JPH0769144B2 - Three-dimensional position measurement method - Google Patents

Three-dimensional position measurement method

Info

Publication number
JPH0769144B2
JPH0769144B2 JP2053770A JP5377090A JPH0769144B2 JP H0769144 B2 JPH0769144 B2 JP H0769144B2 JP 2053770 A JP2053770 A JP 2053770A JP 5377090 A JP5377090 A JP 5377090A JP H0769144 B2 JPH0769144 B2 JP H0769144B2
Authority
JP
Japan
Prior art keywords
point
dimensional position
image
measurement target
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2053770A
Other languages
Japanese (ja)
Other versions
JPH03255910A (en
Inventor
善郎 西元
伸一 今岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2053770A priority Critical patent/JPH0769144B2/en
Publication of JPH03255910A publication Critical patent/JPH03255910A/en
Publication of JPH0769144B2 publication Critical patent/JPH0769144B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、CAD(Computer Aided Design),CAT(Comput
er Aided Testing)等の利用時に加工品実体三次元形状
寸法を入力する際や、三次元情報の交換によるコンピュ
ータとのマンマシンインターフェイスとして用いて好適
の三次元位置測定方式に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to CAD (Computer Aided Design), CAT (Comput
er Aided Testing) and the like, the present invention relates to a three-dimensional position measuring method suitable for inputting a three-dimensional shape and dimension of a processed product and used as a man-machine interface with a computer by exchanging three-dimensional information.

[従来の技術] この種の三次元位置測定装置としては、従来、特開昭63
−61904号公報に示されたものがある。この従来装置
は、ワーク表面上の測定点の三次元座標を得るために、
測定点に輝点を投射するための複数の投光器と、輝
点周辺のステレオ画像を得るための2台の撮像器と、
ステレオ画像から三角測量法により複数の測定点の三次
元座標を算出する手段と、複数の測定点の三次元座標
から測定ヘッド(投光器,撮像器)とワークとの相対的
位置関係を求める手段とから構成されている。つまり、
この従来装置では、ワーク表面上の測定点を教示するた
めに、投光器から投射された輝点を用いている。
[Prior Art] A conventional three-dimensional position measuring device of this type has been disclosed in Japanese Patent Laid-Open No.
There is one disclosed in Japanese Patent Publication No. 61904. This conventional device, in order to obtain the three-dimensional coordinates of the measurement point on the workpiece surface,
A plurality of light projectors for projecting bright spots on the measurement points, and two image pickup devices for obtaining a stereo image around the bright spots;
A means for calculating the three-dimensional coordinates of a plurality of measurement points from a stereo image by a triangulation method, and a means for obtaining the relative positional relationship between the measurement head (light projector, imager) and the work from the three-dimensional coordinates of the plurality of measurement points. It consists of That is,
In this conventional device, a bright spot projected from a projector is used to teach a measuring point on the surface of a work.

また、上記従来技術のほかに、ワーク表面上の測定点に
点光源を直接付加する手段も開示されている〔テレビジ
ョン学会技術報告ITA40−2(1977)第7頁「倉沢他:
半導体位置検出方式による歩行パターン計測システム」
参照〕。
In addition to the above-mentioned conventional technique, a means for directly adding a point light source to a measurement point on the surface of a work is also disclosed [Technical Report of the Institute of Television Engineers, ITA40-2 (1977), page 7, "Kurazawa et al .:
Walking Pattern Measurement System Using Semiconductor Position Detection Method "
reference〕.

更に、測定対称物の表面を先端で接触操作するスタイラ
スの軸線上に一定間隔をおいて3個の光点を設け、この
スタイラスの動作空間の上方又は下方に設けた1個の撮
像カメラによりスタイラスを撮影し、上記光点の間隔、
光点から接触点までの距離、撮像カメラによる光点の映
像に含まれる情報から測定対象物各点の3次元座標値を
算出するようにした三次元測定装置も公知である(特開
昭63−217205号公報参照)。
Furthermore, three light spots are provided at regular intervals on the axis of the stylus that makes contact with the surface of the object to be measured at the tip, and a stylus is provided by one imaging camera above or below the operating space of the stylus. , And the interval of the above light spots,
A three-dimensional measuring device is also known in which the three-dimensional coordinate value of each point of the object to be measured is calculated from the distance from the light point to the contact point and the information contained in the image of the light point by the image pickup camera (Japanese Patent Laid-Open No. 63-63242). -217205 gazette).

[発明が解決しようとする課題] しかしながら、測定点を光ビームの照射による輝点で教
示する従来装置では、次のような問題がある。
[Problems to be Solved by the Invention] However, the conventional device that teaches the measurement points by the bright spots by the irradiation of the light beam has the following problems.

(a)ワークの穴内部や背面,側面など左右の撮像器で
共通に見ることのできない部位の教示は不可能である。
(A) It is impossible to teach a portion such as the inside of the hole of the work, the back surface, and the side surface that cannot be commonly viewed by the left and right image pickup devices.

(b)ワーク表面が鏡面の場合、輝点から散乱光が生じ
ず、撮像できなくなる。
(B) When the surface of the work is a mirror surface, scattered light does not occur from the bright spot, and the image cannot be captured.

(c)ワーク表面が低反射率の場合、輝点の像が得られ
ない。
(C) If the work surface has a low reflectance, a bright spot image cannot be obtained.

(d)ワーク表面が拡散面であっても面が傾いている
と、近い方に明るい輝点が生じ、誤差の原因となる。
(D) Even if the surface of the work is a diffusing surface, if the surface is inclined, bright luminescent spots are generated in the vicinity, which causes an error.

(e)ワークの形状変化が激しいと多重反射を生じ、輝
点が複数となる。
(E) If the shape of the workpiece changes drastically, multiple reflection occurs, and the number of bright spots becomes plural.

また、測定点に点光源を直接付加する従来手段では、上
述した(a),(d),(e)と同様の問題があるほ
か、点光源の位置が実際の表面から光源の大きさの半分
程度ずれ、誤差の原因となってしまうなどの課題もあ
る。
In addition, the conventional means for directly adding the point light source to the measurement point has the same problems as (a), (d), and (e) described above, and the position of the point light source varies from the actual surface to the size of the light source. There is also a problem such as a deviation of about half and causing an error.

更に、特開昭63−217205号公報に開示されている三次元
測定装置においては、1台の撮像装置により測定対称点
教示手段に設けた3個の点光源を撮影するものであるた
め、点光源の大きさは有限であり、しかも撮像装置で撮
影した点光源の解像度は有限であるので、計測作業中、
測定対称点教示手段上に指示点と共に1直線上に並んだ
3個の点光源を結ぶ軸線を、これを撮影する1台の撮像
装置の光軸と一致する方向に傾斜させていくと、測定誤
差は次第に増大する。特に誤差を生じる元となる点光源
を3個用いる結果、1個ずつの測定誤差が集積するた
め、上記のように傾斜を進めて行くと、最終的には実質
的に測定不能の状態となり、その測定不能の範囲は極め
て高精度の機器を使用してもかなりの範囲の死角を有す
ることになり、機具の使用中にもその点留意しつつ作業
を行わなければならない等の欠点を有するものである。
Furthermore, in the three-dimensional measuring device disclosed in Japanese Patent Laid-Open No. 217205/1988, since one image pickup device photographs three point light sources provided in the measuring symmetry point teaching means, Since the size of the light source is finite and the resolution of the point light source imaged by the imaging device is finite,
Measurement is performed by inclining the axis line connecting the three point light sources arranged in a straight line with the pointing point on the measurement symmetry point teaching means in a direction coinciding with the optical axis of one image pickup device for photographing this. The error gradually increases. In particular, as a result of using three point light sources that cause an error, measurement errors are accumulated one by one. Therefore, when the inclination is advanced as described above, finally, the measurement becomes substantially impossible. The unmeasurable range has a blind spot of a considerable range even if an extremely high-accuracy device is used, and it has a drawback that it is necessary to work while paying attention to that point even while using the equipment. Is.

本発明は、このような課題を解決しようとするもので、
測定対象ワークの穴内部,背面,側面、あるいはその表
面が鏡面,拡散面,反射率の大小に係らず測定を可能に
するとともに、測定精度の向上をはかった三次元位置測
定方式を提供することを目的とする。
The present invention is intended to solve such problems,
To provide a three-dimensional position measurement method that improves measurement accuracy while enabling measurement regardless of whether the inside, back, or side of the hole of the workpiece to be measured is a mirror surface, a diffusion surface, or the size of the reflectance. With the goal.

[課題を解決するための手段] 上記目的を達成するために、本発明の三次元位置測定方
式は、ステレオ画像を得るための少なくとも2台の撮像
装置と、該撮像装置からのステレオ画像に基づき三次元
位置を算出する演算手段と、測定対象点を指示する指示
点と該指示点に対し予め既知の固定的位置関係にある複
数の点光源とを有する測定対象点教示手段とをそなえ、
前記指示点により前記測定対象点を指示し前記複数の点
光源を点灯させた状態の前記測定対象点教示手段を前記
撮像装置により撮像し、前記演算手段が、前記撮像装置
からの前記複数の点光源のステレオ画像に基づき前記の
各点光源の三次元位置を演算し、得られた三次元位置と
前記固定的位置関係とに基づき前記指示点の三次元位置
を演算し、該三次元位置を前記測定対象点の三次元位置
として出力することを特徴としている。
[Means for Solving the Problems] In order to achieve the above object, the three-dimensional position measuring method of the present invention is based on at least two image pickup devices for obtaining a stereo image and a stereo image from the image pickup device. A calculation means for calculating a three-dimensional position, a measurement target point teaching means having a plurality of point light sources having a fixed point relationship known in advance with respect to the designated point for designating the measurement target point,
The measurement target point teaching means in the state where the measurement target point is designated by the designation point and the plurality of point light sources are turned on is imaged by the imaging device, and the arithmetic means is configured to detect the plurality of points from the imaging device. The three-dimensional position of each point light source is calculated based on the stereo image of the light source, the three-dimensional position of the designated point is calculated based on the obtained three-dimensional position and the fixed positional relationship, and the three-dimensional position is calculated. It is characterized in that it is output as a three-dimensional position of the measurement target point.

[作用] 上述した本発明の三次元位置測定方式では、測定対象点
の三次元位置を測定する際には、その測定対象点に、測
定対象点教示手段の指示点を接触配置し、この状態で測
定対象点教示手段の複数の点光源を点灯させ、その点光
源のステレオ画像を撮像装置により撮像する。
[Operation] In the above-described three-dimensional position measuring method of the present invention, when the three-dimensional position of the measurement target point is measured, the designated point of the measurement target point teaching means is arranged in contact with the measurement target point, and this state is set. Then, a plurality of point light sources of the measurement target point teaching means are turned on, and a stereo image of the point light sources is taken by the image pickup device.

そして、演算手段により、撮像装置からの複数の点光源
のステレオ画像に基づき、各点光源の三次元位置が演算
される。ここで、複数の点光源と指示点とは、予め既知
の固定的位置関係にあるので、複数の点光源の三次元位
置が分かるとその三次元位置に前記固定的位置関係を加
味することで、容易に指示点の三次元位置が演算され
る。そして、現ステレオ画像は、指示点で測定対象点を
指示した状態で得られたものであるので、指示点の三次
元位置は、そのまま測定対象点の三次元位置となってい
る。
Then, the calculation means calculates the three-dimensional position of each point light source based on the stereo images of the plurality of point light sources from the image pickup device. Here, since the plurality of point light sources and the pointing point have a known fixed positional relationship in advance, when the three-dimensional position of the plurality of point light sources is known, the fixed positional relationship is added to the three-dimensional position. , The three-dimensional position of the pointing point can be easily calculated. Since the current stereo image is obtained in a state in which the measurement target point is designated by the designation point, the three-dimensional position of the designation point is the three-dimensional position of the measurement target point as it is.

これにより、測定対象点のステレオ画像を直接撮像する
ことができなくても、測定対象点教示手段の複数の点光
源のステレオ画像が得られれば、その画像から測定対象
点の三次元位置を測定することができる。
Thereby, even if the stereo image of the measurement target point cannot be directly captured, if the stereo images of the plurality of point light sources of the measurement target point teaching means are obtained, the three-dimensional position of the measurement target point is measured from the image. can do.

[発明の実施例] 以下、図面により本発明の一実施例としての三次元位置
測定方式について説明すると、第1図はその説明図、第
2図その座標教示ペンを示す正面図、第3図は該座標教
示ペンの回路構成を示す回路図、第4図は本実施例の方
式の他の使用例を示す説明図である。
[Embodiment of the Invention] A three-dimensional position measuring system as one embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is an explanatory view thereof, FIG. 2 is a front view showing a coordinate teaching pen thereof, and FIG. Is a circuit diagram showing a circuit configuration of the coordinate teaching pen, and FIG. 4 is an explanatory diagram showing another example of use of the system of this embodiment.

第1図において、1,2はステレオ画像を得るための2台
のTVカメラ(撮像装置)、3はこれらのTVカメラ1,2か
らのステレオ画像の左右画像中の輝点ずれ(視差)に基
づいて三次元位置を算出する画像処理器(演算手段)、
4は三次元位置測定対象のワークで、このワーク4は、
TVカメラ1,2からは撮像不可能な凹部4aを有している。
In FIG. 1, 1 and 2 are two TV cameras (imaging devices) for obtaining a stereo image, and 3 is a bright spot shift (parallax) in the left and right images of the stereo images from these TV cameras 1 and 2. An image processor (calculating means) for calculating a three-dimensional position based on
4 is a work for measuring the three-dimensional position, and this work 4 is
The TV cameras 1 and 2 have a concave portion 4a that cannot be imaged.

5は座標教示ペン(測定対象点教示手段)で、この座標
教示ペン5は、第2,3図に示すように、ワーク4表面上
の測定対象点Pを指示する指示点6と、この指示点6に
対し予め既知の固定的位置関係にある4個のLED(点光
源)7と、指示点6を含むペン5の先端部において指示
点6がワーク4表面に接すると閉路状態になるスイッチ
8と、LED7点灯用の電源となる電池9と、LED7を覆うガ
ラスカバー10と、保護抵抗11とから構成されている。各
LED7は、第3図に示すように、相互に並列的に接続さ
れ、スイッチ8が閉路されると保護抵抗11を介して電池
9からの給電を受けて点灯するようになっている。ま
た、第2図に示すように、指示点6および各LED7はすべ
て座標教示ペン5の中心軸上に配置され、指示点6と最
下部のLED7との距離はl′、各LED7,7間の距離はlとな
っており、予め既知である。さらに、各LED7としては例
えば400μm角の大きさのものが用いられる。
Reference numeral 5 is a coordinate teaching pen (measurement target point teaching means). As shown in FIGS. 2 and 3, the coordinate teaching pen 5 is an instruction point 6 for instructing a measurement target point P on the surface of the work 4 and this instruction. Four LEDs (point light sources) 7 having a known fixed positional relationship with respect to the point 6, and a switch that is closed when the pointing point 6 contacts the surface of the work 4 at the tip of the pen 5 including the pointing point 6. 8, a battery 9 serving as a power source for lighting the LED 7, a glass cover 10 covering the LED 7, and a protective resistor 11. each
As shown in FIG. 3, the LEDs 7 are connected in parallel with each other, and when the switch 8 is closed, power is supplied from the battery 9 via the protection resistor 11 and the LEDs 7 are turned on. Further, as shown in FIG. 2, the pointing point 6 and each LED 7 are all arranged on the central axis of the coordinate teaching pen 5, the distance between the pointing point 6 and the LED 7 at the bottom is l ', and between each LED 7,7. Is 1 and is known in advance. Further, each LED 7 has a size of 400 μm square, for example.

上述の構成により、例えば、第1図に示すように、TVカ
メラ1,2からは直接撮像することのできないワーク4の
凹部4aにある測定対象点Pの三次元位置を測定する際に
は、まず、その測定対象点Pに、座標教示ペン5の指示
点6を接触配置する。座標教示ペン5の指示点6が、測
定対象点Pに対して接触ないし押し付けられると、スイ
ッチ8が閉じられ、座標教示ペン5の各LED7が点灯す
る。
With the configuration described above, for example, as shown in FIG. 1, when measuring the three-dimensional position of the measurement target point P in the concave portion 4a of the work 4 that cannot be directly imaged from the TV cameras 1 and 2, First, the pointing point 6 of the coordinate teaching pen 5 is placed in contact with the measurement target point P. When the designated point 6 of the coordinate teaching pen 5 contacts or is pressed against the measurement target point P, the switch 8 is closed and each LED 7 of the coordinate teaching pen 5 is turned on.

このようにして各LED7を点灯させた状態で、LED7を含む
座標教示ペン5のステレオ画像をTVカメラ1,2により撮
像する。
In this way, the stereo images of the coordinate teaching pen 5 including the LEDs 7 are captured by the TV cameras 1 and 2 while the LEDs 7 are turned on.

その撮像結果は画像処理器3へ入力され、この画像処理
器3においては、LED7のステレオ画像の左右画像中にお
ける輝点視差に基づいて、各LED7の三次元位置が演算さ
れる。
The image pickup result is input to the image processor 3, and the image processor 3 calculates the three-dimensional position of each LED 7 based on the bright spot parallax in the left and right images of the stereo image of the LED 7.

更に、各LED7と指示点6とは、第2図により前述した通
り予め既知の固定的位置関係にあるので、各LED7の三次
元位置が分かるとその三次元位置にその固定的位置関係
を加味することで、TVカメラ1,2では直接撮像すること
のできない位置にある指示点6の三次元位置(三次元座
標)、即ち、測定対象点Pの三次元位置(三次元座標)
が容易に演算される。
Further, since each LED 7 and the pointing point 6 have a known fixed positional relationship as described above with reference to FIG. 2, when the three-dimensional position of each LED 7 is known, the fixed positional relationship is added to the three-dimensional position. By doing so, the three-dimensional position (three-dimensional coordinate) of the pointing point 6 at a position where the TV cameras 1 and 2 cannot directly image, that is, the three-dimensional position (three-dimensional coordinate) of the measurement target point P
Is easily calculated.

ところで、上述した座標教示ペン5を、第4図に示すよ
うに、机上で平面的に並進移動させることにより、従来
のディジタイザやマウスと類似の二次元座標入力器とし
て用いることもできる。また、上述した座標教示ペン5
を用い、複数個のLED7の三次元位置を求めれば、これら
の三次元位置からペン5の中心軸の方向をもつ も算出することが可能で、従来のジョイスティックと類
似の機能を得ることもできる。このような2種の機能を
組み合わせると、人間の空間感覚に合致した「三次元座
標+方向」という情報をコンピュータと交換できるた
め、新しいマンマシンインターフェイス機器として有効
に利用できる。
By the way, the coordinate teaching pen 5 described above can be used as a two-dimensional coordinate input device similar to a conventional digitizer or a mouse by moving the coordinate teaching pen 5 in a plane translation on a desk as shown in FIG. In addition, the coordinate teaching pen 5 described above
If the three-dimensional position of a plurality of LEDs 7 is obtained by using, the direction of the central axis of the pen 5 is determined from these three-dimensional positions. Can also be calculated, and a function similar to that of a conventional joystick can be obtained. When these two types of functions are combined, the information "three-dimensional coordinates + direction" that matches the human sense of space can be exchanged with the computer, and can be effectively used as a new man-machine interface device.

このように、本実施例の測定方式によれば、測定対象点
Pのステレオ画像を直接撮像することができなくても、
座標教示ペン5の各LED7のステレオ画像が得られれば、
その画像から測定対象点Pの三次元位置を求めることが
できるので、ワーク4の穴内部,背面,側面、あるいは
その表面が鏡面,拡散面,反射率の大小に係らず表面の
三次元位置の測定が可能になるほか、LED7の個数を増す
ことで測定精度を大幅に向上することができる。
As described above, according to the measurement method of the present embodiment, even if the stereo image of the measurement target point P cannot be directly captured,
If a stereo image of each LED 7 of the coordinate teaching pen 5 is obtained,
Since the three-dimensional position of the measurement target point P can be obtained from the image, the three-dimensional position of the surface of the workpiece 4 regardless of whether the inside, the back surface, the side surface, or the surface thereof is a mirror surface, a diffusing surface, or the reflectance is large or small. In addition to enabling measurement, increasing the number of LEDs 7 can significantly improve the measurement accuracy.

また、本実施例の測定方式における座標教示ペン5は、
コンピュータとのマンマシンインターフェイス機器とし
て、従来のマウスのような二次元ディジタイザよりも一
次元情報量の多い三次元ディジタイザ機器として利用で
き、その場合、人間のもつ空間感覚と整合性の高いマン
マシンインターフェイスを実現することができる。
Further, the coordinate teaching pen 5 in the measuring method of the present embodiment is
As a man-machine interface device with a computer, it can be used as a three-dimensional digitizer device that has more one-dimensional information than a conventional two-dimensional digitizer such as a mouse. In that case, a man-machine interface that is highly consistent with the human sense of space. Can be realized.

なお、上記実施例では、座標教示ペン5のLED7を4個そ
なえた場合について説明しているが、最低限2個のLED
があれば上述した実施例と同様の機能を得ることができ
る。また、座標やベクトルの検出精度を向上するために
多数個のLEDを配置してもよい。さらに、上記実施例で
は、各LED7を直線に配置した場合について説明している
が、指示点6との固定的位置関係が明確であれば、各LE
D7はどのように配置してもよい。
In the above embodiment, the coordinate teaching pen 5 has four LEDs 7, but at least two LEDs are required.
If so, it is possible to obtain the same function as that of the above-described embodiment. Further, a large number of LEDs may be arranged in order to improve the detection accuracy of coordinates and vectors. Further, in the above embodiment, the case where the LEDs 7 are arranged in a straight line has been described, but if the fixed positional relationship with the pointing point 6 is clear, each LE 7
D7 may be arranged in any way.

また、上述の実施例では、各点光源の三次元位置を得る
ために、2台の撮像装置でステレオ画像を撮像し、画像
処理器で画像処理により演算する方式を開示している
が、2台の撮像装置の代わりに2台の光点位置検出器を
用いると、画像処理器を要することなく簡単な演算で各
点光源の三次元位置を求めることも可能である。ただ
し、光点位置検出器は同時に複数の点光源を扱えないた
め、その場合には、各点光源を時系列的に点灯させるこ
とが必要になる。
In addition, in the above-mentioned embodiment, in order to obtain the three-dimensional position of each point light source, a stereo image is picked up by two image pickup devices, and an image processing unit performs an image processing operation. If two light spot position detectors are used instead of the single image pickup device, it is possible to obtain the three-dimensional position of each point light source by a simple calculation without using an image processor. However, since the light spot position detector cannot handle a plurality of point light sources at the same time, in that case, it is necessary to turn on each point light source in time series.

[発明の効果] 以上詳述したように、本発明の三次元位置測定方式によ
れば、測定対象点のステレオ画像を直接撮像することが
できなくても、測定対象点教示手段の点光源のステレオ
画像を撮像することで、そのステレオ画像に基づいて測
定対象点の三次元位置を測定できるように構成したの
で、測定対象ワークの穴内部,背面,側面、あるいはそ
の表面が鏡面,拡散面,反射率の大小に係らず測定を行
なえるとともに、測定精度が大幅に向上するなどの効果
がある。
[Effect of the Invention] As described in detail above, according to the three-dimensional position measuring method of the present invention, even if the stereo image of the measurement target point cannot be directly captured, By capturing a stereo image, the three-dimensional position of the measurement target point can be measured based on the stereo image, so that the inside, back, and side of the hole of the measurement target work, or its surface is a mirror surface, a diffusion surface, The measurement can be performed regardless of the magnitude of the reflectance, and the measurement accuracy is significantly improved.

また、点光源は2個で充分であり、しかもその各点光源
を2台の撮像装置によりステレオ画像として撮像するた
め、測定対称点教示手段のいかなる傾斜に対しても許容
できない誤差を生ずる範囲が存在せず、使用範囲が広く
なり、計測作業が容易となり、特に、測点対称ワークの
穴内部が複雑に変化している場合においても広範囲にわ
たって容易に計測することができる。しかも計測誤差を
生じる点光源が少なくてすみ、このように計測誤差が少
ないものを更に精度を向上するために、3個、4個、…
と多くの点光源を設けることができる。
Also, two point light sources are sufficient, and since each of the point light sources is imaged as a stereo image by two image pickup devices, there is a range in which an error that cannot be tolerated for any inclination of the measurement symmetry point teaching means occurs. Since it does not exist, the range of use becomes wider, the measurement work becomes easier, and particularly, even in the case where the inside of the hole of the point-symmetrical work changes intricately, the measurement can be easily performed over a wide range. Moreover, the number of point light sources that cause measurement errors is small, and in order to further improve the accuracy of such a light source with few measurement errors, three, four, ...
And many point light sources can be provided.

【図面の簡単な説明】[Brief description of drawings]

第1〜4図は本発明の一実施例としての三次元位置測定
方式を示すもので、第1図はその説明図、第2図その座
標教示ペンを示す正面図、第3図は該座標教示ペンの回
路構成を示す回路図、第4図は本実施例の方式の他の使
用例を示す説明図である。 図において、1,2……TVカメラ(撮像装置)、3……画
像処理器(演算手段)、4……ワーク、4a……凹部、5
……座標教示ペン(測定対象点教示手段)、6……指示
点、7……LED(点光源)、8……スイッチ、9……電
池、10……ガラスカバー、11……保護抵抗、P……測定
対象点。
1 to 4 show a three-dimensional position measuring method as an embodiment of the present invention. FIG. 1 is an explanatory view thereof, FIG. 2 is a front view showing a coordinate teaching pen thereof, and FIG. FIG. 4 is a circuit diagram showing the circuit configuration of the teaching pen, and FIG. 4 is an explanatory diagram showing another example of use of the system of this embodiment. In the figure, 1,2 ... TV camera (imaging device), 3 ... Image processor (calculation means), 4 ... Work, 4a ... Recessed portion, 5
...... Coordinate teaching pen (measurement point teaching means), 6 ... designating point, 7 ... LED (point light source), 8 ... switch, 9 ... battery, 10 ... glass cover, 11 ... protection resistance, P: Point to be measured.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】ステレオ画像を得るための少なくとも2台
の撮像装置と、該撮像装置からのステレオ画像に基づい
て三次元位置を算出する演算手段とがそなえられるとと
もに、 測定対象点を指示する指示点と該指示点に対して予め既
知の固定的位置関係にある複数の点光源とを有してなる
測定対象点教示手段がそなえられ、 前記指示点により前記測定対象点を指示して前記複数の
点光源を点灯させた状態の前記測定対象点教示手段を、
前記撮像装置により撮像し、 前記演算手段が、前記撮像装置により撮像された前記複
数の点光源のステレオ画像に基づいて、前記の各点光源
の三次元位置を演算し、得られた前記の各点光源の三次
元位置と前記予め既知の固定的位置関係とに基づいて、
前記指示点の三次元位置を演算し、得られた該指示点の
三次元位置を前記測定対象点の三次元位置として出力す
ることを特徴とする三次元位置測定方式。
1. At least two image pickup devices for obtaining a stereo image and arithmetic means for calculating a three-dimensional position based on the stereo image from the image pickup device are provided, and an instruction for indicating a measurement target point. There is provided a measuring point teaching means comprising a point and a plurality of point light sources having a fixed positional relationship known in advance with respect to the pointing point. The point-to-measurement target teaching means in a state where the point light source of
An image is captured by the image capturing device, and the computing unit computes a three-dimensional position of each of the point light sources based on a stereo image of the plurality of point light sources captured by the image capturing device. Based on the three-dimensional position of the point light source and the previously known fixed positional relationship,
A three-dimensional position measuring method, which calculates a three-dimensional position of the pointing point and outputs the obtained three-dimensional position of the pointing point as a three-dimensional position of the measurement target point.
JP2053770A 1990-03-07 1990-03-07 Three-dimensional position measurement method Expired - Lifetime JPH0769144B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2053770A JPH0769144B2 (en) 1990-03-07 1990-03-07 Three-dimensional position measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2053770A JPH0769144B2 (en) 1990-03-07 1990-03-07 Three-dimensional position measurement method

Publications (2)

Publication Number Publication Date
JPH03255910A JPH03255910A (en) 1991-11-14
JPH0769144B2 true JPH0769144B2 (en) 1995-07-26

Family

ID=12952052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2053770A Expired - Lifetime JPH0769144B2 (en) 1990-03-07 1990-03-07 Three-dimensional position measurement method

Country Status (1)

Country Link
JP (1) JPH0769144B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10132562A (en) * 1996-10-31 1998-05-22 Nippon Denki Ido Tsushin Kk Distance measuring equipment
DE102005048812B4 (en) * 2005-10-10 2011-02-10 Universität Stuttgart Control of workpiece-processing machines
US20150379701A1 (en) * 2013-02-04 2015-12-31 Dnv Gl Se Inspection camera unit, method for inspecting interiors, and sensor unit
TWI643092B (en) * 2016-08-10 2018-12-01 Giant Manufacturing Co., Ltd. Dynamic motion detection system

Also Published As

Publication number Publication date
JPH03255910A (en) 1991-11-14

Similar Documents

Publication Publication Date Title
US6256099B1 (en) Methods and system for measuring three dimensional spatial coordinates and for external camera calibration necessary for that measurement
US7242818B2 (en) Position and orientation sensing with a projector
CN108965690B (en) Image processing system, image processing apparatus, and computer-readable storage medium
US7433024B2 (en) Range mapping using speckle decorrelation
TWI498580B (en) Length measuring method and length measuring apparatus
EP3322959B1 (en) Method for measuring an artefact
JP2001148025A5 (en)
JPH08210812A (en) Length measuring instrument
JP2007093412A (en) Three-dimensional shape measuring device
JP6528964B2 (en) INPUT OPERATION DETECTING DEVICE, IMAGE DISPLAY DEVICE, PROJECTOR DEVICE, PROJECTOR SYSTEM, AND INPUT OPERATION DETECTING METHOD
WO2015159835A1 (en) Image processing device, image processing method, and program
Yamauchi et al. Calibration of a structured light system by observing planar object from unknown viewpoints
JP6043974B2 (en) Three-dimensional position measuring device, three-dimensional measuring device, and three-dimensional position measuring program
JPH0769144B2 (en) Three-dimensional position measurement method
JP2000205821A (en) Instrument and method for three-dimensional shape measurement
US20220357153A1 (en) Calibration method for computer vision system and three-dimensional reference object for use in same
JPH06207812A (en) Measurement point indicator for three-dimensional measurement
JP2009199247A (en) Object recognition apparatus, indicating device and program
JP4449051B2 (en) 3D motion measurement method and 3D motion measurement apparatus for an object
US11644303B2 (en) Three-dimensional coordinate measuring instrument coupled to a camera having a diffractive optical element
JPH0843044A (en) Measuring apparatus for three dimensional coordinate
RU2065133C1 (en) Method of automated measurement of coordinates of points of external medium to plot its three-dimensional model in stereo television system of technical vision
US20240123611A1 (en) Robot simulation device
JPH05329793A (en) Visual sensor
KR20170137495A (en) 3-dimensional measuring system