JPH0764118A - Magnetic field optical device and driving method therefor - Google Patents

Magnetic field optical device and driving method therefor

Info

Publication number
JPH0764118A
JPH0764118A JP21423193A JP21423193A JPH0764118A JP H0764118 A JPH0764118 A JP H0764118A JP 21423193 A JP21423193 A JP 21423193A JP 21423193 A JP21423193 A JP 21423193A JP H0764118 A JPH0764118 A JP H0764118A
Authority
JP
Japan
Prior art keywords
magnetic field
liquid crystal
optical device
display
field optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21423193A
Other languages
Japanese (ja)
Inventor
Takao Furusato
孝雄 古里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP21423193A priority Critical patent/JPH0764118A/en
Publication of JPH0764118A publication Critical patent/JPH0764118A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PURPOSE:To display a picture with little temporal change and to reduce power consumption in liquid crystal display. CONSTITUTION:Liquid crystal 23 constituting plural picture elements is sealed between upper and lower substrates 21 and 22, and ferromagnetic substances 24A and 24B controlling the direction of the director of a liquid crystal molecule 23a are arranged for the respective picture elements. The liquid crystal cell 26 is arranged between two polarizing plates 27 and 28.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、磁界によって液晶の光
学的性質を変化させて、例えば画像表示、その他等の機
能をもたせた磁界光学装置及びその駆動方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic field optical device in which the optical properties of liquid crystal are changed by a magnetic field to provide functions such as image display and the like, and a driving method thereof.

【0002】[0002]

【従来の技術】表示装置として液晶ディスプレイが知ら
れている。従来の液晶ディスプレイは、図6及び図7の
原理的構成図に示すように、夫々内面に電極1及び2を
有し、配向処理の施された透明の上部基板3及び下部基
板4間に液晶5が封入され、両電極1及び2間に電圧を
印加することによって生ずる電界Eによって液晶分子5
aのディレクタ方向(液晶方向)6を制御して光透過を
オン・オフ制御して所望の表示を行うように構成されて
いる。
2. Description of the Related Art A liquid crystal display is known as a display device. As shown in the principle configuration diagrams of FIGS. 6 and 7, a conventional liquid crystal display has electrodes 1 and 2 on the inner surface thereof, respectively, and a liquid crystal is provided between a transparent upper substrate 3 and a lower substrate 4 which are subjected to an alignment treatment. 5, liquid crystal molecules 5 are enclosed by an electric field E generated by applying a voltage between both electrodes 1 and 2.
By controlling the director direction (liquid crystal direction) 6 of a, the light transmission is turned on / off to perform a desired display.

【0003】同図示の例はツイストネマティック型液晶
を用いたノーマリーホワイト型の液晶ディスプレイであ
り、上下基板3及び4間に液晶分子5aのディレクタ方
向6が90°捩じれるようにツイストネマティック型液
晶5を封入してなる液晶セル7を、直交ニコルとなるよ
うに配した2枚の偏光板8及び9間に配置して構成され
る。
The example shown in the figure is a normally white type liquid crystal display using a twisted nematic type liquid crystal, and the twisted nematic type liquid crystal is arranged so that the director direction 6 of the liquid crystal molecules 5a is twisted by 90 ° between the upper and lower substrates 3 and 4. A liquid crystal cell 7 enclosing 5 is arranged between two polarizing plates 8 and 9 arranged so as to form a crossed Nicols.

【0004】この構成では、液晶セル7に電界Eを加え
ないと光10が透過し、電界Eを加えると図7に示すよ
うに液晶分子5aのディレクタ方向6が電界Eの方向に
沿い光10が透過しないことによって、透光性の地に暗
黒像を表示する。
In this structure, the light 10 is transmitted when the electric field E is not applied to the liquid crystal cell 7, and when the electric field E is applied, the director direction 6 of the liquid crystal molecules 5a follows the direction of the electric field E as shown in FIG. Is not transmitted, a dark image is displayed on a transparent ground.

【0005】[0005]

【発明が解決しようとする課題】ところで、上述した従
来の液晶ディスプレイ11は、電界Eによる制御のため
に、消費電力が大きく、又受像機等の時間的変化が早い
動画像表示に適すのでOHP(Over Head P
rojector)等の時間的変化がない、いわゆる静
止画像表示への転用に不向きであった。
By the way, the above-mentioned conventional liquid crystal display 11 consumes a large amount of power because of the control by the electric field E, and is suitable for a moving image display such as a receiver which has a rapid temporal change. (Overhead P
It is unsuitable for diversion to so-called still image display, in which there is no temporal change such as projector).

【0006】本発明は、上述の点に鑑み、消費電力の低
減及び時間的変化の少ない画像表示等を可能にした磁界
光学装置及びその駆動方法を提供するものである。
In view of the above points, the present invention provides a magnetic field optical device and a driving method thereof which are capable of reducing power consumption and displaying images with little temporal change.

【0007】[0007]

【課題を解決するための手段】本発明に係る磁界光学装
置は、上下基板21及び22間に複数の画素を構成する
液晶23を封入し、各画素に液晶分子23aのディレク
タ方向25を制御するための磁界発生部材24〔24
A,24B〕を設けて構成する。
In a magnetic field optical device according to the present invention, liquid crystal 23 constituting a plurality of pixels is enclosed between upper and lower substrates 21 and 22, and a director direction 25 of liquid crystal molecules 23a is controlled in each pixel. Magnetic field generating member 24 [24
A, 24B] are provided.

【0008】磁界発生部材24としては、例えばSN着
磁により磁界を発生させる磁性体を用いることができ
る。
As the magnetic field generating member 24, for example, a magnetic body for generating a magnetic field by SN magnetization can be used.

【0009】本発明に係る磁界光学装置の駆動方法は、
上下基板21及び22間に複数の画素を構成する液晶2
3を封入し、各画素に磁界発生部材24〔24A,24
B〕を設けてなる磁界光学装置29に対して、外部の磁
界印加手段31により上記磁界発生部材24を着磁し、
この着磁により発生した磁界Hによって各画素の液晶分
子23aのディレクタ方向25を制御するようになす。
A method of driving a magnetic field optical device according to the present invention comprises:
A liquid crystal 2 that constitutes a plurality of pixels between the upper and lower substrates 21 and 22.
3, and a magnetic field generating member 24 [24A, 24
B], the magnetic field generating device 24 is magnetized by an external magnetic field applying means 31 to the magnetic field optical device 29.
The magnetic field H generated by this magnetization controls the director direction 25 of the liquid crystal molecules 23a of each pixel.

【0010】外部の磁界印加手段31としては、磁気ヘ
ッド、或はレーザ光と磁気ヘッドからなる磁界変調オー
バーライト方式による磁気記録手段を用いることが可能
である。
As the external magnetic field applying means 31, it is possible to use a magnetic head or a magnetic recording means of a magnetic field modulation overwriting system composed of a laser beam and a magnetic head.

【0011】[0011]

【作用】本発明の磁界光学装置29においては、上下基
板21及び22間に複数の画素を構成する液晶23を封
入し、各画素に液晶分子23aのディレクタ方向25を
制御するための磁界発生部材24を設けることによっ
て、液晶23の光学的性質が磁界Hによって制御され
る。
In the magnetic field optical device 29 of the present invention, the liquid crystal 23 constituting a plurality of pixels is enclosed between the upper and lower substrates 21 and 22, and the magnetic field generating member for controlling the director direction 25 of the liquid crystal molecules 23a in each pixel. By providing 24, the optical properties of the liquid crystal 23 are controlled by the magnetic field H.

【0012】このため、低消費電力による画像表示が可
能となり、また静止画像等の時間的変化の少ない画像表
示が可能となる。
Therefore, it is possible to display an image with low power consumption, and it is possible to display an image such as a still image with little temporal change.

【0013】本発明の磁界光学装置の駆動方法において
は、外部における磁界印加手段31で磁界光学装置29
内の磁界発生部材24を着磁し、之による磁界Hで各画
素の液晶分子23aのディレクタ方向25を制御するの
で、時間的変化のない静止画像表示が可能となる。
In the method of driving the magnetic field optical device according to the present invention, the magnetic field applying device 31 is provided outside the magnetic field optical device 29.
Since the magnetic field generating member 24 in the inside is magnetized and the director direction 25 of the liquid crystal molecule 23a of each pixel is controlled by the magnetic field H, the still image display which does not change with time becomes possible.

【0014】磁界発生部材24に対して外部からの着磁
及び消去により、表示の消去及び再表示が可能である。
It is possible to erase and redisplay the display by externally magnetizing and erasing the magnetic field generating member 24.

【0015】磁界保持により表示が可能であるため、従
来の常時電界を印加する必要がない。従って、電力消費
は外部の磁界印加手段に通電して表示の書き込み時のみ
であり、消費電力の低減化が図れる。
Since the display is possible by holding the magnetic field, it is not necessary to apply a constant electric field as in the prior art. Therefore, power is consumed only when the external magnetic field applying means is energized to write a display, and the power consumption can be reduced.

【0016】[0016]

【実施例】以下、図1〜図4を参照して本発明の実施例
を説明する。
Embodiments of the present invention will be described below with reference to FIGS.

【0017】図1及び図2は原理的構成を示す。本例に
おいては、夫々透明の上部基板21及び下部基板22間
に複数の画素を構成するように液晶、例えばツイストネ
マティック型液晶23を封入すると共に、図3に示すよ
うに、一方の基板例えば下部基板22の内面の各画素2
5に対応する領域の相対向する両側に例えば強磁性体2
4〔24A,24B〕を配置する。
FIGS. 1 and 2 show the principle configuration. In this example, a liquid crystal, for example, a twisted nematic liquid crystal 23 is sealed so as to form a plurality of pixels between transparent upper substrate 21 and lower substrate 22, respectively, and as shown in FIG. Each pixel 2 on the inner surface of the substrate 22
On both sides of the region corresponding to 5 facing each other, for example, the ferromagnetic material 2
4 [24A, 24B] are arranged.

【0018】上部基板21及び下部基板22の内面に
は、夫々配向処理が施され、即ち、例えばラビング方向
aが互に直交するようなラビング処理が施される。従っ
て、上部基板21と下部基板22との間のツイストネマ
ティック型液晶23は、液晶分子23aのディレクタ方
向25が捩じれるように封入される。従って、強磁性体
24〔24A,24B〕は、下部基板22側の液晶分子
23aのディレクタ方向25と直交する方向に相対向し
て配置される。
The inner surfaces of the upper substrate 21 and the lower substrate 22 are subjected to an orientation treatment, that is, for example, a rubbing treatment in which the rubbing directions a are orthogonal to each other. Therefore, the twisted nematic liquid crystal 23 between the upper substrate 21 and the lower substrate 22 is sealed so that the director direction 25 of the liquid crystal molecules 23a is twisted. Therefore, the ferromagnetic bodies 24 [24A, 24B] are arranged to face each other in the direction orthogonal to the director direction 25 of the liquid crystal molecules 23a on the lower substrate 22 side.

【0019】そして、この液晶セル26を例えば直交ニ
コルとなる2枚の偏光板27及び28間に配置して磁界
光学装置29を構成する。
The liquid crystal cell 26 is arranged between two polarizing plates 27 and 28 which are, for example, crossed Nicols to form a magnetic field optical device 29.

【0020】ところで、液晶は一般に反磁性を示す。磁
化率異方性を持つ液晶に直流磁場Hを印加すると、磁気
的エネルギー密度fmが生じる。
Liquid crystals generally exhibit diamagnetism. When a DC magnetic field H is applied to liquid crystal having magnetic susceptibility anisotropy, magnetic energy density fm is generated.

【0021】[0021]

【数1】 [Equation 1]

【0022】ある強さを越える磁場Hを印加すると、そ
の液晶分子軸が磁場方向に平行になるように、液晶分子
は配列する。
When a magnetic field H exceeding a certain strength is applied, the liquid crystal molecules are aligned so that their liquid crystal molecule axes are parallel to the magnetic field direction.

【0023】次に、上述した構成の磁界光学装置29の
動作を説明する。
Next, the operation of the magnetic field optical device 29 having the above configuration will be described.

【0024】この装置29では、強磁性体24A,24
Bを消磁させて下部基板22の面方向の磁界を発生させ
ないようにすれば、下部基板22側の液晶分子23aの
ディレクタ方向25が図1及び図3に示すようにラビン
グ方向に沿い、直線偏光の光30が偏光板27を透過す
る。
In this device 29, the ferromagnetic materials 24A, 24
If B is demagnetized so that a magnetic field in the surface direction of the lower substrate 22 is not generated, the director direction 25 of the liquid crystal molecules 23a on the lower substrate 22 side is along the rubbing direction as shown in FIGS. Light 30 passes through the polarizing plate 27.

【0025】次に、図2及び図4に示すように、外部か
ら磁界印加手段31により、画素25に対応する対の強
磁性体24A及び24Bを夫々S極及びN極となるよう
に着磁することにより、之からの磁束によって下部基板
23のラビング方向aと直交する方向の磁界Hが発生す
る。この磁界Hにより、下部基板22側の液晶分子23
aのディレクタ方向25が変化し、即ち磁界H方向に平
行となるように分子軸が配向(つまり上部基板21側の
液晶分子23aと同方向に配向)し、直線偏光の光30
は偏光板27により遮られ、透過しない。
Next, as shown in FIGS. 2 and 4, the pair of ferromagnetic bodies 24A and 24B corresponding to the pixel 25 are magnetized by the magnetic field applying means 31 from the outside so that the pair of ferromagnetic bodies 24A and 24B become the S pole and the N pole, respectively. By doing so, a magnetic field H in a direction orthogonal to the rubbing direction a of the lower substrate 23 is generated by the magnetic flux from the outside. Due to this magnetic field H, liquid crystal molecules 23 on the lower substrate 22 side
The director direction 25 of a changes, that is, the molecular axis is aligned (that is, aligned in the same direction as the liquid crystal molecules 23a on the upper substrate 21 side) so as to be parallel to the magnetic field H direction, and linearly polarized light 30
Is blocked by the polarizing plate 27 and does not pass through.

【0026】従って、各画素毎に選択的に強磁性体24
A,24Bを着磁させることにより、所要の画像を表示
することができる。そして、強磁性体24A,24Bを
消磁して磁界Hを無くせば、表示を消去することがで
き、次の再表示が可能となる。
Therefore, the ferromagnetic material 24 is selectively applied to each pixel.
A desired image can be displayed by magnetizing A and 24B. Then, by demagnetizing the ferromagnetic bodies 24A and 24B to eliminate the magnetic field H, the display can be erased and the next re-display can be performed.

【0027】強磁性体24〔24A,24B〕を着磁す
るための磁界印加手段31としては、磁気ヘッド、又は
既知のレーザ光と磁気ヘッドからなる磁界変調オーバー
ライト方式の磁気記録手段等を用いることができる。
As the magnetic field applying means 31 for magnetizing the ferromagnetic body 24 [24A, 24B], a magnetic head, or a magnetic recording means of a magnetic field modulation overwrite type including a known laser beam and a magnetic head is used. be able to.

【0028】特に、磁界変調オーバーライト方式の磁気
記録手段を用いれば、微小な強磁性体24〔24A,2
4B〕に対して精度よく選択的にS,N着磁、又は消磁
を行うことができる。
Particularly, if the magnetic recording means of the magnetic field modulation overwrite system is used, the minute ferromagnetic material 24 [24A, 2
4B], it is possible to accurately and selectively perform S, N magnetization or demagnetization.

【0029】上述の磁界光学装置29によれば、磁界に
よって各画素の光透過を制御するので、時間的変化の少
ない画像表示、例えば静止画像表示を行うことができ
る。
According to the above-mentioned magnetic field optical device 29, the light transmission of each pixel is controlled by the magnetic field, so that it is possible to perform image display with little temporal change, for example, still image display.

【0030】また、強磁性体24の着磁にもとづいて磁
界保持により表示が可能なため、常時電力を与えること
がなく、消費電力は表示書き込み時の外部の磁界印加手
段31への通電のみでよい。従って、装置29における
消費電力を大幅に低減することができる。
Further, since the display can be performed by holding the magnetic field based on the magnetization of the ferromagnetic material 24, power is not always applied, and power consumption can be achieved only by energizing the external magnetic field applying means 31 when writing the display. Good. Therefore, the power consumption of the device 29 can be significantly reduced.

【0031】そして、液晶セル26における複数の画素
をマトリックス状に配列した上記磁界光学装置29は、
表示装置、いわゆる液晶ディスプレイとして用いること
ができる。現状での液晶ディスプレイにおける各画素の
開口率は、30%程度であるため、残りの70%の領域
に強磁性体24を配置することが可能となり、液晶ディ
スプレイとして十分対応できる。
The magnetic field optical device 29 in which a plurality of pixels in the liquid crystal cell 26 are arranged in a matrix is
It can be used as a display device, a so-called liquid crystal display. Since the aperture ratio of each pixel in the current liquid crystal display is about 30%, it is possible to dispose the ferromagnetic material 24 in the remaining 70% region, which is sufficiently applicable as a liquid crystal display.

【0032】上述の磁界光学装置29は、強磁性体24
に外部からの磁界をかけ易くするように全体を薄くし、
弯曲等変形可能な構成とすることができる。
The magnetic field optical device 29 described above includes a ferromagnetic material 24.
To make it easier to apply a magnetic field from the outside, make the whole thin,
It is possible to have a deformable structure such as a curve.

【0033】この磁界光学装置29は、下部基板22側
より光30を投射し透過型とすることにより、OHP用
紙として応用できる。
This magnetic field optical device 29 can be applied as OHP paper by projecting light 30 from the lower substrate 22 side and making it a transmission type.

【0034】また、例えば下部基板22側の偏光板28
の外面に反射板を付加し、上部基板21の外面に各画素
に開口部を有する遮光板を配し、上部基板21の偏光板
27側から光30を投射し、光30の反射の有無を制御
することによりコピー用紙等の紙として応用できる。な
お、コピー機側では外部の磁界印加手段が設けられる。
また、ホワイトボード等の表示板への応用も可能であ
る。
Further, for example, the polarizing plate 28 on the lower substrate 22 side
A reflection plate is added to the outer surface of the upper substrate 21, and a light-shielding plate having an opening in each pixel is arranged on the outer surface of the upper substrate 21. The light 30 is projected from the polarizing plate 27 side of the upper substrate 21 to determine whether the light 30 is reflected. By controlling, it can be applied as paper such as copy paper. An external magnetic field applying means is provided on the copy machine side.
It can also be applied to a display board such as a whiteboard.

【0035】更に、この磁界光学装置29は、窓のブラ
インド、カーテン等への応用も可能である。
Further, the magnetic field optical device 29 can be applied to window blinds, curtains and the like.

【0036】尚、上例では、図3に示すように、下部基
板22の両側に1対の強磁性体24A及び24Bを配し
た構成としたが、その他、上部基板21側はラビング処
理を施すも、下部基板22側にはラビング処理を施さ
ず、図5に示すように各画素毎に下部基板22上の左右
両側に対をなす強磁性体24〔24A,24B〕を配す
ると共に、上下両側にも対をなす他の強磁性体33〔3
3A,33B〕を配置し、夫々の強磁性体24及び33
を選択的に着磁、消磁することによって液晶分子23a
のディレクタ方向を制御するように構成することもでき
る。即ち、強磁性体24を消磁し、強磁性体33をS,
N着磁すれば、下部基板22側の液晶分子23aは実線
図示のように配向し、光は透過し、強磁性体24をS,
N着磁し、強磁性体33を消磁すれば、下部基板側の液
晶分子23aは鎖線図示のように配向し、光は透過しな
い。
In the above example, as shown in FIG. 3, a pair of ferromagnetic bodies 24A and 24B are arranged on both sides of the lower substrate 22, but the upper substrate 21 side is also rubbed. Also, the lower substrate 22 side is not subjected to rubbing treatment, and as shown in FIG. 5, a pair of ferromagnetic bodies 24 [24A, 24B] are arranged on the left and right sides of the lower substrate 22 for each pixel, and Other ferromagnetic materials 33 [3 paired on both sides
3A, 33B] and the respective ferromagnetic bodies 24 and 33 are arranged.
Liquid crystal molecules 23a by selectively magnetizing and demagnetizing
Can also be configured to control the director direction of the. That is, the ferromagnetic material 24 is demagnetized, the ferromagnetic material 33 is changed to S,
When magnetized N, the liquid crystal molecules 23a on the lower substrate 22 side are oriented as shown by the solid line, light is transmitted, and the ferromagnetic material 24 is moved to S,
When N is magnetized and the ferromagnetic body 33 is demagnetized, the liquid crystal molecules 23a on the lower substrate side are oriented as shown by the chain line and light is not transmitted.

【0037】従って、図3のように下部基板22にラビ
ングを施して液晶分子の配向を行った場合に、下部基板
22のラビングの力が強すぎて強磁性体24A及び24
Bによる磁界Hでは液晶分子23aのディレクタ方向の
制御ができにくいという懼れが生じるも、図5の構成で
は、このような心配はなく、下部基板22側の液晶分子
23aディレクタ方向を容易、且つ確実に制御できる。
Therefore, when the lower substrate 22 is rubbed to orient the liquid crystal molecules as shown in FIG. 3, the rubbing force of the lower substrate 22 is too strong and the ferromagnetic materials 24A and 24A.
Although the magnetic field H generated by B may make it difficult to control the director direction of the liquid crystal molecules 23a, in the configuration of FIG. 5, there is no such concern, and the director direction of the liquid crystal molecules 23a on the lower substrate 22 side is easy and It can be controlled reliably.

【0038】[0038]

【発明の効果】本発明に係る磁界光学装置によれば、例
えば静止画像等の時間的変化の少ない画像表示を行うこ
とができ、且つ表示に際しての消費電力を大幅に低減す
ることができる。従って、表示装置、表示板等に適用す
ることができる。
According to the magnetic field optical device of the present invention, it is possible to display an image such as a still image with little temporal change, and it is possible to greatly reduce the power consumption during display. Therefore, it can be applied to a display device, a display board, and the like.

【0039】また、装置全体を薄く作成するときは、O
HP用紙、コピー用紙としての応用も可能となり、さら
に窓のブラインド、カーテンとしての応用も可能とな
る。
When making the whole device thin, O
It can be applied as HP paper and copy paper, and also as window blinds and curtains.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る磁界光学装置の原理的構成図であ
る。
FIG. 1 is a principle configuration diagram of a magnetic field optical device according to the present invention.

【図2】図1の磁界光学装置の動作説明図である。FIG. 2 is an operation explanatory view of the magnetic field optical device of FIG.

【図3】本発明に係る磁界光学装置の1画素の平面図で
ある。
FIG. 3 is a plan view of one pixel of the magnetic field optical device according to the present invention.

【図4】図3に示す1画素の動作説明図である。FIG. 4 is an operation explanatory diagram of one pixel shown in FIG.

【図5】本発明に係る磁界光学装置の他の例を示す要部
の平面図である。
FIG. 5 is a plan view of a main part showing another example of the magnetic field optical device according to the present invention.

【図6】従来の液晶ディスプレイの原理的構成図であ
る。
FIG. 6 is a principle configuration diagram of a conventional liquid crystal display.

【図7】図6の液晶ディスプレイの動作説明図である。FIG. 7 is an operation explanatory diagram of the liquid crystal display of FIG.

【符号の説明】[Explanation of symbols]

1,2 電極 3,21 透明上部基板 4,22 透明下部基板 5,23 液晶 5a,23a 液晶分子 24A,24B,33A,33B 強磁性体 6,25 ディレクタ方向 7,26 液晶セル 8,9,27,28 偏光板 10,30 直線偏光の光 11 液晶ディスプレイ 29 磁界光学装置 1, 2 electrodes 3,21 transparent upper substrate 4,22 transparent lower substrate 5,23 liquid crystal 5a, 23a liquid crystal molecules 24A, 24B, 33A, 33B ferromagnetic material 6,25 director direction 7,26 liquid crystal cell 8, 9, 27 , 28 Polarizing plate 10, 30 Linearly polarized light 11 Liquid crystal display 29 Magnetic field optical device

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 上下基板間に複数の画素を構成する液晶
が封入され、前記各画素に液晶分子のディレクタ方向を
制御する磁界発生部材が設けられて成ることを特徴とす
る磁界光学装置。
1. A magnetic field optical device, characterized in that liquid crystals constituting a plurality of pixels are enclosed between upper and lower substrates, and each pixel is provided with a magnetic field generating member for controlling a director direction of liquid crystal molecules.
【請求項2】 上下基板間に複数の画素を構成する液晶
が封入され、前記各画素に磁界発生部材が設けられてな
る磁界光学装置に対して、外部の磁界印加手段により、
前記磁界発生部材を着磁し、該着磁により発生した磁界
によって前記各画素の液晶分子のディレクタ方向を制御
することを特徴とする磁界光学装置の駆動方法。
2. A magnetic field optical device in which liquid crystals constituting a plurality of pixels are enclosed between upper and lower substrates, and a magnetic field generating member is provided in each pixel, by an external magnetic field applying means.
A method of driving a magnetic field optical device, comprising: magnetizing the magnetic field generating member, and controlling the director direction of the liquid crystal molecules of each pixel by the magnetic field generated by the magnetization.
JP21423193A 1993-08-30 1993-08-30 Magnetic field optical device and driving method therefor Pending JPH0764118A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21423193A JPH0764118A (en) 1993-08-30 1993-08-30 Magnetic field optical device and driving method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21423193A JPH0764118A (en) 1993-08-30 1993-08-30 Magnetic field optical device and driving method therefor

Publications (1)

Publication Number Publication Date
JPH0764118A true JPH0764118A (en) 1995-03-10

Family

ID=16652365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21423193A Pending JPH0764118A (en) 1993-08-30 1993-08-30 Magnetic field optical device and driving method therefor

Country Status (1)

Country Link
JP (1) JPH0764118A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6236383B1 (en) 1997-09-04 2001-05-22 Sharp Kabushiki Kaisha Liquid crystal display device and method for driving the same
US6426782B1 (en) 1997-09-04 2002-07-30 Sharp Kabushiki Kaisha Liquid crystal display device
WO2008100043A1 (en) * 2007-02-16 2008-08-21 Samsung Electronics Co., Ltd. Active reflective polarizer and magnetic display panel comprising the same
US7683982B2 (en) 2007-02-16 2010-03-23 Samsung Electronics Co., Ltd. Active reflective polarizer, liquid crystal display employing the same and method for the same
US7864269B2 (en) 2007-02-16 2011-01-04 Samsung Electronics Co., Ltd. Liquid crystal display device switchable between reflective mode and transmissive mode by employing active reflective polarizer
US8194196B2 (en) * 2003-12-24 2012-06-05 Lg Display Co., Ltd. Liquid crystal display device using a magnetic driving field and driving method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6236383B1 (en) 1997-09-04 2001-05-22 Sharp Kabushiki Kaisha Liquid crystal display device and method for driving the same
US6426782B1 (en) 1997-09-04 2002-07-30 Sharp Kabushiki Kaisha Liquid crystal display device
US8194196B2 (en) * 2003-12-24 2012-06-05 Lg Display Co., Ltd. Liquid crystal display device using a magnetic driving field and driving method thereof
WO2008100043A1 (en) * 2007-02-16 2008-08-21 Samsung Electronics Co., Ltd. Active reflective polarizer and magnetic display panel comprising the same
US7683982B2 (en) 2007-02-16 2010-03-23 Samsung Electronics Co., Ltd. Active reflective polarizer, liquid crystal display employing the same and method for the same
US7864269B2 (en) 2007-02-16 2011-01-04 Samsung Electronics Co., Ltd. Liquid crystal display device switchable between reflective mode and transmissive mode by employing active reflective polarizer

Similar Documents

Publication Publication Date Title
ES2082375T3 (en) DEVICE FOR THE VIEWING OF IMAGES.
JP2549433B2 (en) Electro-optical modulator driving method and printer
ATE193780T1 (en) LIQUID CRYSTAL DISPLAY DEVICE
JP2990297B2 (en) Liquid crystal light valve device and liquid crystal light valve driving method
JPH0764118A (en) Magnetic field optical device and driving method therefor
WO2004057562A1 (en) Liquid crystal display device with reduced power consumption in standby mode
JP3775089B2 (en) Liquid crystal device and electronic device
US8194196B2 (en) Liquid crystal display device using a magnetic driving field and driving method thereof
JP3305129B2 (en) Display device
US10451948B2 (en) Standing helix ferroelectric liquid crystal display cell
Zhang et al. 35.2: Direct Observation of Disclination Evolution in Vertically Aligned Liquid Crystal Light Valves
JPH1165480A (en) Display device
JPS63192022A (en) Ferroelectric liquid crystal electrooptic device
JPH0229620A (en) Liquid crystal element
JPS6217207B2 (en)
JPH0429216A (en) Light-light transforming element and three-dimensional picture display device
JPS5953813A (en) Picture recording device
JPH1062749A (en) Liquid crystal display device
JPH1062752A (en) Liquid crystal display device
JPS63234282A (en) Display device using laser light
JPH01172819A (en) Driving method for ferroelectric liquid crystal
JPH1152358A (en) Liquid crystal display element
JPS62240947A (en) Projecting device
JPS62212621A (en) Display device
JPS62143017A (en) Display device