は一対の受光
量に対し差分演算を行なう差分演算回路106を用いて
1次元傾き成分を検出するものである。そして、このよ
うに構成された距離検出手段12および1次元傾き成分
検出手段105を傾斜角検出手段104がそなえてい
る。
Reference numeral 12 is a distance detecting means, which detects the distance from the beam projecting portion 101 to the irradiation point. Further, 105 is a one-dimensional tilt component detecting means, and this one-dimensional tilt component detecting means 105 detects a one-dimensional tilt component by using a difference calculation circuit 106 that performs a difference calculation on a pair of received light amounts. The distance detecting means 12 and the one-dimensional tilt component detecting means 105 thus configured are provided in the tilt angle detecting means 104.

【0020】さらに、請求項3に記載の傾斜角検出装置
は、図3の原理構成図に示すように構成されている。図
3においても、101はビーム投光部で、このビーム投
光部101は測定対象7に対しビーム光を照射するもの
であり、102は受光部で、この受光部102はビーム
投光部101による測定対象7の照射点7Aからの反射
光を受光するものであり、103は受光量検出手段で、
この受光量検出手段103は受光部102の受光量を計
量するものであるが、受光部102および受光量検出手
段103が同一照射点に対し2対設けられている。
Further, the tilt angle detecting device according to the third aspect is constructed as shown in the principle block diagram of FIG. In FIG. 3 as well, 101 is a beam projecting unit, which projects the beam light onto the object to be measured 7, 102 is a light receiving unit, and this light receiving unit 102 is the beam projecting unit 101. The reflected light from the irradiation point 7A of the measurement target 7 is received by 103, and 103 is a received light amount detection means,
The received light amount detecting means 103 measures the received light amount of the light receiving portion 102, and two pairs of the light receiving portion 102 and the received light amount detecting means 103 are provided for the same irradiation point.

【0021】また、受光部102はビーム投光部101
の投光軸に関し各対ごとに対向し対相互が投光軸に直交
する平面方向の90度回転変位する状態で配設されてい
る。104は傾斜角検出手段で、この傾斜角検出手段1
04は各対の受光量検出手段103により検出された各
対の受光量の相対関係を反射光量分布の偏在に対応させ
て測定対象7の傾斜角を検出するものである。
The light receiving section 102 is a beam projecting section 101.
Are arranged in a state of facing each other with respect to the light projecting axis and being rotationally displaced by 90 degrees in a plane direction orthogonal to the light projecting axis. Reference numeral 104 denotes an inclination angle detecting means, which is the inclination angle detecting means 1
Reference numeral 04 is for detecting the tilt angle of the measuring object 7 by making the relative relationship of the light receiving amount of each pair detected by the light receiving amount detecting means 103 of each pair correspond to the uneven distribution of the reflected light amount distribution.

【0022】12は距離検出手段で、この距離検出手段
12はビーム投光部101から照射点へ至る距離を検出
するものであり、105は1次元傾き成分検出手段で、
この1次元傾き成分検出手段105は一対の受光量に対
し差分演算を行なう差分演算回路106を用いて1次元
傾き成分を検出するものであり、107は2次元傾き検
出手段で、この2次元傾き検出手段107は1次元傾き
成分検出手段105により各対において検出された1次
元傾き成分を用いて測定対象7の2次元傾きを検出する
ものである。そして、このように構成された距離検出手
段12,1次元傾き成分検出手段105および2次元傾
き検出手段107を傾斜角検出手段104がそなえてい
る。
Reference numeral 12 is a distance detecting means, which detects the distance from the beam projecting portion 101 to the irradiation point, and 105 is a one-dimensional tilt component detecting means.
The one-dimensional tilt component detecting means 105 detects a one-dimensional tilt component by using a difference calculation circuit 106 that performs a difference calculation on a pair of received light amounts, and 107 is a two-dimensional tilt detecting means, which is the two-dimensional tilt component. The detecting means 107 detects the two-dimensional inclination of the measuring object 7 by using the one-dimensional inclination components detected by the one-dimensional inclination component detecting means 105 in each pair. The tilt angle detecting means 104 is provided with the distance detecting means 12, the one-dimensional tilt component detecting means 105 and the two-dimensional tilt detecting means 107 thus configured.

【0023】さらに、請求項4に記載の傾斜角検出装置
は、図4の原理構成図に示すように構成されている。図
4においても、101はビーム投光部で、このビーム投
光部101は測定対象7に対しビーム光を照射するもの
であり、102は受光部で、この受光部102はビーム
投光部101による測定対象7の照射点7Aからの反射
光を受光するものであり、103は受光量検出手段で、
この受光量検出手段103は受光部102の受光量を計
量するものであるが、受光部102および受光量検出手
段103は同一照射点に対し3個設けられている。
Further, the tilt angle detecting device according to the fourth aspect is constructed as shown in the principle block diagram of FIG. In FIG. 4 as well, 101 is a beam projecting unit, which is for irradiating the measuring object 7 with beam light, 102 is a light receiving unit, and this light receiving unit 102 is the beam projecting unit 101. The reflected light from the irradiation point 7A of the measurement target 7 is received by 103, and 103 is a received light amount detection means,
The received light amount detecting means 103 measures the received light amount of the light receiving portion 102, and three light receiving portions 102 and three received light amount detecting means 103 are provided for the same irradiation point.

【0024】また、受光部102はビーム投光部101
の投光軸に対向し相互が投光軸に直交する平面方向の1
20度回転変位する状態で配設されている。104は傾
斜角検出手段で、この傾斜角検出手段104は各対の受
光量検出手段103により検出された3個の受光量の相
対関係を反射光量分布の偏在に対応させて測定対象7の
傾斜角を検出するものである。
The light receiving section 102 is a beam projecting section 101.
1 in the plane direction opposite to the projection axis of
It is arranged so as to be rotationally displaced by 20 degrees. Reference numeral 104 denotes an inclination angle detection means. The inclination angle detection means 104 makes the inclination of the measurement target 7 correspondent to the relative relationship of the three received light amounts detected by the light reception amount detection means 103 of each pair in correspondence with the uneven distribution of the reflected light amount distribution. It is to detect a corner.

【0025】12は距離検出手段で、この距離検出手段
12はビーム投光部101から照射点へ至る距離を検出
するものであり、105は1次元傾き成分検出手段で、
この1次元傾き成分検出手段105は一対の受光量に対
し差分演算を行なう差分演算回路106を用いて1次元
傾き成分を検出するもので、107は2次元傾き検出手
段で、この2次元傾き検出手段107は1次元傾き成分
検出手段105により各対において検出された1次元傾
き成分を用いて測定対象7の2次元傾きを検出するもの
である。そして、このように構成された距離検出手段1
2,1次元傾き成分検出手段105および2次元傾き検
出手段107を傾斜角検出手段104がそなえている。
Reference numeral 12 is a distance detecting means, which detects the distance from the beam projecting portion 101 to the irradiation point, and 105 is a one-dimensional tilt component detecting means.
The one-dimensional tilt component detecting means 105 detects a one-dimensional tilt component by using a difference calculation circuit 106 that performs a difference calculation on a pair of received light amounts, and 107 is a two-dimensional tilt detecting means, which detects the two-dimensional tilt. The means 107 detects the two-dimensional tilt of the measuring object 7 by using the one-dimensional tilt components detected in each pair by the one-dimensional tilt component detection means 105. Then, the distance detecting means 1 configured in this way
The tilt angle detecting means 104 includes the two-dimensional tilt component detecting means 105 and the two-dimensional tilt detecting means 107.

【0026】請求項5に記載の傾斜角検出装置は、図5
の原理構成図に示すように構成されている。図5におい
ても、101はビーム投光部で、このビーム投光部10
1は測定対象7に対しビーム光を照射するものであり、
102は受光部で、この受光部102はビーム投光部1
01による測定対象7の照射点7Aからの反射光を受光
するものであり、103は受光量検出手段で、この受光
量検出手段103は受光部102の受光量を計量するも
のであり、受光部102および受光量検出手段103は
同一照射点に対し複数個設けられている。
The tilt angle detecting device according to a fifth aspect of the present invention is as shown in FIG.
Is configured as shown in the principle configuration diagram of FIG. Also in FIG. 5, 101 is a beam projecting unit, and this beam projecting unit 10
1 is for irradiating the measuring object 7 with a light beam,
Reference numeral 102 denotes a light receiving section, and this light receiving section 102 is the beam projecting section 1
01 receives the reflected light from the irradiation point 7A of the object 7 to be measured, 103 is a light receiving amount detecting means, and this light receiving amount detecting means 103 measures the light receiving amount of the light receiving portion 102. A plurality of light receiving amount detecting means 102 and a plurality of light receiving amount detecting means 103 are provided for the same irradiation point.

【0027】104は傾斜角検出手段で、この傾斜角検
出手段104は複数の受光量検出手段103により検出
された複数の受光量の相対関係により測定対象7の傾斜
角を検出するものである。12は距離検出手段で、この
距離検出手段12はビーム投光部101から照射点へ至
る距離を検出するものであり、108は平均処理手段
で、この平均処理手段108は検出された複数の距離値
を平均処理するするものである。
Reference numeral 104 denotes an inclination angle detecting means, and this inclination angle detecting means 104 detects the inclination angle of the measuring object 7 based on the relative relationship of the plurality of received light amounts detected by the plurality of received light amount detecting means 103. Reference numeral 12 is a distance detecting means, which detects the distance from the beam projecting portion 101 to the irradiation point, 108 is an averaging means, and this averaging means 108 is a plurality of detected distances. The value is averaged.

【0028】ところで、請求項6に記載の傾斜角検出装
置を備えたロボットは、図6の原理構成図に示すように
構成されている。図6において、111はハンドで、こ
のハンド111は作業対象に向かい所要の移動動作を行
なうようになっている。12は距離検出手段で、この距
離検出手段12はハンド111に装備されハンド111
の移動動作に際し作業対象7との距離を計測するもので
あり、104は傾斜角検出手段で、この傾斜角検出手段
104はハンド111に装備されその動作方向と作業対
象7の表面との傾斜角を検出するもので、112は動作
方向補正手段で、この動作方向補正手段112は傾斜角
検出手段104の検出信号に基づきハンド111の動作
方向を補正するものである。
By the way, a robot provided with the tilt angle detecting device according to the sixth aspect is constructed as shown in the principle configuration diagram of FIG. In FIG. 6, 111 is a hand, and this hand 111 is adapted to perform a required moving operation toward a work target. Reference numeral 12 is a distance detecting means, and this distance detecting means 12 is mounted on the hand 111.
Is to measure the distance to the work target 7 during the moving operation of the hand. 104 is a tilt angle detection means, and the tilt angle detection means 104 is mounted on the hand 111 and the tilt angle between the movement direction and the surface of the work target 7. The movement direction correcting means 112 corrects the movement direction of the hand 111 based on the detection signal of the inclination angle detecting means 104.

【0029】そして、距離検出手段12および傾斜角検
出手段104には、作業対象へビーム光を照射するビー
ム投光部101と、このビーム投光部101による作業
対象の照射点からの反射光を受光する受光部102と、
この受光部102の受光量を計量する受光量検出手段1
03とが付設されている。また、上記受光部102およ
び上記受光量検出手段103が同一照射点に対し複数個
設けられている。さらに、検出された複数の受光量の相
対関係により上記測定対象の傾斜角を検出する傾斜角検
出手段104の検出信号に基づき、動作方向補正手段1
12によるハンド111の動作方向補正が行なわれるよ
うになっている。
Then, the distance detecting means 12 and the inclination angle detecting means 104 are provided with a beam projecting section 101 for irradiating the work target with a beam of light and a reflected light from the irradiation point of the work target by the beam projecting section 101. A light receiving section 102 for receiving light,
Received light amount detecting means 1 for measuring the received light amount of the light receiving unit 102
And 03 are attached. Further, a plurality of the light receiving units 102 and the light receiving amount detecting means 103 are provided for the same irradiation point. Further, based on the detection signal of the tilt angle detection means 104 that detects the tilt angle of the measurement target based on the relative relationship between the detected plurality of received light amounts, the movement direction correction means 1
The movement direction correction of the hand 111 by 12 is performed.

【0030】なお、図6において、113は制御部、1
14はアクチュエータである。
In FIG. 6, reference numeral 113 denotes a control unit, 1
14 is an actuator.

【0031】[0031]

【作用】上述の請求項1に記載の傾斜角検出装置では、
ビーム投光部101が測定対象7に対しビーム光を照射
し、受光部102がビーム投光部101による測定対象
7の照射点7Aからの反射光を受光して、受光量検出手
段103が受光部102の受光量を計量する。そして、
同一照射点に対し検出された複数の受光量の相対関係に
より、傾斜角検出手段104は測定対象7の傾斜角を検
出する。
In the tilt angle detecting device according to the above-mentioned claim 1,
The beam projecting unit 101 irradiates the measuring object 7 with the beam light, the light receiving unit 102 receives the reflected light from the irradiation point 7A of the measuring object 7 by the beam projecting unit 101, and the received light amount detecting means 103 receives the light. The amount of light received by the unit 102 is measured. And
The tilt angle detection means 104 detects the tilt angle of the measurement target 7 based on the relative relationship between the plurality of received light amounts detected for the same irradiation point.

【0032】また、請求項2に記載の傾斜角検出装置で
は、ビーム投光部101が測定対象7に対しビーム光を
照射し、受光部102がビーム投光部101による測定
対象7の照射点7Aからの反射光を受光して、受光量検
出手段103が受光部102の受光量を計量する。そし
て、同一照射点に対し検出された複数の受光量の相対関
係により、傾斜角検出手段104は測定対象7の傾斜角
を検出する。そして、ビーム投光部101の投光軸に関
し対向する状態で同一照射点に対し1対設けられた受光
部102および受光量検出手段103により1対の受光
量が検出され、傾斜角検出手段104は1対の受光量の
相対関係を反射光量分布の偏在に対応させて測定対象7
の傾斜角を検出する。そして、距離検出手段12はビー
ム投光部101から照射点へ至る距離を検出し、1次元
傾き成分検出手段105は一対の受光量に対し差分演算
を行なう差分演算回路106を用いて1次元傾き成分を
検出する。
Further, in the tilt angle detecting device according to the second aspect, the beam projecting section 101 irradiates the measuring object 7 with the beam light, and the light receiving section 102 irradiates the measuring object 7 by the beam projecting section 101. The reflected light from 7A is received, and the received light amount detection means 103 measures the received light amount of the light receiving unit 102. Then, the tilt angle detection means 104 detects the tilt angle of the measurement target 7 based on the relative relationship between the plurality of received light amounts detected for the same irradiation point. Then, a pair of light receiving portions 102 and a light receiving amount detecting means 103 provided for the same irradiation point in a state of facing each other with respect to the light projecting axis of the beam projecting portion 101 detect a pair of light receiving amounts, and an inclination angle detecting means 104. Corresponds to the relative relationship between the pair of received light amounts and the uneven distribution of the reflected light amount distribution.
Detects the tilt angle of. Then, the distance detecting means 12 detects the distance from the beam projecting portion 101 to the irradiation point, and the one-dimensional tilt component detecting means 105 uses the difference calculation circuit 106 that performs a difference calculation on a pair of received light amounts to calculate the one-dimensional tilt. Detect components.

【0033】さらに、請求項3に記載の傾斜角検出装置
では、ビーム投光部101が測定対象7に対しビーム光
を照射し、受光部102がビーム投光部101による測
定対象7の照射点7Aからの反射光を受光して、受光量
検出手段103が受光部102の受光量を計量する。そ
して、同一照射点に対し検出された複数の受光量の相対
関係により、傾斜角検出手段104は測定対象7の傾斜
角を検出する。そして、ビーム投光部101の投光軸に
関し対向する状態で同一照射点に対し2対設けられた受
光部102および受光量検出手段103により2対の受
光量が検出され、傾斜角検出手段104は各対の受光量
の相対関係を反射光量分布の偏在に対応させて測定対象
7の2方向における傾斜角を検出する。また、距離検出
手段12はビーム投光部101から照射点へ至る距離を
検出し、1次元傾き成分検出手段105は各対の受光量
に対し差分演算を行なう差分演算回路106を用いて1
次元傾き成分を検出する。そして、2次元傾き検出手段
107は、1次元傾き成分検出手段105により、各対
において検出された、投光軸に直交する平面内の90度
回転変位する方向への1次元傾き成分を用いて、測定対
象7の2次元傾きを検出する。
Further, in the tilt angle detecting device according to the third aspect, the beam projecting section 101 irradiates the measuring object 7 with the light beam, and the light receiving section 102 irradiates the measuring object 7 with the beam projecting section 101. The reflected light from 7A is received, and the received light amount detection means 103 measures the received light amount of the light receiving unit 102. Then, the tilt angle detection means 104 detects the tilt angle of the measurement target 7 based on the relative relationship between the plurality of received light amounts detected for the same irradiation point. Two pairs of light receiving amounts are detected by the light receiving portions 102 and the light receiving amount detecting means 103, which are provided for the same irradiation point so as to face each other with respect to the light projecting axis of the beam projecting portion 101, and the tilt angle detecting means 104. Detects the tilt angle of the measurement target 7 in the two directions by making the relative relationship of the received light amount of each pair correspond to the uneven distribution of the reflected light amount distribution. Further, the distance detecting means 12 detects the distance from the beam projecting portion 101 to the irradiation point, and the one-dimensional tilt component detecting means 105 uses the difference calculating circuit 106 for calculating the difference between the light receiving amounts of each pair.
Detect the dimensional tilt component. Then, the two-dimensional tilt detecting means 107 uses the one-dimensional tilt component detected in each pair by the one-dimensional tilt component detecting means 105 in the direction of 90-degree rotational displacement in the plane orthogonal to the projection axis. , The two-dimensional inclination of the measurement target 7 is detected.

【0034】そして、請求項4に記載の傾斜角検出装置
では、ビーム投光部101が測定対象7に対しビーム光
を照射し、受光部102がビーム投光部101による測
定対象7の照射点7Aからの反射光を受光して、受光量
検出手段103が受光部102の受光量を計量する。そ
して、同一照射点に対し検出された複数の受光量の相対
関係により、傾斜角検出手段104は測定対象7の傾斜
角を検出する。そして、ビーム投光部101の投光軸に
対向する状態で同一照射点に対し3個設けられた受光部
102および受光量検出手段103により3個の受光量
が検出され、傾斜角検出手段104は3個の受光量の相
対関係を反射光量分布の偏在に対応させて測定対象7の
2方向における傾斜角を検出する。また、距離検出手段
12はビーム投光部101から照射点へ至る距離を検出
し、1次元傾き成分検出手段105は各対の受光量に対
し差分演算を行なう差分演算回路106を用いて1次元
傾き成分を検出する。そして、2次元傾き検出手段10
7は、1次元傾き成分検出手段105により、各対にお
いて検出された、投光軸に直交する平面内の120度回
転変位する方向への1次元傾き成分を用いて、測定対象
7の2次元傾きを検出する。
Further, in the tilt angle detecting device according to the fourth aspect, the beam projecting section 101 irradiates the measuring object 7 with the beam light, and the light receiving section 102 irradiates the measuring object 7 with the beam projecting section 101. The reflected light from 7A is received, and the received light amount detection means 103 measures the received light amount of the light receiving unit 102. Then, the tilt angle detection means 104 detects the tilt angle of the measurement target 7 based on the relative relationship between the plurality of received light amounts detected for the same irradiation point. Then, the three light receiving portions 102 and the light receiving amount detecting means 103 provided at the same irradiation point in a state of facing the light emitting axis of the beam projecting portion 101 detect the three light receiving amounts, and the inclination angle detecting means 104. Detects the tilt angle of the measuring object 7 in two directions by making the relative relationship of the three received light amounts correspond to the uneven distribution of the reflected light amount distribution. Further, the distance detecting means 12 detects the distance from the beam projecting portion 101 to the irradiation point, and the one-dimensional tilt component detecting means 105 uses the difference calculation circuit 106 that performs a difference calculation on the light reception amount of each pair to perform one-dimensional calculation. Detect the slope component. Then, the two-dimensional tilt detection means 10
7 is a two-dimensional measurement target 7 using the one-dimensional inclination component detected by the one-dimensional inclination component detection means 105 in the direction of rotational displacement of 120 degrees in the plane orthogonal to the projection axis. Detect the tilt.

【0035】そして、請求項5に記載の傾斜角検出装置
では、ビーム投光部101が測定対象7に対しビーム光
を照射し、受光部102がビーム投光部101による測
定対象7の照射点7Aからの反射光を受光して、受光量
検出手段103が受光部102の受光量を計量する。そ
して、同一照射点に対し検出された複数の受光量の相対
関係により、傾斜角検出手段104は測定対象7の傾斜
角を検出する。そして、距離検出手段12はビーム投光
部101から照射点へ至る距離を検出し、平均処理手段
108は複数のビーム投光部101のそれぞれにより検
出された距離値を平均処理する。
In the tilt angle detecting device according to the fifth aspect, the beam projecting section 101 irradiates the measuring object 7 with the light beam, and the light receiving section 102 irradiates the measuring object 7 by the beam projecting section 101. The reflected light from 7A is received, and the received light amount detection means 103 measures the received light amount of the light receiving unit 102. Then, the tilt angle detection means 104 detects the tilt angle of the measurement target 7 based on the relative relationship between the plurality of received light amounts detected for the same irradiation point. Then, the distance detecting unit 12 detects the distance from the beam projecting unit 101 to the irradiation point, and the averaging unit 108 averages the distance values detected by each of the plurality of beam projecting units 101.

【0036】ところで、請求項6に記載の傾斜角検出装
置を備えたロボットでは、ハンド111が作業対象に向
かい所要の移動動作を行なうが、距離検出手段12は、
ハンド111の移動動作に際し作業対象7との距離を計
測する。また、傾斜角検出手段104はハンド111の
動作方向と作業対象7の表面との傾斜角を検出する。そ
して、動作方向補正手段112は傾斜角検出手段104
の検出信号に基づきハンド111の動作方向を補正す
る。この補正動作に際し、傾斜角検出手段104は、複
数の受光量検出手段103で検出された複数の受光量の
相対関係により測定対象7の傾斜角を検出する。
By the way, in the robot provided with the tilt angle detecting device according to the sixth aspect, the hand 111 performs a required moving operation toward the work target, but the distance detecting means 12
When moving the hand 111, the distance to the work target 7 is measured. Further, the tilt angle detection means 104 detects the tilt angle between the movement direction of the hand 111 and the surface of the work target 7. Then, the movement direction correction means 112 is used as the inclination angle detection means 104.
The operation direction of the hand 111 is corrected based on the detection signal of. In this correction operation, the tilt angle detection means 104 detects the tilt angle of the measurement target 7 based on the relative relationship between the plurality of received light amounts detected by the plurality of received light amount detection means 103.

【0037】[0037]

【実施例】以下、図面を参照して本発明の実施例を説明
する。 (a)第1実施例の説明 図7は本発明の第1実施例を示す概略構成図、図8〜図
10は本発明の実施例における作動を説明するための摸
式図であるが、図7において、101はビーム投光部
で、このビーム投光部101は測定対象7に対しビーム
光を照射するもので、投光レンズ8,LED9,LED
駆動回路10等をそなえている。これにより、LED駆
動回路10により駆動されるLED9からレーザー光
が、測定対象7に焦点を合わせるべく、投光レンズ8を
介し照射されるようになっている。
Embodiments of the present invention will be described below with reference to the drawings. (A) Description of First Embodiment FIG. 7 is a schematic configuration diagram showing a first embodiment of the present invention, and FIGS. 8 to 10 are schematic diagrams for explaining the operation in the embodiment of the present invention. In FIG. 7, reference numeral 101 denotes a beam projecting unit, which irradiates the measuring object 7 with beam light, and includes a projecting lens 8, an LED 9, and an LED.
It has a drive circuit 10 and the like. As a result, the laser light is emitted from the LED 9 driven by the LED drive circuit 10 through the light projecting lens 8 in order to focus the measurement target 7.

【0038】102A,102Bは受光部で、各受光部
102A,102Bは、ビーム投光部101による測定
対象7の照射点7Aからの反射光を受光するもので、そ
れぞれ受光レンズ11,PSD1等をそなえている。そ
して、この受光部102A,102Bは同一照射点に対
し1対設けられている。また、各受光部102A,10
2Bはビーム投光部101の投光軸に関し対向する状態
で配設されている。
Reference numerals 102A and 102B denote light receiving portions. Each of the light receiving portions 102A and 102B receives the reflected light from the irradiation point 7A of the measuring object 7 by the beam projecting portion 101, and includes a light receiving lens 11 and a PSD 1, respectively. I have it. A pair of the light receiving portions 102A and 102B are provided for the same irradiation point. In addition, each light receiving unit 102A, 10A
2B are arranged so as to face each other with respect to the projection axis of the beam projection unit 101.

【0039】103A,103Bは受光量検出手段で、
この受光量検出手段103A,103Bは、対応する受
光部102A,102Bの受光量を計量するもので、そ
れぞれアンプ13,14,信号処理回路15,16等を
そなえて構成されている。104は傾斜角検出手段で、
この傾斜角検出手段104は1対の受光量検出手段10
3A,103Bにより検出された1対の受光量の相対関
係を反射光量分布の偏在に対応させて測定対象7の傾斜
角を検出するものである。
Reference numerals 103A and 103B are light receiving amount detecting means,
The received light amount detecting means 103A and 103B measure the received light amount of the corresponding light receiving portions 102A and 102B, and are configured by including amplifiers 13 and 14, signal processing circuits 15 and 16, respectively. 104 is an inclination angle detecting means,
The inclination angle detecting means 104 is a pair of received light amount detecting means 10
The tilt angle of the measuring object 7 is detected by making the relative relationship between the pair of received light amounts detected by 3A and 103B correspond to the uneven distribution of the reflected light amount distribution.

【0040】また、12は距離検出手段で、この距離検
出手段12はビーム投光部101から照射点へ至る距離
を検出するものである。105は1次元傾き成分検出手
段(角度演算回路)で、この1次元傾き成分検出手段1
05は一対の受光量に対し差分演算を行なう差分演算回
路106を用いて1次元傾き成分を検出するものであ
る。
Further, 12 is a distance detecting means, and this distance detecting means 12 detects the distance from the beam projecting portion 101 to the irradiation point. Reference numeral 105 denotes a one-dimensional tilt component detection means (angle calculation circuit), which is the one-dimensional tilt component detection means 1
Reference numeral 05 is for detecting a one-dimensional tilt component by using a difference calculation circuit 106 that performs a difference calculation on a pair of received light amounts.

【0041】そして、このように構成された距離検出手
段12および1次元傾き成分検出手段105を傾斜角検
出手段104がそなえている。このような構成により、
本実施例では、ビーム投光部101が測定対象7に対し
ビーム光を照射し、受光部102A,102Bがビーム
投光部101による測定対象7の照射点7Aからの反射
光を受光して、受光量検出手段103A,103Bが受
光部102A,102Bの受光量を計量する。
The tilt angle detecting means 104 is provided with the distance detecting means 12 and the one-dimensional tilt component detecting means 105 having such a configuration. With this configuration,
In this embodiment, the beam projecting unit 101 irradiates the measuring object 7 with the beam light, and the light receiving units 102A and 102B receive the reflected light from the irradiation point 7A of the measuring object 7 by the beam projecting unit 101, The received light amount detecting means 103A and 103B measure the received light amount of the light receiving portions 102A and 102B.

【0042】そして、同一照射点に対し検出された複数
の受光量の相対関係により、傾斜角検出手段104は測
定対象7の傾斜角を検出する。すなわち、ビーム投光部
101の投光軸に関し対向する状態で同一照射点に対し
1対設けられた受光部102A,102Bおよび受光量
検出手段103A,103Bにより1対の受光量が検出
され、傾斜角検出手段104は1対の受光量の相対関係
を反射光量分布の偏在に対応させて測定対象7の傾斜角
を検出する。
Then, the inclination angle detecting means 104 detects the inclination angle of the measuring object 7 based on the relative relationship between the plurality of received light amounts detected for the same irradiation point. That is, a pair of light receiving amounts are detected by the light receiving units 102A and 102B and the light receiving amount detecting means 103A and 103B, which are provided for the same irradiation point so as to face each other with respect to the light projecting axis of the beam projecting unit 101, and the tilt is detected. The angle detection unit 104 detects the tilt angle of the measurement target 7 by making the relative relationship between the pair of received light amounts correspond to the uneven distribution of the reflected light amount distribution.

【0043】この検出原理は、図8〜図10により説明
される。図8に示すように、ビーム投光部101からの
投光ビームが測定対象7の表面に対し垂直である場合に
は、受光部102A,102Bは測定対象7に対し同一
の相対的傾き角α,βを持つ状態にある。この場合にお
ける反射光量分布は、図21に示すようにビーム投光軸
に関し対称な回転体形状であり、相対的傾き角α,βに
対応する反射光量(受光による電流Iα,Iβ)は等し
い。
This detection principle will be described with reference to FIGS. As shown in FIG. 8, when the projection beam from the beam projecting unit 101 is perpendicular to the surface of the measurement target 7, the light receiving units 102A and 102B have the same relative tilt angle α with respect to the measurement target 7. , Β. As shown in FIG. 21, the distribution of the reflected light amount in this case is a rotator shape symmetrical with respect to the beam projection axis, and the reflected light amounts (currents Iα, Iβ by receiving light) corresponding to the relative inclination angles α, β are equal.

【0044】一方、図9に示すように、ビーム投光部1
01からの投光ビームが測定対象7の表面に対し垂直で
ない場合には、受光部102A,102Bは測定対象7
に対し異なる相対的傾き角α’,β’を持つ状態にあ
る。この場合における反射光量分布は、図10に示すよ
うに、正反射成分の影響でビーム投光軸に関し非対称な
非回転体形状であり、相対的傾き角α’,β’に対応す
る反射光量(受光による電流Iα’,Iβ’)は異な
る。
On the other hand, as shown in FIG. 9, the beam projector 1
When the projection beam from 01 is not perpendicular to the surface of the measurement target 7, the light receiving units 102A and 102B are
However, they have different relative inclination angles α'and β '. As shown in FIG. 10, the reflected light amount distribution in this case has a non-rotating body shape which is asymmetrical with respect to the beam projection axis due to the influence of the specular reflection component, and the reflected light amount corresponding to the relative tilt angles α ′ and β ′ ( The currents Iα ', Iβ') due to the received light are different.

【0045】このような、反射光量の差(受光による電
流の差ΔI) ΔI=Iα’−Iβ’ が、差分演算を行なう差分演算回路106を用いて算出
され、この差ΔIの全体光電流I0 (=Iα’+I
β’)に対する割合Kを、反射光量分布の偏在(反射光
量分布における光量差の変化割合)に対応させることに
より、測定対象7の傾斜角θが求められる。
Such a difference in the amount of reflected light (difference in current due to light reception ΔI) ΔI = Iα'-Iβ 'is calculated using the difference calculation circuit 106 that performs difference calculation, and the total photocurrent I of this difference ΔI is calculated. 0 (= Iα '+ I
The inclination angle θ of the measurement target 7 is obtained by making the ratio K to β ′) correspond to the uneven distribution of the reflected light amount distribution (change ratio of the light amount difference in the reflected light amount distribution).

【0046】なお、上述の受光による電流Iα,Iβ,
Iα’,Iβ’は、受光部102Aにおいて検出される
電流I1a,I1bと、受光部102Bにおいて検出される
電流I2a,I2bとにより算出される。すなわち、 IαおよびIα’=I1a+I1b IβおよびIβ’=I2a+I2b の演算が1次元傾き成分検出手段105において行なわ
れる。
The currents Iα, Iβ, and
Iα ′ and Iβ ′ are calculated from the currents I 1a and I 1b detected in the light receiving unit 102A and the currents I 2a and I 2b detected in the light receiving unit 102B. That is, the calculation of Iα and Iα ′ = I 1a + I 1b Iβ and Iβ ′ = I 2a + I 2b is performed in the one-dimensional tilt component detecting means 105.

【0047】一方、測定対象7への距離L0 は受光部1
02Aの受光による電流I1a,I1bにより、(I1a−I
1b)/(I1a+I1b)を距離検出手段12において算出
し、従来例と同様にして検出される。このようにして、
測定対象7における単一の照射点7Aにより測定対象7
の傾斜角θが検出されるようになり、従来要していた計
測用面積を必要とせず、ロボット等に装備した場合に
は、作業対象の自由度が増加する。
On the other hand, the distance L 0 to the measuring object 7 is determined by the light receiving section 1
By the currents I 1a and I 1b due to the received light of 02A, (I 1a −I
1b ) / (I 1a + I 1b ) is calculated by the distance detecting means 12 and detected in the same manner as in the conventional example. In this way
Measurement target 7 by a single irradiation point 7A on measurement target 7
The inclination angle θ is detected, and the measurement area that has been conventionally required is not required, and when the robot or the like is equipped, the degree of freedom of the work target increases.

【0048】(b)第2実施例の説明 ところで、本発明の第2実施例は、図11に示すように
構成されている。すなわち、図11は本発明の第2実施
例を示す概略構成図であるが、この図11においても、
101はビーム投光部で、このビーム投光部101は測
定対象7に対しビーム光を照射するものである。
(B) Description of Second Embodiment Now, the second embodiment of the present invention is constructed as shown in FIG. That is, FIG. 11 is a schematic configuration diagram showing the second embodiment of the present invention.
Reference numeral 101 denotes a beam projecting unit, which irradiates the measuring object 7 with beam light.

【0049】また、102A,102B,102C,1
02Dは受光部で、各受光部102A,102B,10
2C,102Dはビーム投光部101による測定対象7
の照射点7Aからの反射光を受光するものである。そし
て、受光部102Aと受光部102BとはX軸方向に沿
い対をなし、受光部102Cと受光部102Dとが、Y
軸方向に沿い異なる対を構成している。
Further, 102A, 102B, 102C, 1
Reference numeral 02D denotes a light receiving unit, which is each light receiving unit 102A, 102B, 10
2C and 102D are objects 7 to be measured by the beam projecting unit 101.
The reflected light from the irradiation point 7A is received. Then, the light receiving unit 102A and the light receiving unit 102B form a pair along the X-axis direction, and the light receiving unit 102C and the light receiving unit 102D are Y-shaped.
Different pairs are formed along the axial direction.

【0050】すなわち、受光部102A,102B,1
02C,102Dは同一照射点7Aに対し2対設けられ
ている。また、受光部102A,102B,102C,
102Dは、ビーム投光部101の投光軸に関し各対ご
とに対向し、対相互が投光軸に直交する平面方向の90
度回転変位する状態で配設されている。したがって、受
光部102Aと受光部102Bとの対が平面座標系にお
けるX軸に対応し、受光部102Cと受光部102Dと
の対が平面座標系におけるY軸に対応するように構成さ
れている。
That is, the light receiving portions 102A, 102B, 1
Two pairs of 02C and 102D are provided for the same irradiation point 7A. In addition, the light receiving units 102A, 102B, 102C,
Denoted at 102D are 90 pairs in a plane direction in which each pair faces the projection axis of the beam projection unit 101, and the pairs are orthogonal to each other.
It is arranged so as to be rotationally displaced. Therefore, the pair of the light receiving unit 102A and the light receiving unit 102B corresponds to the X axis in the plane coordinate system, and the pair of the light receiving unit 102C and the light receiving unit 102D corresponds to the Y axis in the plane coordinate system.

【0051】そして、受光部102A,102B,10
2C,102Dの信号処理系は各対ごとに第1実施例と
同様に構成されており、同様な演算および動作が行なわ
れる。また、107は2次元傾き検出手段で、この2次
元傾き検出手段107は1次元傾き成分検出手段105
により各対において検出された1次元傾き成分を用いて
測定対象7の2次元傾きを検出するものである。
Then, the light receiving portions 102A, 102B, 10
The signal processing systems of 2C and 102D are configured for each pair in the same manner as in the first embodiment, and the same calculation and operation are performed. Further, 107 is a two-dimensional tilt detecting means, and this two-dimensional tilt detecting means 107 is a one-dimensional tilt component detecting means 105.
The two-dimensional tilt of the measuring object 7 is detected using the one-dimensional tilt component detected in each pair.

【0052】このような構成により、本実施例では、受
光部102A,102B,102C,102Dにおける
各対ごとに第1実施例と同様の演算および動作が行なわ
れ、受光部102Aと受光部102Bとの対により平面
座標系におけるX軸に対応した方向の1次元傾き成分が
検出され、受光部102Cと受光部102Dとの対によ
り平面座標系におけるY軸に対応した方向の1次元傾き
成分が検出される。
With this configuration, in this embodiment, the same calculation and operation as in the first embodiment are performed for each pair in the light receiving portions 102A, 102B, 102C, 102D, and the light receiving portions 102A and 102B are connected. , The one-dimensional tilt component in the direction corresponding to the X axis in the plane coordinate system is detected, and the one-dimensional tilt component in the direction corresponding to the Y axis in the plane coordinate system is detected by the pair of light receiving unit 102C and light receiving unit 102D. To be done.

【0053】そして、2次元傾き検出手段107によ
り、1次元傾き成分検出手段105で検出された、X方
向の1次元傾き成分とY方向の1次元傾き成分とを用い
て、測定対象7の2次元傾きが検出される。このように
して、測定対象7における単一の照射点7Aにより測定
対象7の2次元傾斜角θが検出されるようになり、従来
要していた計測用面積を必要とせず、ロボット等に装備
した場合には、作業対象の自由度が増加する。
Then, the two-dimensional tilt detecting means 107 uses the one-dimensional tilt component in the X direction and the one-dimensional tilt component in the Y direction detected by the one-dimensional tilt component detecting means 105 to measure Dimensional tilt is detected. In this way, the two-dimensional tilt angle θ of the measuring object 7 can be detected by the single irradiation point 7A on the measuring object 7, and the measuring area, which was required in the past, is not required, and it can be installed in a robot or the like. In that case, the degree of freedom of the work target increases.

【0054】(c)第3実施例の説明 図12は本発明の第3実施例を示す概略構成図である
が、この図12においても、101はビーム投光部で、
このビーム投光部101は測定対象7に対しビーム光を
照射するものであり、更に102A,102B,102
Cは受光部で、各受光部102A,102B,102C
はビーム投光部101による測定対象7の照射点7Aか
らの反射光を受光するものであるが、受光部102A,
102B,102Cは同一照射点7Aに対し3個設けら
れている。受光部102A,102B,102Cはビー
ム投光部101の投光軸に対向し、相互が投光軸に直交
する平面方向の120度回転変位する状態で配設されて
いる。
(C) Description of Third Embodiment FIG. 12 is a schematic configuration diagram showing a third embodiment of the present invention. In FIG. 12 as well, 101 is a beam projection unit,
The beam projecting unit 101 irradiates the measuring object 7 with beam light, and further includes 102A, 102B, 102.
C is a light receiving part, and each light receiving part 102A, 102B, 102C
Is for receiving the reflected light from the irradiation point 7A of the measurement target 7 by the beam projecting unit 101.
Three 102B and 102C are provided for the same irradiation point 7A. The light receiving units 102A, 102B, and 102C are arranged so as to face the light projecting axis of the beam projecting unit 101 and to be rotationally displaced by 120 degrees in a plane direction orthogonal to the light projecting axis.

【0055】したがって、受光部102A,102B,
102Cが平面座標系における120度おきの極座標軸
に対応するように構成されている。そして、受光部10
2A,102B,102Cの信号処理系は各対ごとに第
1実施例と同様に構成されており、同様な演算および動
作が行なわれる。また、107は2次元傾き検出手段
で、この2次元傾き検出手段107は1次元傾き成分検
出手段105により検出された1次元傾き成分を用いて
測定対象7の2次元傾きを検出するものである。
Therefore, the light receiving portions 102A, 102B,
102C is configured so as to correspond to polar coordinate axes every 120 degrees in the plane coordinate system. Then, the light receiving unit 10
The signal processing systems 2A, 102B, and 102C are configured for each pair in the same manner as in the first embodiment, and the same calculation and operation are performed. Further, 107 is a two-dimensional tilt detecting means, and this two-dimensional tilt detecting means 107 detects the two-dimensional tilt of the measuring object 7 using the one-dimensional tilt component detected by the one-dimensional tilt component detecting means 105. .

【0056】このような構成により、本実施例では、受
光部102A,102B,102Cごとに第1実施例と
同様の演算および動作が行なわれ、平面座標系における
各極座標軸に対応した方向の1次元傾き成分が検出され
る。そして、2次元傾き検出手段107により、1次元
傾き成分検出手段105で検出された、各極座標方向の
1次元傾き成分を用いて、測定対象7の2次元傾きが検
出される。
With this configuration, in this embodiment, the same calculation and operation as in the first embodiment are performed for each of the light receiving portions 102A, 102B and 102C, and the 1-direction in the direction corresponding to each polar coordinate axis in the plane coordinate system is performed. The dimensional tilt component is detected. Then, the two-dimensional tilt detection unit 107 detects the two-dimensional tilt of the measurement target 7 using the one-dimensional tilt component in each polar coordinate direction detected by the one-dimensional tilt component detection unit 105.

【0057】このようにして、測定対象7における単一
の照射点7Aにより測定対象7の2次元傾斜角θが検出
されるようになり、従来要していた計測用面積を必要と
せず、ロボット等に装備した場合には、作業対象の自由
度が増加する。 (d)第4実施例の説明 図13は本発明の第4実施例を示す概略構成図である
が、この図13においても、101はビーム投光部で、
このビーム投光部101は測定対象7に対しビーム光を
照射するものであり、102A,102Bは受光部で、
各受光部102A,102Bはビーム投光部101によ
る測定対象7の照射点7Aからの反射光を受光するもの
である。
In this way, the two-dimensional tilt angle θ of the measuring object 7 can be detected by the single irradiation point 7A on the measuring object 7, and the robot does not need the measuring area which has been required in the past. When equipped in a machine, the degree of freedom of the work target increases. (D) Description of Fourth Embodiment FIG. 13 is a schematic configuration diagram showing a fourth embodiment of the present invention. In FIG. 13 as well, 101 is a beam projecting unit,
The beam projecting unit 101 irradiates the measuring object 7 with beam light, and 102A and 102B are light receiving units.
Each of the light receiving units 102A and 102B receives the reflected light from the irradiation point 7A of the measurement target 7 by the beam projecting unit 101.

【0058】そして、受光部102A,102Bの信号
処理系も第1実施例と同様に構成されており、同様な演
算および動作が行なわれる。また、12は距離検出手段
で、この距離検出手段12もビーム投光部101から照
射点へ至る距離を検出するものである。距離検出手段1
2は受光部102A,102Bのそれぞれに設けられて
おり、ビーム投光部101と受光部102Aとの組およ
びビーム投光部101と受光部102Bとの組のそれぞ
れによる距離L0 検出が行なわれるように構成されてい
る。
The signal processing system of the light receiving portions 102A and 102B is also constructed in the same manner as in the first embodiment, and the same calculation and operation are performed. Further, 12 is a distance detecting means, and this distance detecting means 12 also detects the distance from the beam projecting portion 101 to the irradiation point. Distance detecting means 1
2 is provided in each of the light receiving units 102A and 102B, and the distance L 0 is detected by each of the set of the beam projecting unit 101 and the light receiving unit 102A and the set of the beam projecting unit 101 and the light receiving unit 102B. Is configured.

【0059】108は平均処理手段で、この平均処理手
段108は受光部の組のそれぞれにより検出された距離
値を平均処理する。このような構成により、本実施例で
は、受光部102A,102Bの出力信号に対する第1
実施例と同様の演算および動作が行なわれ、受光部10
2Aと受光部102Bとの対により1次元傾き成分が検
出されれる。
Reference numeral 108 denotes an averaging means, which averages the distance values detected by each of the sets of light receiving parts. With such a configuration, in the present embodiment, the first signal for the output signals of the light receiving units 102A and 102B is used.
The same calculation and operation as in the embodiment are performed, and the light receiving unit 10
The one-dimensional tilt component is detected by the pair of 2A and the light receiving unit 102B.

【0060】そして、距離検出手段12はビーム投光部
101から照射点へ至る距離を検出する。この検出は、
受光部102A,102Bのそれぞれに対し行なわれ、
これらの検出値の平均処理が平均処理手段108により
行なわれて、平均値が距離L 0 の出力となる。これによ
り、距離L0 の検出精度が向上し、本装置を装備された
ロボット等の作動特性が向上する。
The distance detecting means 12 is a beam projecting section.
The distance from 101 to the irradiation point is detected. This detection is
This is performed for each of the light receiving units 102A and 102B,
The averaging processing of these detected values is performed by the averaging means 108.
Performed, the average value is the distance L 0Will be output. By this
And distance L0The detection accuracy was improved and this device was equipped.
The operating characteristics of the robot etc. are improved.

【0061】なお、測定対象7の傾斜角θ検出は、第1
実施例と同様に行なわれる。 (e)第5実施例の説明 ところで、本発明の第5実施例にかかるロボットは、図
14〜図16に示すように構成されている。すなわち、
図14は本発明の第5実施例を示す概略構成図、図15
は本発明の第5実施例の動作を示す摸式図、図16は本
発明の第5実施例の動作を示すフローチャートである
が、まず、図14において、111はハンドであり、こ
のハンド111は作業対象に向かい所要の移動動作を行
なうものである。
The inclination angle θ of the measuring object 7 is detected by the first
The same operation as in the embodiment is performed. (E) Description of Fifth Embodiment By the way, a robot according to a fifth embodiment of the present invention is configured as shown in FIGS. 14 to 16. That is,
FIG. 14 is a schematic configuration diagram showing a fifth embodiment of the present invention, and FIG.
Is a schematic diagram showing the operation of the fifth embodiment of the present invention, and FIG. 16 is a flow chart showing the operation of the fifth embodiment of the present invention. First, in FIG. 14, 111 is a hand, and this hand 111 Is for performing a required movement operation toward the work target.

【0062】また、12は距離検出手段で、この距離検
出手段12はハンド111に装備されハンド111の移
動動作に際し作業対象7との距離を計測するものであ
る。104は傾斜角検出手段で、この傾斜角検出手段1
04はハンド111に装備されその動作方向と作業対象
7の表面との傾斜角を検出するものである。112は動
作方向補正手段で、動作方向補正手段112は傾斜角検
出手段104の検出信号に基づきハンド111の動作方
向を補正するものである。
Reference numeral 12 is a distance detecting means, which is provided in the hand 111 and measures the distance to the work target 7 when the hand 111 moves. Reference numeral 104 denotes an inclination angle detecting means, which is the inclination angle detecting means 1
Reference numeral 04 is provided in the hand 111 and detects an inclination angle between the movement direction of the hand 111 and the surface of the work target 7. Reference numeral 112 is a movement direction correction means, and the movement direction correction means 112 corrects the movement direction of the hand 111 based on the detection signal of the inclination angle detection means 104.

【0063】113は制御部で、この制御部113は、
ハンド111に所要の動作を行なわせるが、この動作に
際し、所望の位置にハンド111を誘導するため、動作
方向補正手段112の出力信号を参照しながらフィード
バック制御を行なうようになっている。114A〜11
4Fはアクチュエータで、これらのアクチュエータ11
4A〜114Fは制御部113の制御信号を受けて、ハ
ンド111を所望の位置に移動させるべく、各部位を駆
動する。
Reference numeral 113 is a control unit, and this control unit 113
The hand 111 is caused to perform a required operation, and in order to guide the hand 111 to a desired position during this operation, feedback control is performed while referring to the output signal of the operation direction correction means 112. 114A-11
4F is an actuator, and these actuators 11
4A to 114F receive the control signal from the control unit 113 and drive each part in order to move the hand 111 to a desired position.

【0064】その他、距離検出手段12、傾斜角検出手
段104等に関しては、第1実施例と同様の構成をそな
えている(図7参照)。このような構成により、次のよ
うな作動が行なわれる。まず、あらかじめ与えられたプ
ログラム等に対応して制御部113から制御信号が出力
され、アクチュエータ114A〜114Fを介してハン
ド111が駆動される。
In addition, the distance detecting means 12, the inclination angle detecting means 104, and the like have the same configuration as that of the first embodiment (see FIG. 7). With such a configuration, the following operation is performed. First, a control signal is output from the control unit 113 in accordance with a program or the like given in advance, and the hand 111 is driven via the actuators 114A to 114F.

【0065】この駆動に際し、ハンド111を所望の位
置に誘導すべく、傾斜角検出手段104の検出信号に基
づいて、動作方向補正手段112によるハンド111の
動作方向補正が行なわれる。そして、この動作方向補正
によるフィードバック制御は、図16のフローチャート
に沿って行なわれる。そして、かかる制御時のハンド1
11の様子は図15のようになる。
At the time of this driving, in order to guide the hand 111 to a desired position, the movement direction correction means 112 corrects the movement direction of the hand 111 based on the detection signal of the inclination angle detection means 104. Then, the feedback control by this operation direction correction is performed according to the flowchart of FIG. And the hand 1 at the time of such control
The state of 11 is as shown in FIG.

【0066】まず、図15(A)に示すように、マニュ
アル指令により初期動作位置にハンド111を駆動し、
作業面(測定面)7への粗いアクセスを行なう(ステッ
プS1)。ついで、距離検出手段12によりハンド11
1と作業面(測定面)7との距離LLを計測する(ステ
ップS2)。
First, as shown in FIG. 15A, the hand 111 is driven to the initial operation position by a manual command,
A rough access is made to the work surface (measurement surface) 7 (step S1). Then, the distance detecting means 12 causes the hand 11
The distance LL between 1 and the work surface (measurement surface) 7 is measured (step S2).

【0067】そして、図15(B)に示すように、アク
チュエータ114により距離LLが適正距離LL00にな
るように駆動する(ステップS3)。ここで、図15
(C)に示すように、傾斜角検出手段104により、ハ
ンド111と作業面(測定面)7との傾斜角θを計測す
る(ステップS4)。次に、図15(D)に示すよう
に、ハンド111の位置と作業面(測定面)7の傾斜角
θとにより照射点7Aを算出し、制御部113からの制
御信号で、ハンド111に照射点7Aを中心とする傾斜
角θの回転を行なわせる(ステップS5)。
Then, as shown in FIG. 15B, the actuator 114 drives the actuator so that the distance LL becomes the proper distance LL 00 (step S3). Here, FIG.
As shown in (C), the tilt angle detection means 104 measures the tilt angle θ between the hand 111 and the work surface (measurement surface) 7 (step S4). Next, as shown in FIG. 15D, the irradiation point 7A is calculated from the position of the hand 111 and the inclination angle θ of the work surface (measurement surface) 7, and the hand 111 is controlled by a control signal from the control unit 113. The tilt angle θ is rotated about the irradiation point 7A (step S5).

【0068】これにより、ハンド111は作業面(測定
面)7から距離LL0 だけ離れて正対した姿勢となり
(ステップS6)、この後、作業面(測定面)7へ部品
設置等の動作が行なわれる。なお、ステップS3におけ
る距離LL00の検出およびステップS4における傾斜角
検出の際には、第1実施例と同様の動作が行なわれる
が、その他、第2〜4実施例の装置を本実施例と同様の
ロボットに装備することもでき、このようにした場合に
は、距離LL00の検出および傾斜角検出は、それぞれ対
応する実施例の動作が行なわれる。
As a result, the hand 111 is in a posture in which it faces the work surface (measurement surface) 7 by a distance LL 0 (step S6), and thereafter, an operation such as parts installation on the work surface (measurement surface) 7 is performed. Done. It should be noted that when detecting the distance LL 00 in step S3 and detecting the tilt angle in step S4, the same operations as in the first embodiment are performed, but in addition, the devices of the second to fourth embodiments are different from those of the present embodiment. The same robot can also be equipped, and in this case, the operations of the corresponding embodiments are performed for detecting the distance LL 00 and detecting the inclination angle.

【0069】このようにして、ロボットの姿勢制御に際
し、作業面(測定面)7における単一の照射点7Aによ
り作業面(測定面)7の2次元傾斜角θが検出されるよ
うになり、従来要していた計測用面積を必要とせず、作
業対象の自由度が増加するとともに、精度の良い的確な
姿勢制御が安定して行なわれるようになる。
In this way, when the posture of the robot is controlled, the two-dimensional tilt angle θ of the work surface (measurement surface) 7 can be detected by the single irradiation point 7A on the work surface (measurement surface) 7. It does not require a measurement area, which has been required in the past, and the degree of freedom of the work target increases, and accurate and accurate posture control can be stably performed.

【0070】[0070]

【発明の効果】以上詳述したように、請求項1〜5記載
の本発明の傾斜角検出装置によれば、測定対象における
単一の照射点により測定対象の傾斜角が検出されるよう
になり、従来要していた計測用面積を必要とせず、ロボ
ット等に装備した場合には、作業対象の自由度が増加す
る利点がある。また、複数の投光部を必要としないた
め、省電力化、小型化がはかられる利点がある。
As described in detail above, according to the tilt angle detecting apparatus of the present invention as defined in claims 1 to 5, the tilt angle of the measuring object can be detected by a single irradiation point on the measuring object. Therefore, when the robot or the like is equipped with the measuring area, which is conventionally required, the degree of freedom of the work target is increased. Moreover, since a plurality of light projecting portions are not required, there is an advantage that power saving and size reduction can be achieved.

【0071】また、請求項3記載の発明の傾斜角検出装
置によれば、平面座標系のX軸、Y軸のそれぞれに対応
した1次元傾き成分が検出され、この1次元成分により
2次元傾き成分が、測定対象における単一の照射点によ
り測定対象の傾斜角が検出されるようになり、従来要し
ていた計測用面積を必要とせず、ロボット等に装備した
場合には、作業対象の自由度が増加する利点がある。
According to the tilt angle detecting device of the third aspect of the invention, the one-dimensional tilt component corresponding to each of the X axis and the Y axis of the plane coordinate system is detected, and the two-dimensional tilt is detected by the one-dimensional component. The component can detect the tilt angle of the measurement object by a single irradiation point on the measurement object, does not require the measurement area that was required in the past, and when equipped in a robot etc. This has the advantage of increasing the degree of freedom.

【0072】さらに、請求項4記載の発明の傾斜角検出
装置によれば、平面座標系における120度おきの極座
標軸に対応した1次元傾き成分が検出され、この1次元
成分により2次元傾き成分が、測定対象における単一の
照射点により測定対象の傾斜角が検出されるようにな
り、従来要していた計測用面積を必要とせず、ロボット
等に装備した場合には、作業対象の自由度が増加する利
点がある。
Further, according to the tilt angle detecting apparatus of the present invention, the one-dimensional tilt component corresponding to the polar coordinate axis at every 120 degrees in the plane coordinate system is detected, and the one-dimensional component causes the two-dimensional tilt component. However, the tilt angle of the measuring object can now be detected by a single irradiation point on the measuring object, and it does not require the measurement area that was required in the past, and if it is equipped with a robot etc. There is an advantage that the degree increases.

【0073】また、請求項5記載の発明の傾斜角検出装
置によれば、単一の照射点により測定対象の傾斜角を検
出できるようにしながら、作業面(測定面)への距離を
より精度良く計測できるようになり、受光部の有効利用
がはかられるとともに、ロボット等に装備した場合に
は、より的確な動作を行なわせうるようになる利点があ
る。
According to the tilt angle detecting device of the fifth aspect of the present invention, the tilt angle of the object to be measured can be detected by a single irradiation point while the distance to the work surface (measurement surface) is more accurate. There is an advantage that the measurement can be performed well, the light receiving unit can be effectively used, and more accurate operation can be performed when the light receiving unit is mounted on a robot or the like.

【0074】さらに、請求項6記載の発明の傾斜角検出
装置を備えたロボットによれば、ロボットの姿勢制御に
際し、作業面(測定面)における単一の照射点により作
業面(測定面)の傾斜角が検出されるようになり、従来
要していた計測用面積を必要とせず、作業対象の自由度
が増加するとともに、精度の良い的確な姿勢制御が安定
して行なわれるようになる利点がある。
Further, according to the robot equipped with the tilt angle detecting device of the sixth aspect of the present invention, when the posture of the robot is controlled, a single irradiation point on the work surface (measurement surface) causes the work surface (measurement surface) to move. The inclination angle can now be detected, the measurement area that was required in the past is not required, the degree of freedom of the work target is increased, and accurate and accurate posture control can be stably performed. There is.

【図面の簡単な説明】[Brief description of drawings]

【図1】請求項1に記載の発明の原理構成図である。FIG. 1 is a principle configuration diagram of the invention according to claim 1.

【図2】請求項2に記載の発明の原理構成図である。FIG. 2 is a principle configuration diagram of the invention described in claim 2;

【図3】請求項3に記載の発明の原理構成図である。FIG. 3 is a principle configuration diagram of the invention according to claim 3;

【図4】請求項4に記載の発明の原理構成図である。FIG. 4 is a principle configuration diagram of the invention according to claim 4;

【図5】請求項5に記載の発明の原理構成図である。FIG. 5 is a principle configuration diagram of the invention according to claim 5;

【図6】請求項6に記載の発明の原理構成図である。FIG. 6 is a block diagram showing the principle of the invention according to claim 6;

【図7】本発明の第1実施例を示す概略構成図である。FIG. 7 is a schematic configuration diagram showing a first embodiment of the present invention.

【図8】本発明の実施例における作動を説明するための
摸式図である。
FIG. 8 is a schematic diagram for explaining the operation in the embodiment of the present invention.

【図9】本発明の実施例における作動を説明するための
摸式図である。
FIG. 9 is a schematic diagram for explaining the operation in the embodiment of the present invention.

【図10】本発明の実施例における作動を説明するため
の摸式図である。
FIG. 10 is a schematic diagram for explaining the operation in the embodiment of the present invention.

【図11】本発明の第2実施例を示す概略構成図であ
る。
FIG. 11 is a schematic configuration diagram showing a second embodiment of the present invention.

【図12】本発明の第3実施例を示す概略構成図であ
る。
FIG. 12 is a schematic configuration diagram showing a third embodiment of the present invention.

【図13】本発明の第4実施例を示す概略構成図であ
る。
FIG. 13 is a schematic configuration diagram showing a fourth embodiment of the present invention.

【図14】本発明の第5実施例を示す概略構成図であ
る。
FIG. 14 is a schematic configuration diagram showing a fifth embodiment of the present invention.

【図15】本発明の第5実施例の動作を示す摸式図であ
る。
FIG. 15 is a schematic diagram showing the operation of the fifth embodiment of the present invention.

【図16】本発明の第5実施例の動作を示すフローチャ
ートである。
FIG. 16 is a flowchart showing the operation of the fifth embodiment of the present invention.

【図17】従来の傾斜角検出装置における受光部の構造
を示す摸式的断面図である。
FIG. 17 is a schematic cross-sectional view showing the structure of a light receiving portion in a conventional tilt angle detection device.

【図18】従来の傾斜角検出装置における受光部の動作
を説明するための摸式図である。
FIG. 18 is a schematic diagram for explaining the operation of the light receiving section in the conventional tilt angle detection device.

【図19】従来の傾斜角検出装置の要部構成を示す摸式
的ブロック図である。
FIG. 19 is a schematic block diagram showing a main configuration of a conventional tilt angle detection device.

【図20】従来の傾斜角検出装置における傾斜角度検出
動作を説明するための摸式図である。
FIG. 20 is a schematic diagram for explaining a tilt angle detection operation in a conventional tilt angle detection device.

【図21】従来の傾斜角検出装置における反射光量特性
を示す摸式図である。
FIG. 21 is a schematic diagram showing a reflected light amount characteristic in a conventional tilt angle detection device.

【符号の説明】[Explanation of symbols]

1 PSD 2 P層 3 I層(平板状シリコン) 4 N層 5,6 電極 7 作業面(測定面) 7A 照射点 8 投光レンズ 9 LED 10 LED駆動回路 11 受光レンズ 12 距離検出手段 13,14 アンプ 15,16 信号処理回路 17 距離演算回路 18 信号変換回路 101 ビーム投光部 102,102A,102B,102C,102D 受
光部 103,103A,103B 受光量検出手段 104 傾斜角検出手段 105 1次元傾き成分検出手段 106 差分演算回路 107 2次元傾き検出手段 111 ハンド 112 動作方向補正手段 113 制御部 114,114A〜114F アクチュエータ 201,202 距離センサ
1 PSD 2 P layer 3 I layer (planar silicon) 4 N layer 5, 6 electrode 7 Working surface (measurement surface) 7A Irradiation point 8 Light emitting lens 9 LED 10 LED drive circuit 11 Light receiving lens 12 Distance detecting means 13, 14 Amplifiers 15 and 16 Signal processing circuit 17 Distance calculation circuit 18 Signal conversion circuit 101 Beam projecting unit 102, 102A, 102B, 102C, 102D Light receiving unit 103, 103A, 103B Light receiving amount detecting unit 104 Tilt angle detecting unit 105 One-dimensional tilt component Detection unit 106 Difference calculation circuit 107 Two-dimensional tilt detection unit 111 Hand 112 Motion direction correction unit 113 Control unit 114, 114A to 114F Actuator 201, 202 Distance sensor

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 測定対象に対しビーム光を照射するビー
ム投光部(101)と、 該ビーム投光部(101)による測定対象の照射点から
の反射光を受光する受光部(102)と、 該受光部(102)の受光量を計量する受光量検出手段
(103)とをそなえ、 上記受光部(103)および上記受光量検出手段(10
3)が同一照射点に対し複数個設けられるとともに、 検出された複数の受光量の相対関係により上記測定対象
の傾斜角を検出する傾斜角検出手段(104)が設けら
れたことを特徴とする、傾斜角検出装置。
1. A beam projecting unit (101) for irradiating a light beam to a measurement target, and a light receiving unit (102) for receiving reflected light from the irradiation point of the measurement target by the beam projection unit (101). A light receiving amount detecting means (103) for measuring a light receiving amount of the light receiving portion (102), and the light receiving portion (103) and the light receiving amount detecting means (10).
3) is provided for the same irradiation point, and an inclination angle detecting means (104) for detecting the inclination angle of the measurement object is provided based on the relative relationship of the detected light receiving amounts. , Tilt angle detection device.
【請求項2】 測定対象に対しビーム光を照射するビー
ム投光部(101)と、 該ビーム投光部(101)による測定対象の照射点から
の反射光を受光する受光部(102)と、 該受光部(102)の受光量を計量する受光量検出手段
(103)とをそなえ、 上記受光部(102)および上記受光量検出手段(10
3)が同一照射点に対し1対設けられ、 上記受光部(102)が上記ビーム投光部(101)の
投光軸に関し対向する状態で配設されるとともに、 検出された一対の受光量の相対関係を反射光量分布の偏
在に対応させて上記測定対象の傾斜角を検出する傾斜角
検出手段(104)が設けられ、 該傾斜角検出手段(104)が、 上記ビーム投光部(101)から上記照射点へ至る距離
を検出する距離検出手段(12)と、 上記一対の受光量に対し差分演算を行なう差分演算回路
(106)を用いて1次元傾き成分を検出する1次元傾
き成分検出手段(105)とをそなえて構成されたこと
を特徴とする、傾斜角検出装置。
2. A beam projecting unit (101) for irradiating a light beam to a measurement target, and a light receiving unit (102) for receiving reflected light from the irradiation point of the measurement target by the beam projection unit (101). A light receiving amount detecting means (103) for measuring a light receiving amount of the light receiving portion (102), and the light receiving portion (102) and the light receiving amount detecting means (10).
3) is provided for the same irradiation point, the light receiving section (102) is arranged in a state of facing with respect to the projection axis of the beam projecting section (101), and the detected pair of received light amounts. An inclination angle detecting means (104) is provided for detecting the inclination angle of the measurement object by making the relative relationship of the above-mentioned distribution uneven distribution of the reflected light amount distribution, and the inclination angle detecting means (104) is provided for the beam projecting part (101). ) To the irradiation point, and a one-dimensional tilt component for detecting a one-dimensional tilt component by using a distance detection means (12) and a difference calculation circuit (106) for calculating a difference between the pair of received light amounts. A tilt angle detecting device comprising a detecting means (105).
【請求項3】 測定対象に対しビーム光を照射するビー
ム投光部(101)と、 該ビーム投光部(101)による測定対象の照射点から
の反射光を受光する受光部(102)と、 該受光部(102)の受光量を計量する受光量検出手段
(103)とをそなえ、 上記受光部(102)および上記受光量検出手段(10
3)が同一照射点に対し2対設けられ、 上記受光部(102)が上記ビーム投光部(101)の
投光軸に関し各対ごとに対向し対相互が投光軸に直交す
る平面方向の90度回転変位する状態で配設されるとと
もに、 検出された一対の受光量の相対関係を反射光量分布の偏
在に対応させて上記測定対象の傾斜角を検出する傾斜角
検出手段(104)が設けられ、 該傾斜角検出手段(104)が、 上記ビーム投光部(101)から上記照射点へ至る距離
を検出する距離検出手段(12)と、 上記各対の受光量に対し差分演算を行なう差分演算回路
(106)を用いて1次元傾き成分を検出する1次元傾
き成分検出手段(105)と、 該1次元傾き成分検出手段(105)により各対におい
て検出された1次元傾き成分を用いて上記測定対象の2
次元傾きを検出する2次元傾き検出手段(107)とを
そなえて構成されたことを特徴とする、傾斜角検出装
置。
3. A beam projecting unit (101) for irradiating a light beam to a measurement target, and a light receiving unit (102) for receiving reflected light from the irradiation point of the measurement target by the beam projection unit (101). A light receiving amount detecting means (103) for measuring a light receiving amount of the light receiving portion (102), and the light receiving portion (102) and the light receiving amount detecting means (10).
3) two pairs are provided for the same irradiation point, and the light receiving section (102) faces each pair with respect to the light projecting axis of the beam projecting section (101), and the pair is orthogonal to the light projecting axis. And a tilt angle detecting means (104) for detecting the tilt angle of the measurement object by making the relative relationship between the detected pair of received light amounts correspond to the uneven distribution of the reflected light amount distribution. The tilt angle detecting means (104) is provided with a distance detecting means (12) for detecting a distance from the beam projecting part (101) to the irradiation point, and a difference calculation for the light receiving amount of each pair. And a one-dimensional tilt component detecting means (105) for detecting a one-dimensional tilt component by using a difference calculation circuit (106) for performing the above, and one-dimensional tilt components detected in each pair by the one-dimensional tilt component detecting means (105). Of the above measurement target
A tilt angle detecting device comprising a two-dimensional tilt detecting means (107) for detecting a dimensional tilt.
【請求項4】 測定対象に対しビーム光を照射するビー
ム投光部(101)と、 該ビーム投光部(101)による測定対象の照射点から
の反射光を受光する受光部(102)と、 該受光部(102)の受光量を計量する受光量検出手段
(103)とをそなえ、 上記受光部(102)および上記受光量検出手段(10
3)が同一照射点に対し3個設けられ、 上記受光部(102)のそれぞれが上記ビーム投光部
(101)の投光軸に対向し相互が投光軸に直交する平
面方向の120度回転変位する状態で配設されるととも
に、 検出された3個の受光量の相対関係を反射光量分布の偏
在に対応させて上記測定対象の傾斜角を検出する傾斜角
検出手段(104)が設けられ、 該傾斜角検出手段(104)が、 上記ビーム投光部(101)から上記照射点へ至る距離
を検出する距離検出手段(12)と、 上記3個の受光量に対し差分演算を行なう差分演算回路
(106)を用いて上記測定対象の2次元傾き成分を検
出する2次元傾き検出手段(107)とをそなえて構成
されたことを特徴とする、傾斜角検出装置。
4. A beam projecting unit (101) for irradiating a measuring object with a beam of light, and a light receiving unit (102) for receiving reflected light from the irradiation point of the measuring object by the beam projecting unit (101). A light receiving amount detecting means (103) for measuring a light receiving amount of the light receiving portion (102), and the light receiving portion (102) and the light receiving amount detecting means (10).
3) are provided for the same irradiation point, and each of the light receiving parts (102) faces the light projecting axis of the beam projecting part (101) and is 120 degrees in a plane direction orthogonal to the light projecting axis. A tilt angle detection means (104) is provided which is arranged in a rotationally displaced state and detects the tilt angle of the measurement object by making the relative relationship of the three detected light amounts correspond to the uneven distribution of the reflected light amount distribution. The tilt angle detecting means (104) calculates a difference between the distance detecting means (12) for detecting the distance from the beam projecting portion (101) to the irradiation point and the three received light amounts. A tilt angle detecting device comprising: a two-dimensional tilt detecting means (107) for detecting a two-dimensional tilt component of the measurement target by using a difference calculation circuit (106).
【請求項5】 測定対象に対しビーム光を照射するビー
ム投光部(101)と、 該ビーム投光部(101)による測定対象の照射点から
の反射光を受光する受光部(102)と、 該受光部(102)の受光量を計量する受光量検出手段
(103)とをそなえ、 上記受光部(102)および上記受光量検出手段(10
3)が同一照射点に対し複数個設けられるとともに、 検出された複数の受光量の相対関係により上記測定対象
の傾斜角を検出する傾斜角検出手段(104)が設けら
れ、 該傾斜角検出手段(104)が、 上記ビーム投光部(101)から上記照射点へ至る距離
を検出する距離検出手段(12)をそなえて構成され
て、 該距離検出手段(12)が、 検出された複数の距離値を平均処理する平均処理手段
(108)をそなえて構成されたことを特徴とする、傾
斜角検出装置。
5. A beam projecting unit (101) for irradiating a light beam to a measurement target, and a light receiving unit (102) for receiving reflected light from the irradiation point of the measurement target by the beam projection unit (101). A light receiving amount detecting means (103) for measuring a light receiving amount of the light receiving portion (102), and the light receiving portion (102) and the light receiving amount detecting means (10).
3) is provided for the same irradiation point, and an inclination angle detecting means (104) is provided for detecting the inclination angle of the measurement object based on the relative relationship of the detected plurality of received light amounts. (104) comprises a distance detecting means (12) for detecting a distance from the beam projecting portion (101) to the irradiation point, and the distance detecting means (12) detects a plurality of detected distances. An inclination angle detecting device comprising an averaging means (108) for averaging distance values.
【請求項6】 作業対象に向かい所要の移動動作を行な
うハンド(111)と、 該ハンド(111)に装備され上記移動動作に際し上記
作業対象との距離を計測する距離検出手段(12)と、 上記ハンド(111)に装備され上記動作方向と上記作
業対象の表面との傾斜角を検出する傾斜角検出手段(1
04)と、 該傾斜角検出手段(104)の検出信号に基づき上記ハ
ンド(111)の動作方向を補正する動作方向補正手段
(112)とをそなえ、 上記距離検出手段(12)および上記傾斜角検出手段
(104)が、 上記作業対象へビーム光を照射するビーム投光部と、 該ビーム投光部による作業対象の照射点からの反射光を
受光する受光部と、 該受光部の受光量を計量する受光量検出手段とをそなえ
て構成されるとともに、 上記受光部および上記受光量検出手段が同一照射点に対
し複数個設けられ、 検出された複数の受光量の相対関係により上記測定対象
の傾斜角を検出する傾斜角検出手段が設けられて、 該傾斜角検出手段の検出信号に基づき上記動作方向補正
手段(112)による上記ハンド(111)の動作方向
補正が行なわれるように構成されたことを特徴とする、
傾斜角検出装置を備えたロボット。
6. A hand (111) for performing a required moving operation toward a work target, and a distance detecting means (12) mounted on the hand (111) for measuring a distance to the work target during the moving motion. A tilt angle detecting means (1) mounted on the hand (111) for detecting a tilt angle between the operation direction and the surface of the work target.
04) and an operation direction correction means (112) for correcting the operation direction of the hand (111) based on the detection signal of the inclination angle detection means (104), and the distance detection means (12) and the inclination angle. A detection means (104) emits a beam of light to the work target, a beam projecting unit, a light receiving unit that receives reflected light from an irradiation point of the work target by the beam projecting unit, and an amount of light received by the light receiving unit. And a plurality of light receiving units and a plurality of light receiving amount detecting units are provided for the same irradiation point, and the measurement target is determined by the relative relationship of the plurality of detected light receiving amounts. Angle detecting means for detecting the inclination angle of the hand (111) is performed by the operation direction correcting means (112) based on the detection signal of the inclination angle detecting means. Characterized in that it is configured to,
A robot equipped with a tilt angle detector.
JP23388393A 1993-09-20 1993-09-20 Inclination detector and robot provided with the same detection device Withdrawn JPH0783640A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23388393A JPH0783640A (en) 1993-09-20 1993-09-20 Inclination detector and robot provided with the same detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23388393A JPH0783640A (en) 1993-09-20 1993-09-20 Inclination detector and robot provided with the same detection device

Publications (1)

Publication Number Publication Date
JPH0783640A true JPH0783640A (en) 1995-03-28

Family

ID=16962059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23388393A Withdrawn JPH0783640A (en) 1993-09-20 1993-09-20 Inclination detector and robot provided with the same detection device

Country Status (1)

Country Link
JP (1) JPH0783640A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003535319A (en) * 2000-05-30 2003-11-25 カール ツァイス イエナ ゲゼルシャフト ミット ベシュレンクテル ハフツング Optical sensor for distance measurement and / or surface inclination measurement
JP2015137988A (en) * 2014-01-24 2015-07-30 アズビル株式会社 reflection type optical sensor
CN110686621A (en) * 2018-07-05 2020-01-14 株式会社三丰 Optical angle sensor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003535319A (en) * 2000-05-30 2003-11-25 カール ツァイス イエナ ゲゼルシャフト ミット ベシュレンクテル ハフツング Optical sensor for distance measurement and / or surface inclination measurement
JP2015137988A (en) * 2014-01-24 2015-07-30 アズビル株式会社 reflection type optical sensor
CN110686621A (en) * 2018-07-05 2020-01-14 株式会社三丰 Optical angle sensor
JP2020008379A (en) * 2018-07-05 2020-01-16 株式会社ミツトヨ Optical angle sensor

Similar Documents

Publication Publication Date Title
US7430070B2 (en) Method and system for correcting angular drift of laser radar systems
JP2006253671A (en) Apparatus and method for beam drift compensation
US20010023862A1 (en) Method and apparatus for the laser machining of workpieces
JP2001153632A (en) Method and device for detecting medical object, especially model of tooth specimen
US5953116A (en) Tilt detecting device
CN116060759A (en) Method for calibrating one or more optical sensors of a laser processing head, laser processing head and laser processing system
JPH0122977B2 (en)
JPH0783640A (en) Inclination detector and robot provided with the same detection device
JP2568891B2 (en) Zero point correction method and apparatus in thickness measurement method
JPH0565001B2 (en)
JPH09103893A (en) Laser beam scanner and laser beam machine
JP3285256B2 (en) Automatic alignment adjustment method and apparatus for laser robot
JPS6210361B2 (en)
US7176408B2 (en) Method for laser-cutting structural components to be joined
JPH05333152A (en) Inclination measuring device
JPS63225108A (en) Distance and inclination measuring instrument
JPH09203688A (en) Method and device for estimating beam shape of laser scanner unit
JPH074932A (en) Method and apparatus for measurement of shape of object
JP3192942B2 (en) Automatic welding position deviation correction system
JP2753342B2 (en) Work position detector
JPS6275308A (en) Displacement convertor
JPH0679779B2 (en) Shape recognition method for corner joints
JP3705872B2 (en) Method and apparatus for detecting the amount of meander of a rolled sheet
JPH02187620A (en) Displacement measuring instrument
JPS63169509A (en) Inclination measuring instrument

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20001128