JPH077321A - Antenna system - Google Patents

Antenna system

Info

Publication number
JPH077321A
JPH077321A JP14405093A JP14405093A JPH077321A JP H077321 A JPH077321 A JP H077321A JP 14405093 A JP14405093 A JP 14405093A JP 14405093 A JP14405093 A JP 14405093A JP H077321 A JPH077321 A JP H077321A
Authority
JP
Japan
Prior art keywords
antenna
elements
radiation conductor
ground
grounded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14405093A
Other languages
Japanese (ja)
Other versions
JP3032664B2 (en
Inventor
Atsushi Kobayashi
敦 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP5144050A priority Critical patent/JP3032664B2/en
Publication of JPH077321A publication Critical patent/JPH077321A/en
Application granted granted Critical
Publication of JP3032664B2 publication Critical patent/JP3032664B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To miniaturize and lighten the antenna system. CONSTITUTION:The antenna system is formed by making radiation conductor elements 51 and 52 orthogonal each other while using the surface conductor foil of a both-face printed circuit board 1. A ground layer 3 is formed by using the rear face conductor foil of the bath-face printed circuit board 1. One terminal of the radiation conductor elements 51 and 52 is connected through a ground conductor part 9 composed of a through-hole to the ground layer 3, and the radiation conductor elements 51 and 52 are grounded. Thus, two pairs of antenna elements formed by using the bath-face printed circuit board 1 are formed as a grounding reverse L antenna. The outputs of the radiation conductor elements 51 and 52 as linear polarized antenna elements are synthesized by a phase shift synthesizing part 6 with phase difference at 90 deg., and circularly polarized waves are received. Two pairs of antenna elements are formed as the grounding antenna, the radiation conductor elements 51 and 52 are miniaturized, and the antenna system is miniaturized and lightened.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、波長に比べて薄い誘電
体層あるいは空気層を挟んで、2つの放射導体素子と接
地導体板とを互いに対向させた構造の2組のアンテナ素
子で構成されたアンテナ装置に関し、携帯無線機、特に
衛星通信用の移動無線機器に内蔵するのに適したアンテ
ナ装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention comprises two sets of antenna elements having a structure in which two radiation conductor elements and a ground conductor plate are opposed to each other with a dielectric layer or an air layer thinner than the wavelength therebetween. The present invention relates to an antenna device suitable for being incorporated in a portable wireless device, particularly a mobile wireless device for satellite communication.

【0002】[0002]

【従来の技術】従来より、両面銅張積層プリント基板
(以下、両面プリント基板と呼ぶ)を用いて形成したプ
リントアンテナが提供されている。このプリントアンテ
ナは、いわゆるマイクロストリップ形アンテナであり、
フォトエッチング技術の向上により、電気的特性の再現
性が良好となっている。しかも、このプリントアンテナ
の場合には、両面プリント基板の基材の誘電率が十分に
大きければ、波長短縮効果により、誘電体層を空気で構
成した場合に比べて小型化できるという利点もある。そ
こで、特に携帯用無線機などの内蔵アンテナとして適用
されている。
2. Description of the Related Art Conventionally, there has been provided a printed antenna formed by using a double-sided copper-clad laminated printed circuit board (hereinafter referred to as a double-sided printed circuit board). This printed antenna is a so-called microstrip antenna,
Improvements in photoetching technology have improved the reproducibility of electrical characteristics. Moreover, in the case of this printed antenna, if the dielectric constant of the base material of the double-sided printed circuit board is sufficiently large, there is an advantage that it can be downsized as compared with the case where the dielectric layer is made of air due to the wavelength shortening effect. Therefore, it is particularly applied as a built-in antenna for portable radios and the like.

【0003】従来、携帯無線機では垂直直線偏波が用い
られてきたが、近年では、特に移動体通信システムにお
いて、衛星を利用した円偏波が利用されるようになって
いる。この種の円偏波用プリントアンテナとしては、図
8に示すものが提案されている。この円偏波用プリント
アンテナでは、両面プリント基板1の表面導体箔を用い
て放射導体層2を形成し、裏面導体箔を用いてグランド
層3を形成してある。なお、絶縁層を誘電体層4として
用いてある。
Conventionally, vertical linearly polarized waves have been used in portable radios, but in recent years, circularly polarized waves using satellites have come to be used especially in mobile communication systems. As this type of circularly polarized printed antenna, the one shown in FIG. 8 has been proposed. In this circularly polarized printed antenna, the radiation conductor layer 2 is formed using the front surface conductor foil of the double-sided printed circuit board 1, and the ground layer 3 is formed using the back surface conductor foil. The insulating layer is used as the dielectric layer 4.

【0004】放射導体層2は、長さ1/2波長(λ/
2)の直線偏波アンテナ素子としてのダイポールからな
る放射導体素子51 ,52 を空間的に直交させるように
形成してある。ここで、この放射導体素子51 ,52
幅は波長に比べて細く形成してある。夫々の放射導体素
子51 ,52 の出力は、90度移相合成器として動作す
る移相合成部(ハイブリッドと呼ばれることもある)6
で合成するようにしてある。なお、移相合成出力は移相
合成部6の出力端子6aから出力される。また、この移
相合成部6には終端抵抗7を介してグランド層3と接続
してある。ここで、終端抵抗7としてはチップ抵抗を用
いてあり、終端抵抗7とグランド層3とはスルーホール
からなる導体部8で接続してある。
The radiation conductor layer 2 has a length of ½ wavelength (λ /
The radiation conductor elements 5 1 and 5 2 formed of dipoles as the linearly polarized antenna element 2) are formed so as to be spatially orthogonal to each other. Here, the widths of the radiation conductor elements 5 1 and 5 2 are formed narrower than the wavelength. The outputs of the respective radiating conductor elements 5 1 and 5 2 are phase shift combiners (sometimes called hybrids) 6 that operate as 90 ° phase shift combiners.
It is designed to be combined with. The phase shift synthesis output is output from the output terminal 6 a of the phase shift synthesis section 6. In addition, the phase shift combining unit 6 is connected to the ground layer 3 via a terminating resistor 7. Here, a chip resistor is used as the terminating resistor 7, and the terminating resistor 7 and the ground layer 3 are connected by a conductor portion 8 formed of a through hole.

【0005】この円偏波用プリントアンテナを受信用に
用いた場合には、空間的に直交する直線偏波アンテナ素
子としての放射導体素子51 ,52 の出力を90度の位
相差で合成し、円偏波を受信する。なお、例えば上記円
偏波用プリントアンテナを立設する形で配置すると、水
平偏波受信用の放射導体素子51 の受信出力に対して、
垂直偏波受信用の放射導体素子52 の受信出力を、位相
合成部6で90度位相を遅らせて合成することにより、
全体として右旋円偏波信号が受信される。
When this circularly polarized printed antenna is used for reception, the outputs of the radiation conductor elements 5 1 and 5 2 as linearly polarized antenna elements spatially orthogonal to each other are combined with a phase difference of 90 degrees. And receive circularly polarized waves. In addition, for example, when the circularly polarized printed antenna is arranged in a standing manner, the received output of the radiation conductor element 5 1 for horizontally polarized wave reception is
By synthesizing the reception output of the radiating conductor element 5 2 for vertical polarization reception by delaying the phase by 90 degrees in the phase synthesizing unit 6,
A right-hand circularly polarized signal is received as a whole.

【0006】[0006]

【発明が解決しようとする課題】ところで、上記図8の
プリントアンテナを携帯無線機に装備しようとすると、
次のような問題がある。上記図8のプリントアンテナは
1/2波長型であるため、例えば誘電率3.5、厚さ5
mmの両面プリント基板1を用いて形成した場合、155
0MHzでは、両面プリント基板1として60mm角程度
の大きさのものが必要である。また、この大きさである
と、重量も重くなる。従って、寸法的また重量的に携帯
無線機への適用が難しくなる。
By the way, when an attempt is made to equip a portable radio with the printed antenna shown in FIG.
There are the following problems. Since the printed antenna shown in FIG. 8 is a half wavelength type, for example, the dielectric constant is 3.5 and the thickness is 5
When formed using a double-sided printed circuit board 1 of 1 mm, 155
At 0 MHz, the double-sided printed circuit board 1 needs to have a size of about 60 mm square. Also, with this size, the weight becomes heavy. Therefore, it is difficult to apply to a portable wireless device in terms of size and weight.

【0007】また、位相合成部6はロ字状に形成され、
その各辺は1/4波長(λ/4)必要であり、上記放射
導体素子51 ,52 と同一の面に形成するには、プリン
トアンテナ全体の素子配置、及び携帯無線機への実装
(取付固定など)上の制約が増すという問題がある。本
発明は上述の点に鑑みて為されたものであり、その目的
とするところは、小型で、軽量であるアンテナ装置を提
供することにある。
Further, the phase synthesizing section 6 is formed in a square shape,
Each side requires a quarter wavelength (λ / 4), and in order to form it on the same surface as the radiating conductor elements 5 1 and 5 2 , the element arrangement of the entire printed antenna and mounting on a portable radio device are required. There is a problem that the above restrictions (such as mounting and fixing) increase. The present invention has been made in view of the above points, and an object thereof is to provide an antenna device that is small and lightweight.

【0008】[0008]

【課題を解決するための手段】請求項1の発明では、上
記目的を達成するために、波長に比べて薄い誘電体層あ
るいは空気層を挟んで、2つの放射導体素子と接地導体
板とを互いに対向させ、夫々の放射導体の一端と接地導
体板とを接続して2組の接地型アンテナ素子を構成し、
放射導体素子の少なくとも接地端側の基部が同一平面上
で互いに直交するように接地型アンテナ素子を配置し、
夫々の接地型アンテナ素子の出力を90度の位相差で合
成する移相合成手段を備えている。
In order to achieve the above object, according to the invention of claim 1, two radiating conductor elements and a ground conductor plate are sandwiched by a dielectric layer or an air layer thinner than the wavelength. Facing each other and connecting one end of each radiation conductor to the ground conductor plate to form two sets of ground type antenna elements,
Arranging the grounded antenna element so that at least the ground end side base of the radiating conductor element is orthogonal to each other on the same plane,
A phase shift combining means for combining the outputs of the respective grounded antenna elements with a phase difference of 90 degrees is provided.

【0009】請求項2の発明では、上記目的を達成する
ために、波長に比べて薄い誘電体層あるいは空気層を挟
んで、2つの放射導体素子と接地導体板とを互いに対向
させ、夫々の放射導体の一端と接地導体板とを接続して
2組の逆L型アンテナとしての接地型アンテナ素子を構
成し、放射導体素子の少なくとも接地端側の基部が同一
平面上で互いに直交するように接地型アンテナ素子を配
置すると共に、2組の接地型アンテナ素子を1/4波長
の間隔で配置し、一方の接地型アンテナ素子を給電素子
とすると共に、他方の接地型アンテナ素子を非給電素子
としてある。
According to the second aspect of the invention, in order to achieve the above object, the two radiating conductor elements and the grounding conductor plate are opposed to each other with a dielectric layer or an air layer thinner than the wavelength sandwiched therebetween. One end of the radiating conductor and the grounding conductor plate are connected to form two sets of grounded antenna elements as inverted L-shaped antennas, and at least the bases of the radiating conductor elements on the ground end side are orthogonal to each other on the same plane. A grounded antenna element is arranged, two sets of grounded antenna elements are arranged at intervals of ¼ wavelength, one grounded antenna element is used as a feeding element, and the other grounded antenna element is a non-feeding element. There is.

【0010】請求項2の発明において、さらに小型化す
る場合には、請求項3に示すように、上記2組の接地型
アンテナ素子の先端にインダクタ部あるいはキャパシタ
ンス部を設ければよい。請求項4の発明では、上記目的
を達成するために、波長に比べて薄い誘電体層あるいは
空気層を挟んで、2つの放射導体素子と接地導体板とを
互いに対向させ、夫々の放射導体の一端と接地導体板と
を接続して2組の逆F型アンテナとしての接地型アンテ
ナ素子を構成し、放射導体素子を逆L型アンテナ動作モ
ードにおける主電流の方向が同一平面上で互いに直交す
るように接地型アンテナ素子を配置すると共に、2組の
接地型アンテナ素子を1/4波長の間隔で配置し、一方
の接地型アンテナ素子を給電素子とすると共に、他方の
接地型アンテナ素子を非給電素子としてある。
In the second aspect of the invention, in the case of further miniaturization, as shown in the third aspect, an inductor portion or a capacitance portion may be provided at the tips of the two sets of ground type antenna elements. In order to achieve the above-mentioned object, in the invention of claim 4, the two radiation conductor elements and the ground conductor plate are opposed to each other with a dielectric layer or an air layer thinner than the wavelength interposed therebetween, and One end is connected to the grounding conductor plate to form two sets of grounding type antenna elements as inverse F-type antennas, and the radiation conductor elements are orthogonal to each other in the direction of the main current in the inverse L-type antenna operation mode on the same plane. The two ground-type antenna elements are arranged at an interval of ¼ wavelength, one ground-type antenna element is used as a feeding element, and the other ground-type antenna element is used as a non-ground antenna element. It is used as a power feeding element.

【0011】なお、右旋円偏波及び左旋円偏波用として
切換使用することを可能とする場合には、請求項5に示
すように、各放射導体素子に給電を行う給電部を設け、
いずれかの放射導体素子の給電部に給電を選択的に行う
切換手段を備えるようにすればよい。
When it is possible to switch between the right-handed circularly polarized wave and the left-handed circularly polarized wave, as described in claim 5, a power feeding unit for feeding power to each radiation conductor element is provided,
It suffices to provide a switching unit for selectively supplying power to the power supply unit of any of the radiation conductor elements.

【0012】[0012]

【作用】請求項1の発明では、上述のように構成するこ
とにより、2組のアンテナ素子を接地型アンテナとし、
放射導体素子を小型にすることを可能とし、アンテナ装
置を小型,軽量化する。請求項2の発明では、2組の一
方の接地型アンテナ素子を給電素子とすると共に、他方
の接地型アンテナ素子を非給電素子とすることにより、
移相合成部を不要とし、アンテナ装置をさらに小型,軽
量化する。
According to the first aspect of the present invention, the two antenna elements are ground type antennas by the above-mentioned structure.
The radiating conductor element can be downsized, and the antenna device can be downsized and lightweight. According to the second aspect of the present invention, the two grounded antenna elements of the two groups are used as the feeding elements and the other grounded antenna element is used as the non-feeding element.
The phase shift combiner is not needed, and the antenna device is further reduced in size and weight.

【0013】請求項3の発明では、インダクタ部のイン
ダクタ装荷効果、あるいはキャパシタンス部の容量装荷
効果により、放射導体素子をさらに小型化することを可
能とし、さらに小型,軽量化を図る。請求項4の発明で
は、請求項2の発明と同様に、2組の一方の接地型アン
テナ素子を給電素子とすると共に、他方の接地型アンテ
ナ素子を非給電素子とすることにより、移相合成部を不
要とし、アンテナ装置をさらに小型,軽量化する。
According to the third aspect of the present invention, it is possible to further reduce the size of the radiating conductor element due to the effect of loading the inductor portion with the inductor or the effect of loading the capacitance portion with the capacitance. According to the invention of claim 4, as in the invention of claim 2, the two ground-type antenna elements of one set are used as the feeding elements and the other ground-type antenna element of the other pair is used as the non-feeding element, so that phase shift synthesis is performed. Therefore, the antenna device is made smaller and lighter.

【0014】請求項5の発明では、2組の接地型アンテ
ナ素子を給電素子及び非給電素子とに切り換え、右旋円
偏波及び左旋円偏波用として切換使用することを可能と
する。
According to the fifth aspect of the present invention, the two sets of grounded antenna elements can be switched between a feeding element and a non-feeding element and can be switched and used for right-handed circular polarization and left-handed circular polarization.

【0015】[0015]

【実施例】(実施例1)図1に本発明の一実施例を示
す。本実施例は、基本的には、図8で説明した同様の構
造であるので、以下の説明は本実施例の特徴とする点に
ついてのみ行い、同一の構成には同一符号を付して説明
は省略する。
(Embodiment 1) FIG. 1 shows an embodiment of the present invention. This embodiment basically has the same structure as that described with reference to FIG. 8. Therefore, the following description will be made only on the characteristic points of this embodiment, and the same configurations will be denoted by the same reference numerals. Is omitted.

【0016】本実施例では、放射導体素子51 ,52
一端をスルーホールからなる接地導体部9を介してグラ
ンド層3に接続し、放射導体素子51 ,52 を接地して
ある。このように放射導体素子51 ,52 をグランド層
3に接地することで、両面プリント基板1を用いて構成
される2組のアンテナ素子が、夫々接地型アンテナ、さ
らに具体的には接地型逆Lアンテナとして機能する。
In this embodiment, one ends of the radiation conductor elements 5 1 and 5 2 are connected to the ground layer 3 through the ground conductor portion 9 formed of a through hole, and the radiation conductor elements 5 1 and 5 2 are grounded. . By thus grounding the radiating conductor elements 5 1 and 5 2 to the ground layer 3, two sets of antenna elements configured by using the double-sided printed circuit board 1 are respectively grounded antennas, more specifically, grounded antennas. It functions as an inverted L antenna.

【0017】接地型アンテナでは、グランド層3が使用
波長に比べて十分に大きくないときには、接地型逆L型
アンテナであっても、グランド層3に対向する放射導体
素子51 ,52 からの水平偏波輻射成分が支配的にな
る。このため放射導体素子51,52 は1/4波長とす
ることができる。従って、放射導体素子51 ,52 の小
型化により、アンテナ装置を構成する両面プリント基板
1の寸法を小さくして、小型,軽量化することができ
る。
In the ground type antenna, when the ground layer 3 is not sufficiently larger than the used wavelength, even if the ground type inverted L-shaped antenna is used, the radiation conductor elements 5 1 and 5 2 facing the ground layer 3 are connected to each other. The horizontally polarized radiation component becomes dominant. Therefore, the radiation conductor elements 5 1 and 5 2 can have a quarter wavelength. Therefore, by reducing the size of the radiation conductor elements 5 1 and 5 2 , the size of the double-sided printed circuit board 1 forming the antenna device can be reduced, and the size and weight can be reduced.

【0018】但し、本実施例の場合、位相合成部6の形
状は図8の場合と同じく、1辺が1/4波長の寸法にな
っており、この位相合成部6の占有面積は変わらない。
また、放射導体素子51 ,52 の動作を乱さないように
するためには、放射導体素子51 ,52 は移相合成部6
から遠ざける必要がある。このため、本実施例の場合に
は、例えば誘電率3.5、厚さ5mmの両面プリント基板
1を用いて形成した場合、1550MHzでは、両面プ
リント基板1として50mm角程度の大きさとなる。
However, in the case of the present embodiment, the shape of the phase synthesizing section 6 is the dimension of 1/4 wavelength on one side as in the case of FIG. 8, and the occupied area of this phase synthesizing section 6 does not change. .
Further, in order not to disturb the operation of the radiation conductor element 5 1, 5 2, radiating conductor element 5 1, 5 2 phase synthesis unit 6
Need to keep away from. Therefore, in the case of the present embodiment, when the double-sided printed board 1 having a dielectric constant of 3.5 and a thickness of 5 mm is used, the double-sided printed board 1 has a size of about 50 mm square at 1550 MHz.

【0019】(実施例2)図2(a),(b)に本発明
の他の実施例を示す。本実施例では、移相合成部6を用
いることなく、アンテナ装置を構成したものであり、一
方の放射導体素子51 ,52 から延出された出力端子1
0から出力を得る構造としてある。また、放射導体素子
1 と放射導体素子52 とは1/4波長の間隔を設けて
形成してある。このように構成した場合、放射導体素子
1 が給電素子となり、他方の放射導体素子52 が非給
電素子として動作する。
(Embodiment 2) FIGS. 2A and 2B show another embodiment of the present invention. In the present embodiment, the antenna device is configured without using the phase shift combining unit 6, and the output terminal 1 extended from one of the radiation conductor elements 5 1 and 5 2.
The structure is such that the output is obtained from 0. Further, the radiating conductor element 5 1 and the radiating conductor element 5 2 are formed with an interval of ¼ wavelength. In such a configuration, the radiation conductor element 5 1 serves as a feeding element, and the other radiation conductor element 5 2 operates as a non-feeding element.

【0020】いま、図2(a)のアンテナ装置を立設し
て配置し、放射導体素子51 から水平偏波の電波を正面
手前方向に放射した場合を考えると、放射導体素子52
は1/4波長の距離を隔てて配置してあるので、放射導
体素子51 から放射された電波は、90°位相が遅れて
受信される。ここで、この放射導体素子52 は、非給電
素子(無負荷)であるので、受信された電波は再輻射さ
れる。すなわち、放射導体素子51 から輻射された電波
と、ほぼ振幅が等しく、90度位相の遅れた垂直偏波の
電波が、放射導体素子52 から再輻射される。よって、
正面方向の遠方から電波を観測すると、本実施例のアン
テナ装置からは右旋円偏波が発射されていることにな
る。
Now, considering the case where the antenna device of FIG. 2 (a) is erected vertically and the horizontally polarized radio wave is radiated from the radiating conductor element 5 1 in the front front direction, the radiating conductor element 5 2
Are arranged at a distance of ¼ wavelength, the radio wave radiated from the radiation conductor element 5 1 is received with a 90 ° phase delay. Here, the radiating conductor element 5 2 are the non-feeding element (no load), the received radio wave is reradiated. That is, a vertically polarized radio wave whose amplitude is almost equal to that of the radio wave radiated from the radiating conductor element 5 1 and whose phase is delayed by 90 degrees is re-radiated from the radiating conductor element 5 2 . Therefore,
When radio waves are observed from a distance in the front direction, it means that right-handed circularly polarized waves are emitted from the antenna device of this embodiment.

【0021】なお、以上の説明は送信アンテナとして動
作させた場合の説明であったが、アンテナ可逆性の原理
から、右旋円偏波送信アンテナは右旋円偏波受信アンテ
ナとしても有効に動作することは明らかである。なお、
左旋円偏波用とする場合には、出力端子10を放射導体
素子52 側に形成し、放射導体素子52 を給電素子と
し、放射導体素子51 を非給電素子とすればよい。
Although the above description is for the case where the antenna is operated as a transmitting antenna, the right-handed circularly polarized wave transmitting antenna effectively operates also as the right-handed circularly polarized wave receiving antenna due to the principle of antenna reversibility. It is clear to do. In addition,
When the left-hand circularly polarized wave, the output terminal 10 formed on the radiating conductor element 5 2 side, the radiating conductor element 5 2 and the feed element may be a radiation conductor element 5 1 and the non-feeding element.

【0022】本実施例のプリントアンテナは、移相合成
部6を設けずに済むため、さらに形状を小型化すること
が可能である。なお、図2(c)は、同図(a)の両面
プリント基板1を斜めに切除したもので、給電はグラン
ド層3側から行うようにしてある。このようにすれば、
誘電率3.5、厚さ5mmの両面プリント基板1を用いて
形成した場合、1550MHzでは、両面プリント基板
1として、約50×30mmの寸法とすることができ、図
8の従来のものに比べて半分以下に面積を小さくするこ
とができる。
The printed antenna of this embodiment does not need to be provided with the phase-shifting / combining section 6, so that the shape can be further reduced. Note that FIG. 2C shows the double-sided printed circuit board 1 shown in FIG. 2A cut away obliquely, and power is supplied from the ground layer 3 side. If you do this,
When the double-sided printed circuit board 1 having a dielectric constant of 3.5 and a thickness of 5 mm is used, the size of the double-sided printed circuit board 1 can be about 50 × 30 mm at 1550 MHz. The area can be reduced to less than half.

【0023】ところで、本実施例では、放射導体素子5
2 の非接地端を、放射導体素子51の接地端の近傍にな
るようにしてある。これは、90度の位相差を保ちなが
ら、プリントアンテナを小型にする素子配置を選択した
とき、放射導体素子51 ,5 2 の結合が少なくなるよう
にするためである。図3に、図2(a)の構成で円偏波
アンテナを製作したときの特性を示す。ここで、図3
(a)は上記プリントアンテナのインピーダンス特性を
示すスミス図表であり、同調周波数(1550MHz)
を図中のF0 で示してあり、円偏波アンテナ特有のイン
ピーダンス軌跡が得られている。
By the way, in this embodiment, the radiation conductor element 5 is used.
2The non-grounded end of the radiating conductor element 51Near the grounded end of
I am doing it. This is a 90 degree phase difference
Selected an element layout that makes the printed antenna smaller.
When the radiating conductor element 51, 5 2So that the binding of
This is because Fig. 3 shows the circular polarization with the configuration of Fig. 2 (a).
The characteristics when the antenna is manufactured are shown below. Here, FIG.
(A) shows the impedance characteristics of the printed antenna
It is a Smith chart shown, tuning frequency (1550MHz)
In the figure0, Which is unique to circularly polarized antennas.
The pedestal locus is obtained.

【0024】図3(b),(c)は、同図(d)に示す
ようにプリントアンテナAに対してX,Y,Z軸を設定
した場合におけるXZ面及びYZ面の受信指向特性を夫
々示す。図3(b),(c)における一点左旋が右旋円
偏波の受信指向特性を示し、実線が左旋円偏波の受信指
向特性を示す。ここで、指向特性はXZ面とYZ面で低
仰角における指向特性に差があり、XZ面の方が良好で
ある。しかし、天頂方向(Z軸方向)の交差偏波比は、
約15dB(軸比3dBに相当する)であり、ほぼ良好
な特性となっている。なお、天頂方向の右旋円偏波信号
に対する利得は+2dBiであった。
3B and 3C show the reception directional characteristics of the XZ plane and the YZ plane when the X, Y, and Z axes are set for the printed antenna A as shown in FIG. Show each. In FIGS. 3B and 3C, the left-handed single point indicates the reception directional characteristic of the right-handed circularly polarized wave, and the solid line indicates the reception directional characteristic of the left-handed circularly polarized wave. Here, the directional characteristics differ between the XZ plane and the YZ plane at low elevation angles, and the XZ plane is better. However, the cross polarization ratio in the zenith direction (Z-axis direction) is
It is about 15 dB (corresponding to an axial ratio of 3 dB), which is a substantially good characteristic. The gain for the right-hand circularly polarized signal in the zenith direction was +2 dBi.

【0025】(実施例3)図4に本発明のさらに他の実
施例を示す。本実施例のプリントアンテナは、図2
(c)に示す実施例2のものを基本として構成されたも
ので、本実施例の場合には、放射導体素子51 ,52
形状に特徴がある。つまり、これら放射導体素子51
2 の長さを短縮することにより、さらに小型化を可能
としたものである。
(Embodiment 3) FIG. 4 shows still another embodiment of the present invention. The printed antenna of this embodiment is shown in FIG.
It is constructed on the basis of the second embodiment shown in (c), and this embodiment is characterized by the shapes of the radiation conductor elements 5 1 and 5 2 . That is, these radiation conductor elements 5 1 ,
By shortening 5 2 length, in which was further enables miniaturization.

【0026】具体的には、放射導体素子51 ,52 の接
地端に近い部分(以下、基部と呼ぶ)5aをほぼ1/8
波長(λ/8)の長さにし、各放射導体素子51 ,52
の基部5aは互いに空間的に直交するように形成してあ
る。そして、基部5aの接地側と反対側(以下、先端と
呼ぶ)からインダクタンス成分を放射導体素子51 ,5
2 に装荷するインダクタンス部5bを形成してある。こ
こで、インダクタンス部5bは、基部5aの先端から基
部5aと直交する方向に突設され、複数回折り曲げる形
で形成してある。
Specifically, a portion (hereinafter referred to as a base) 5a near the grounded ends of the radiation conductor elements 5 1 and 5 2 is approximately 1/8.
The length of the wavelength (λ / 8) is set, and each radiation conductor element 5 1 , 5 2
The base portions 5a are formed so as to be spatially orthogonal to each other. Then, the inductance component is radiated from the side opposite to the ground side of the base 5a (hereinafter referred to as the tip) to the radiating conductor elements 5 1 , 5
An inductance portion 5b to be loaded on 2 is formed. Here, the inductance portion 5b is provided so as to protrude from the tip of the base portion 5a in a direction orthogonal to the base portion 5a, and is formed by bending a plurality of times.

【0027】接地型アンテナでは、水平偏波指向特性
が、主として、接地端に近い部分、つまりは基部5aに
流れる電流により支配される。そこで、その点を利用
し、放射導体素子51 ,52 の基部5aのみを空間的に
直交させ、インダクタンス部5bのインダクタンス装荷
効果により放射導体素子51 ,52 の長さを短くしてあ
る。
In the grounded antenna, the horizontal polarization directional characteristic is mainly controlled by the current flowing in the portion near the ground end, that is, the base portion 5a. Therefore, by utilizing the point, only radiation conductive element 5 1, 5 2 of the base part 5a spatially orthogonalizing, by shortening the length of the radiating conductor element 5 1, 5 2 by inductance loading effect of the inductance section 5b is there.

【0028】図4(b)は、上記放射導体素子51 ,5
2 のインダクタンス部5bの代わりに、キャパシタンス
部5cを設けたものであり、容量装荷効果により放射導
体素子51 ,52 の長さを短くしてある。上記構造とす
れば、図2(c)に示すプリントアンテナの長手方向の
長さ(B寸法)を約2/3に短縮することができる。な
お、この図4の場合にも、給電素子と非給電素子を入れ
換えることにより、左旋円偏波受信用とすることができ
る。
FIG. 4B shows the radiation conductor elements 5 1 and 5 described above.
A capacitance portion 5c is provided instead of the second inductance portion 5b, and the lengths of the radiating conductor elements 5 1 and 5 2 are shortened due to the capacitance loading effect. With the above structure, the length (B dimension) in the longitudinal direction of the printed antenna shown in FIG. 2C can be shortened to about 2/3. In the case of FIG. 4 as well, by exchanging the feeding element and the non-feeding element, it is possible to receive left-handed circularly polarized waves.

【0029】(実施例4)さらに他の実施例を図5及び
図6に基づいて説明する。本実施例は、電子スイッチ手
段により、右旋円偏波及び左旋円偏波を切換的に受信で
きるようにしたものである。本実施例の放射導体素子5
1 ,52 は、図5に示すように、PINダイオードなど
のスイッチングダイオードD1 ,D2 及びコンデンサC
を介してアンテナ出力OUTに接続してある。ここで、
スイッチングダイオードD1 ,D2は互いに逆向きで放
射導体素子51 ,52 に接続され、コンデンサCに夫々
接続された共通接続点にスイッチングダイオードD1
2 のバイアス電圧を印加し、スイッチングダイオード
1 ,D2 を選択的にオン,オフするようにしてある。
なお、コンデンサCは直流カット用である。また、バイ
アス電圧はスイッチSWの切換によりチョークコイルC
Hを介して直流電源E1 ,E2 から印加するようにして
あり、チョークコイルCHは高周波カット用である。
(Fourth Embodiment) Still another embodiment will be described with reference to FIGS. In this embodiment, the electronic switch means is capable of selectively receiving the right-handed circular polarization and the left-handed circular polarization. Radiation conductor element 5 of the present embodiment
1 , 5 2 are switching diodes D 1 and D 2 such as PIN diodes and a capacitor C as shown in FIG.
It is connected to the antenna output OUT via. here,
Switching diode D 1, D 2 are connected in reverse to the radiating conductive element 5 1, 5 2 together, switching diode D 1 to the common connection point which is respectively connected to the capacitor C,
A bias voltage of D 2 is applied so that the switching diodes D 1 and D 2 are selectively turned on and off.
The capacitor C is for cutting direct current. Further, the bias voltage is changed to the choke coil C by switching the switch SW.
The DC power supplies E 1 and E 2 are applied via H, and the choke coil CH is for high frequency cutting.

【0030】上記スイッチングダイオードD1 ,D
2 は、図6に示すように、放射導体素子5を形成する銅
箔を部分的に切除して、その切除部15内にランド12
を形成し、そのランド12と放射導体素子5との間にス
イッチングダイオードDを実装してある。そして、上記
ランド12はスルーホールからなる導体部13でグラン
ド層3側に設けたランド14に接続し、図5で説明した
後段回路に接続するようにしてある。
The switching diodes D 1 and D
As shown in FIG. 6, the copper foil 2 forming the radiation conductor element 5 is partially cut off, and the land 12 is formed in the cutout portion 15.
And a switching diode D is mounted between the land 12 and the radiation conductor element 5. The land 12 is connected to the land 14 provided on the ground layer 3 side by the conductor portion 13 formed of a through hole, and is connected to the subsequent circuit described with reference to FIG.

【0031】図5において、スイッチSWをa側に切り
換えると、直流電源E1 がスイッチングダイオード
1 ,D2 に印加され、スイッチングダイオードD1
導通状態となり、スイッチングダイオードD2 が非導通
状態となる。このため、放射導体素子51 が給電素子と
なり、放射導体素子52 が非給電素子となる。よって、
先に説明した実施例であれば、右旋円偏波用の受信アン
テナとして機能する。
In FIG. 5, when the switch SW is switched to the a side, the DC power supply E 1 is applied to the switching diodes D 1 and D 2 , the switching diode D 1 is in the conducting state, and the switching diode D 2 is in the non-conducting state. Become. Therefore, the radiation conductor element 5 1 serves as a feeding element and the radiation conductor element 5 2 serves as a parasitic element. Therefore,
In the case of the embodiment described above, it functions as a reception antenna for right-handed circularly polarized waves.

【0032】逆に、スイッチSWをb側に切り換え、直
流電源E2 がスイッチングダイオードD1 ,D2 に印加
され、スイッチングダイオードD1 が非導通状態とな
り、スイッチングダイオードD2 が導通状態となる。こ
のため、放射導体素子51 が非給電素子、放射導体素子
2 が給電素子となり、左旋円偏波用の受信アンテナと
して機能する。本実施例は、反射の多い伝搬路において
ダイバーシティ受信を行う場合に適用できる。
On the contrary, the switch SW is switched to the b side, the DC power source E 2 is applied to the switching diodes D 1 and D 2 , the switching diode D 1 becomes non-conductive, and the switching diode D 2 becomes conductive. Therefore, the radiation conductor element 5 1 serves as a non-feeding element and the radiation conductor element 5 2 serves as a feeding element, and functions as a reception antenna for left-handed circularly polarized waves. This embodiment can be applied to the case where diversity reception is performed in a propagation path with many reflections.

【0033】(実施例5)図7にさらに別の実施例を示
す。本実施例では、上記逆L型アンテナの代わりに逆F
型アンテナを用いて構成したものである。ここで、逆L
型アンテナ及び逆F型アンテナは共に接地型アンテナで
あるが、逆F型アンテナの場合には、放射導体素子(図
7の51 ’,52 ’)が矩形に形成され、各辺とも約1
/8波長とし、周囲長が1/2波長になるようにする。
このため、板状逆L型アンテナとしての機能に加えて、
1/2波長スロットアンテナの機能を加えた動作モード
で動作する。この逆F型アンテナの場合には、人体によ
る動作利得の減少が少ない磁流アンテナとして動作し、
特に携帯無線機用に用いた場合に有効である。
(Fifth Embodiment) FIG. 7 shows still another embodiment. In this embodiment, an inverted F-shaped antenna is used instead of the inverted L-shaped antenna.
It is configured by using a type antenna. Where reverse L
Both the F type antenna and the inverted F type antenna are ground type antennas. However, in the case of the inverted F type antenna, the radiation conductor elements (5 1 'and 5 2 ' in FIG. 7) are formed in a rectangular shape, and each side has approximately 1
/ 8 wavelength and the perimeter is 1/2 wavelength.
Therefore, in addition to the function as a plate-shaped inverted L-shaped antenna,
It operates in an operation mode that adds the function of a half-wavelength slot antenna. In the case of this inverted F-type antenna, it operates as a magnetic current antenna in which the decrease in operating gain due to the human body is small,
It is particularly effective when used for a portable wireless device.

【0034】具体的には、図7に示すように、一辺が1
/8波長の矩形の放射導体素子51’,52 ’を形成
し、放射導体素子51 ’の1つの角部においてスルーホ
ールからなる接地導体部9で接地してある。給電点11
を接地端の近傍に設けてある。本実施例のプリントアン
テナにおける逆F型アンテナの逆L型アンテナモードに
おける主電流方向が図中に矢印で示す方向になる。つま
りは、放射導体素子5 1 ,52 の接地端となる角部を通
る対角線方向になり、夫々の電流方向は互いに直交する
方向になるようにしてある。
Specifically, as shown in FIG. 7, one side is 1
/ 8 wavelength rectangular radiating conductor element 51', 52’Is formed
Radiating conductor element 51At one corner
It is grounded by a grounding conductor portion 9 composed of a roll. Feeding point 11
Is provided near the grounded end. The printer of this embodiment
In the inverted L-shaped antenna mode of the inverted F-shaped antenna in Tena
The main current direction in the figure is the direction indicated by the arrow in the figure. Tsuma
Radiating conductor element 5 1, 52Through the corner that will be the
Diagonal directions, and the current directions are orthogonal to each other.
It is oriented.

【0035】但し、上記接地点を図中の×で示す位置に
設けることもできる。この場合は各放射導体素子
1 ’,52 ’の主電流方向が長辺に沿う方向になる。
この場合にも長辺の方向が互いに直交するように、各放
射導体素子51 ’,52 ’を形成すればよい。なお、以
上の説明では、アンテナ装置がプリントアンテナである
場合について説明したが、波長に比べて薄い空気層を挟
んで、2つの放射導体素子と接地導体板とを互いに対向
させ、夫々の放射導体の一端と接地導体板とを接続して
2組の接地型アンテナ素子を構成したアンテナ装置にお
いても適用できることは言うでもない。
However, the grounding point may be provided at a position indicated by X in the figure. In this case, the main current direction of each radiating conductor element 5 1 ′, 5 2 ′ is along the long side.
Also in this case, the radiating conductor elements 5 1 ′ and 5 2 ′ may be formed so that the long sides thereof are orthogonal to each other. In the above description, the case where the antenna device is a printed antenna has been described, but the two radiation conductor elements and the ground conductor plate are opposed to each other with the air layer thinner than the wavelength sandwiched therebetween, and the respective radiation conductors are arranged. It goes without saying that the present invention can also be applied to an antenna device in which two sets of ground type antenna elements are configured by connecting one end of the above to a ground conductor plate.

【0036】[0036]

【発明の効果】請求項1の発明は上述のように、波長に
比べて薄い誘電体層あるいは空気層を挟んで、2つの放
射導体素子と接地導体板とを互いに対向させ、夫々の放
射導体の一端と接地導体板とを接続して2組の接地型ア
ンテナ素子を構成し、放射導体素子の少なくとも接地端
側の基部が同一平面上で互いに直交するように接地型ア
ンテナ素子を配置し、夫々の接地型アンテナ素子の出力
を90度の位相差で合成する移相合成手段を備えている
ので、2組のアンテナ素子を接地型アンテナとし、放射
導体素子を小型にすることができ、アンテナ装置を小
型,軽量化することができる。
As described above, according to the first aspect of the invention, the two radiation conductor elements and the ground conductor plate are opposed to each other with the dielectric layer or the air layer thinner than the wavelength sandwiched between the two radiation conductor elements. And one end of the ground conductor plate are connected to form two sets of ground type antenna elements, and the ground type antenna elements are arranged so that at least the ground end side bases of the radiating conductor elements are orthogonal to each other on the same plane, Since the phase shift combining means for combining the outputs of the respective grounded antenna elements with a phase difference of 90 degrees is provided, two sets of antenna elements can be grounded antennas, and the radiation conductor element can be downsized. The device can be made smaller and lighter.

【0037】請求項2の発明では、波長に比べて薄い誘
電体層あるいは空気層を挟んで、2つの放射導体素子と
接地導体板とを互いに対向させ、夫々の放射導体の一端
と接地導体板とを接続して2組の逆L型アンテナとして
の接地型アンテナ素子を構成し、放射導体素子の少なく
とも接地端側の基部が同一平面上で互いに直交するよう
に接地型アンテナ素子を配置すると共に、2組の接地型
アンテナ素子を1/4波長の間隔で配置し、一方の接地
型アンテナ素子を給電素子とすると共に、他方の接地型
アンテナ素子を非給電素子としてあるので、移相合成部
が不要となり、さらに小型,軽量化することができる。
According to the second aspect of the invention, the two radiation conductor elements and the ground conductor plate are opposed to each other with the dielectric layer or the air layer thinner than the wavelength sandwiched therebetween, and one end of each radiation conductor and the ground conductor plate. And two are connected to form a grounded antenna element as an inverted L-shaped antenna, and the grounded antenna element is arranged such that at least the ground end side bases of the radiation conductor elements are orthogonal to each other on the same plane. Since two sets of grounded antenna elements are arranged at an interval of ¼ wavelength, one grounded antenna element serves as a feeding element, and the other grounded antenna element serves as a non-feeding element, the phase shift combining unit Is unnecessary, and the size and weight can be further reduced.

【0038】請求項3の発明では、上記2組の接地型ア
ンテナ素子の先端にインダクタ部あるいはキャパシタン
ス部を設けることにより、インダクタ部のインダクタ装
荷効果、あるいはキャパシタンス部の容量装荷効果によ
り、放射導体素子をさらに小型化することができ、さら
に小型,軽量化することができる。請求項4の発明で
は、波長に比べて薄い誘電体層あるいは空気層を挟ん
で、2つの放射導体素子と接地導体板とを互いに対向さ
せ、夫々の放射導体の一端と接地導体板とを接続して2
組の逆F型アンテナとしての接地型アンテナ素子を構成
し、放射導体素子を逆L型アンテナ動作モードにおける
主電流の方向が同一平面上で互いに直交するように接地
型アンテナ素子を配置すると共に、2組の接地型アンテ
ナ素子を1/4波長の間隔で配置し、一方の接地型アン
テナ素子を給電素子とすると共に、他方の接地型アンテ
ナ素子を非給電素子としてあるので、移相合成部が不要
となり、さらに小型,軽量化することができる。
According to the third aspect of the present invention, the radiating conductor element is provided by the inductor loading effect of the inductor section or the capacitance loading effect of the capacitance section by providing the inductor section or the capacitance section at the tips of the two sets of ground type antenna elements. Can be further downsized, and further downsized and lightened. In the invention of claim 4, the two radiation conductor elements and the ground conductor plate are opposed to each other with the dielectric layer or the air layer thinner than the wavelength sandwiched therebetween, and one end of each radiation conductor is connected to the ground conductor plate. Then 2
A grounded antenna element as a pair of inverted F-type antennas is configured, and the grounded antenna element is arranged such that the radiation conductor elements are orthogonal to each other on the same plane in the directions of the main current in the inverted L-shaped antenna operation mode. Since two sets of grounded antenna elements are arranged at intervals of ¼ wavelength and one grounded antenna element is used as a feeding element and the other grounded antenna element is used as a non-feeding element, It is not necessary and can be made smaller and lighter.

【0039】請求項5の発明では、各放射導体素子に給
電を行う給電部を設け、いずれかの放射導体素子の給電
部に給電を選択的に行う切換手段を備えているので、2
組の接地型アンテナ素子を給電素子及び非給電素子とに
切り換えることができ、右旋円偏波及び左旋円偏波用と
して切換使用することができる。
According to the fifth aspect of the invention, since a power feeding portion for feeding power to each radiation conductor element is provided and a switching means for selectively feeding power to the power feeding portion of any of the radiation conductor elements is provided,
The pair of grounded antenna elements can be switched between a feeding element and a non-feeding element, and can be switched and used for right-handed circular polarization and left-handed circular polarization.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a),(b)は本発明の一実施例の正面図及
び断面図である。
1A and 1B are a front view and a sectional view of an embodiment of the present invention.

【図2】(a)〜(c)は他の実施例の正面図、断面
図、及び放射導体素子の形成方法を変えてさらに小型化
した場合の正面図である。
2A to 2C are a front view of another embodiment, a cross-sectional view, and a front view in the case of further downsizing by changing a method of forming a radiation conductor element.

【図3】(a)〜(d)は、図2(a)のプリントアン
テナにおけるインピーダンス特性を示すスミス図表、X
Z面における指向特性図、YZ面における指向特性図、
及びプリントアンテナにおいて設定したX,Y,Z軸方
向を示す説明図である。
3A to 3D are Smith charts showing impedance characteristics of the printed antenna of FIG.
A directional pattern on the Z plane, a directional pattern on the YZ plane,
FIG. 3 is an explanatory diagram showing X, Y, and Z axis directions set in the printed antenna.

【図4】(a),(b)は夫々さらなる小型化を図った
さらに他の実施例の正面図である。
4 (a) and 4 (b) are front views of yet another embodiment for further miniaturization.

【図5】さらに別の実施例の要部回路図である。FIG. 5 is a circuit diagram of a main part of still another embodiment.

【図6】同上の要部構造を示す部分斜視図である。FIG. 6 is a partial perspective view showing the main structure of the above.

【図7】さらに別の実施例の正面図である。FIG. 7 is a front view of still another embodiment.

【図8】(a),(b)は従来例の正面図及び断面図で
ある。
8A and 8B are a front view and a sectional view of a conventional example.

【符号の説明】[Explanation of symbols]

1 両面プリント基板 2 放射導体層 3 グランド層 4 誘電体層 51 ,52 ,51 ’,52 ’ 放射導体素子 5a 基部 5b インダクタンス部 5c キャパシタンス部 6 移相合成部 9 接地導体部 10 出力端子 D1 ,D2 スイッチングダイオード SW スイッチ E1 ,E2 直流電源1 double-sided printed circuit board 2 radiation conductor layer 3 ground layer 4 dielectric layer 5 1, 5 2, 5 1 ', 5 2' radiating conductor element 5a base 5b inductance section 5c capacitance section 6 phase synthesis unit 9 ground conductor 10 an output Terminal D 1 , D 2 Switching diode SW switch E 1 , E 2 DC power supply

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 波長に比べて薄い誘電体層あるいは空気
層を挟んで、2つの放射導体素子と接地導体板とを互い
に対向させ、夫々の放射導体の一端と接地導体板とを接
続して2組の接地型アンテナ素子を構成し、放射導体素
子の少なくとも接地端側の基部が同一平面上で互いに直
交するように接地型アンテナ素子を配置し、夫々の接地
型アンテナ素子の出力を90度の位相差で合成する移相
合成手段を備えて成ることを特徴とするアンテナ装置。
1. A radiation conductor element and a ground conductor plate are opposed to each other with a dielectric layer or an air layer thinner than the wavelength sandwiched therebetween, and one end of each radiation conductor is connected to the ground conductor plate. Two sets of ground-type antenna elements are formed, and the ground-type antenna elements are arranged so that at least the ground end side bases of the radiation conductor elements are orthogonal to each other on the same plane, and the output of each ground-type antenna element is 90 degrees. An antenna device comprising a phase-shift combining means for combining with the phase difference of the above.
【請求項2】 波長に比べて薄い誘電体層あるいは空気
層を挟んで、2つの放射導体素子と接地導体板とを互い
に対向させ、夫々の放射導体の一端と接地導体板とを接
続して2組の逆L型アンテナとしての接地型アンテナ素
子を構成し、放射導体素子の少なくとも接地端側の基部
が同一平面上で互いに直交するように接地型アンテナ素
子を配置すると共に、2組の接地型アンテナ素子を1/
4波長の間隔で配置し、一方の接地型アンテナ素子を給
電素子とすると共に、他方の接地型アンテナ素子を非給
電素子として成ることを特徴とするアンテナ装置。
2. The two radiation conductor elements and the ground conductor plate are opposed to each other with a dielectric layer or an air layer thinner than the wavelength sandwiched therebetween, and one end of each radiation conductor is connected to the ground conductor plate. Two sets of grounded antenna elements as inverted L-shaped antennas are configured, and the grounded antenna elements are arranged such that at least the bases of the radiation conductor elements on the ground end side are orthogonal to each other on the same plane, and two sets of grounded elements are arranged. 1 type antenna element
An antenna device, which is arranged at intervals of four wavelengths, wherein one grounded antenna element serves as a feeding element and the other grounded antenna element serves as a non-feeding element.
【請求項3】 上記2組の接地型アンテナ素子の先端に
インダクタ部あるいはキャパシタンス部を設けて成るこ
とを特徴とする請求項1あるいは請求項2記載のアンテ
ナ装置。
3. The antenna device according to claim 1, wherein an inductor portion or a capacitance portion is provided at the tips of the two sets of grounded antenna elements.
【請求項4】 波長に比べて薄い誘電体層あるいは空気
層を挟んで、2つの放射導体素子と接地導体板とを互い
に対向させ、夫々の放射導体の一端と接地導体板とを接
続して2組の逆F型アンテナとしての接地型アンテナ素
子を構成し、放射導体素子を逆L型アンテナ動作モード
における主電流の方向が同一平面上で互いに直交するよ
うに接地型アンテナ素子を配置すると共に、2組の接地
型アンテナ素子を1/4波長の間隔で配置し、一方の接
地型アンテナ素子を給電素子とすると共に、他方の接地
型アンテナ素子を非給電素子として成ることを特徴とす
るアンテナ装置。
4. The two radiation conductor elements and the ground conductor plate are opposed to each other with a dielectric layer or an air layer thinner than the wavelength sandwiched therebetween, and one end of each radiation conductor is connected to the ground conductor plate. Two sets of grounded antenna elements as inverted F-type antennas are configured, and the grounded antenna elements are arranged so that the radiation conductor elements are orthogonal to each other on the same plane in the directions of the main current in the inverted L-type antenna operation mode. An antenna, characterized in that two sets of grounded antenna elements are arranged at intervals of ¼ wavelength, one grounded antenna element serves as a feeding element, and the other grounded antenna element serves as a non-feeding element. apparatus.
【請求項5】 各放射導体素子に給電を行う給電部を設
け、いずれかの放射導体素子の給電部に給電を選択的に
行う切換手段を備えて成ることを特徴とする請求項2あ
るいは請求項4記載のアンテナ装置。
5. The power supply unit for supplying power to each radiation conductor element is provided, and the switching unit for selectively supplying power to the power supply unit of any one of the radiation conductor elements is provided. Item 4. The antenna device according to item 4.
JP5144050A 1993-06-15 1993-06-15 Antenna device Expired - Lifetime JP3032664B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5144050A JP3032664B2 (en) 1993-06-15 1993-06-15 Antenna device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5144050A JP3032664B2 (en) 1993-06-15 1993-06-15 Antenna device

Publications (2)

Publication Number Publication Date
JPH077321A true JPH077321A (en) 1995-01-10
JP3032664B2 JP3032664B2 (en) 2000-04-17

Family

ID=15353159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5144050A Expired - Lifetime JP3032664B2 (en) 1993-06-15 1993-06-15 Antenna device

Country Status (1)

Country Link
JP (1) JP3032664B2 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001345636A (en) * 2000-06-06 2001-12-14 Ngk Insulators Ltd Antenna unit
WO2004109858A1 (en) * 2003-06-09 2004-12-16 Matsushita Electric Industrial Co., Ltd. Antenna and electronic device using the same
US6963310B2 (en) 2002-09-09 2005-11-08 Hitachi Cable, Ltd. Mobile phone antenna
US7129893B2 (en) 2003-02-07 2006-10-31 Ngk Spark Plug Co., Ltd. High frequency antenna module
US7372406B2 (en) 2002-08-30 2008-05-13 Fujitsu Limited Antenna apparatus including inverted-F antenna having variable resonance frequency
WO2008133033A1 (en) * 2007-04-12 2008-11-06 Nec Corporation Dual polarization wave antenna
JP2009501467A (en) * 2005-07-12 2009-01-15 ザ ヨーロピアン ジーエヌエスエス スーパーバイザリー オーソリティ Multiband antenna for satellite positioning system
JP2009088625A (en) * 2007-09-27 2009-04-23 Dx Antenna Co Ltd Antenna
US7541999B2 (en) 2006-11-10 2009-06-02 Panasonic Corporation Polarization switching/variable directivity antenna
JP2012239117A (en) * 2011-05-13 2012-12-06 Tdk Corp Antenna device and radio communication apparatus using the same
JP2014027416A (en) * 2012-07-25 2014-02-06 Denso Wave Inc Antenna device
JP2014236509A (en) * 2013-06-04 2014-12-15 ジック アーゲー Antenna
US9779780B2 (en) 2010-06-17 2017-10-03 Teradyne, Inc. Damping vibrations within storage device testing systems
JP2017529261A (en) * 2014-09-08 2017-10-05 ヒルティ アクチエンゲゼルシャフト Device system including wireless link
JP2020060994A (en) * 2018-10-11 2020-04-16 株式会社77Kc Rfid tag reader/writer device
US10725091B2 (en) 2017-08-28 2020-07-28 Teradyne, Inc. Automated test system having multiple stages
US10775408B2 (en) 2018-08-20 2020-09-15 Teradyne, Inc. System for testing devices inside of carriers
US10845410B2 (en) 2017-08-28 2020-11-24 Teradyne, Inc. Automated test system having orthogonal robots
US10948534B2 (en) 2017-08-28 2021-03-16 Teradyne, Inc. Automated test system employing robotics
US10983145B2 (en) 2018-04-24 2021-04-20 Teradyne, Inc. System for testing devices inside of carriers
US11226390B2 (en) 2017-08-28 2022-01-18 Teradyne, Inc. Calibration process for an automated test system
EP4020710A1 (en) * 2020-12-22 2022-06-29 Carrier Corporation Circularly polarized antenna

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002237711A (en) * 2000-12-08 2002-08-23 Matsushita Electric Ind Co Ltd Antenna device and communication system

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001345636A (en) * 2000-06-06 2001-12-14 Ngk Insulators Ltd Antenna unit
US7372406B2 (en) 2002-08-30 2008-05-13 Fujitsu Limited Antenna apparatus including inverted-F antenna having variable resonance frequency
US6963310B2 (en) 2002-09-09 2005-11-08 Hitachi Cable, Ltd. Mobile phone antenna
US7129893B2 (en) 2003-02-07 2006-10-31 Ngk Spark Plug Co., Ltd. High frequency antenna module
WO2004109858A1 (en) * 2003-06-09 2004-12-16 Matsushita Electric Industrial Co., Ltd. Antenna and electronic device using the same
US7205945B2 (en) 2003-06-09 2007-04-17 Matsushita Electric Industrial Co., Ltd. Antenna and electronic device using the same
US8289213B2 (en) 2005-07-12 2012-10-16 The European Union, Represented By The European Commission Multi-band antenna for satellite positioning system
JP2009501467A (en) * 2005-07-12 2009-01-15 ザ ヨーロピアン ジーエヌエスエス スーパーバイザリー オーソリティ Multiband antenna for satellite positioning system
US7541999B2 (en) 2006-11-10 2009-06-02 Panasonic Corporation Polarization switching/variable directivity antenna
US7936314B2 (en) 2007-04-12 2011-05-03 Nec Corporation Dual polarized antenna
WO2008133033A1 (en) * 2007-04-12 2008-11-06 Nec Corporation Dual polarization wave antenna
JP2009088625A (en) * 2007-09-27 2009-04-23 Dx Antenna Co Ltd Antenna
US9779780B2 (en) 2010-06-17 2017-10-03 Teradyne, Inc. Damping vibrations within storage device testing systems
JP2012239117A (en) * 2011-05-13 2012-12-06 Tdk Corp Antenna device and radio communication apparatus using the same
JP2014027416A (en) * 2012-07-25 2014-02-06 Denso Wave Inc Antenna device
JP2014236509A (en) * 2013-06-04 2014-12-15 ジック アーゲー Antenna
US9582694B2 (en) 2013-06-04 2017-02-28 Sick Ag Antenna
JP2017529261A (en) * 2014-09-08 2017-10-05 ヒルティ アクチエンゲゼルシャフト Device system including wireless link
US10131071B2 (en) 2014-09-08 2018-11-20 Hilti Aktiengesellschaft Device system including a radio link
US10725091B2 (en) 2017-08-28 2020-07-28 Teradyne, Inc. Automated test system having multiple stages
US10845410B2 (en) 2017-08-28 2020-11-24 Teradyne, Inc. Automated test system having orthogonal robots
US10948534B2 (en) 2017-08-28 2021-03-16 Teradyne, Inc. Automated test system employing robotics
US11226390B2 (en) 2017-08-28 2022-01-18 Teradyne, Inc. Calibration process for an automated test system
US10983145B2 (en) 2018-04-24 2021-04-20 Teradyne, Inc. System for testing devices inside of carriers
US10775408B2 (en) 2018-08-20 2020-09-15 Teradyne, Inc. System for testing devices inside of carriers
JP2020060994A (en) * 2018-10-11 2020-04-16 株式会社77Kc Rfid tag reader/writer device
EP4020710A1 (en) * 2020-12-22 2022-06-29 Carrier Corporation Circularly polarized antenna

Also Published As

Publication number Publication date
JP3032664B2 (en) 2000-04-17

Similar Documents

Publication Publication Date Title
JP3032664B2 (en) Antenna device
US10224622B2 (en) Antennas including dual radiating elements for wireless electronic devices
US6650294B2 (en) Compact broadband antenna
US4916457A (en) Printed-circuit crossed-slot antenna
US8552913B2 (en) High isolation multiple port antenna array handheld mobile communication devices
US6549167B1 (en) Patch antenna for generating circular polarization
US20030076259A1 (en) Antenna apparatus having cross-shaped slot
WO2010073429A1 (en) Array antenna device
EP1711980A2 (en) Multi frequency magnetic dipole antenna structures and methods of reusing the volume of an antenna
US6504508B2 (en) Printed circuit variable impedance transmission line antenna
JP4263961B2 (en) Antenna device for portable radio
JP3301877B2 (en) Small antennas and diversity antennas
US6618015B2 (en) Antenna for use with radio device
JP2004274223A (en) Antenna and electronic apparatus using the same
JP4155092B2 (en) Diversity antenna device and communication device including the same
JPH0998018A (en) Shared antenna
JP3002252B2 (en) Planar antenna
JP4201273B2 (en) Multi-band circularly polarized microstrip antenna and radio system using the same
JP2972046B2 (en) Antenna device
JP2005203841A (en) Antenna apparatus
JP2001024426A (en) Antenna element and circularly polarized antenna system using the same
JP2833301B2 (en) Dual-polarized planar antenna
JP2002016433A (en) Antenna for portable terminal
JP3318474B2 (en) Shared antenna and mobile radio
GB2370419A (en) Dual mode antenna

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080210

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 9

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 14

EXPY Cancellation because of completion of term