JPH0763694A - Nondestructive inspection apparatus for spot-welded part - Google Patents

Nondestructive inspection apparatus for spot-welded part

Info

Publication number
JPH0763694A
JPH0763694A JP23538193A JP23538193A JPH0763694A JP H0763694 A JPH0763694 A JP H0763694A JP 23538193 A JP23538193 A JP 23538193A JP 23538193 A JP23538193 A JP 23538193A JP H0763694 A JPH0763694 A JP H0763694A
Authority
JP
Japan
Prior art keywords
welding
nugget
welded
spot
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23538193A
Other languages
Japanese (ja)
Inventor
Naochika Mitsuoka
直躬 三岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hosei Brake Industry Co Ltd
Original Assignee
Hosei Brake Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hosei Brake Industry Co Ltd filed Critical Hosei Brake Industry Co Ltd
Priority to JP23538193A priority Critical patent/JPH0763694A/en
Publication of JPH0763694A publication Critical patent/JPH0763694A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

PURPOSE:To provide a nondestructive inspection apparatus with which whether a spot-welded part is good or not, can be judged nondestructively and in a noncontact manner and continuous and efficient inspection is made possible by a method wherein a nugget immediately after a spot welding operation is picked up by an infrared camera as the infrared image. CONSTITUTION:Two materials S1, S2 to be welded are stacked, their parts to be welded are sandwiched by electrodes 1a, 1b, a pressurization force and an electric current are applied, the electric current and the pressurization force are concentrated, and a nugget N as the welding part is formed at the contact face of the materials S1, S2 to be welded. When the material and the thickness of the materials S1, S2 are decided, the diameter of the nugget N controls the strength of a welding operation. In order to detect the size of the nugget N immediately after the welding operation, an infrared camera 2 for imaging of a welded trace is installed near the welding electrodes 1a, 1b, infrared rays generated by the nugget N and welding heat near it are taken in, and the size of the nugget N is detected on the basis of an infrared image reflecting a temperature distribution. Then, a welded area and a deformation degree are computed via an A/D converter 3 and a CPU 4, and whether a spot welding operation is good or not is judged.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、スポット溶接、プロ
ジェクション溶接等の点溶接部の溶接の合否を検査する
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for inspecting whether a spot weld portion such as spot welding or projection welding is acceptable or not.

【0002】[0002]

【従来の技術】従来より、点溶接として例えば図4に示
すようなスポット溶接が2枚の薄板(ワーク)Wの接合
等に広く用いられている。一対の電極100で2枚のワ
ークWを挟み通電することにより、金属溶融部であるナ
ゲットNが形成されるが、従来、その溶接が適正に行わ
れているかどうかの検査に際しては、抜き取りでそのナ
ゲットNを含む部分を切断し、ナゲットNの直径を測定
して基準値以上であれば合格として、その一連の溶接工
程は適正に実施されているものと推定していた。
2. Description of the Related Art Conventionally, spot welding such as that shown in FIG. 4 has been widely used for joining two thin plates (workpieces) W as a spot welding. The nugget N, which is a metal fusion part, is formed by sandwiching two workpieces W with a pair of electrodes 100 and energizing them. Conventionally, when inspecting whether or not the welding is properly performed, the nugget N is extracted. The part including the nugget N was cut, and the diameter of the nugget N was measured, and if it was equal to or larger than the reference value, it was considered to be acceptable, and it was estimated that the series of welding steps was properly performed.

【0003】また、スポット溶接等の電極100は一般
に銅合金でできており、電極自身の摩耗のため、所定の
溶接回数ごとに電極を交換する必要がある。そして、電
極の交換の都度、その電極による溶接が適正に行われる
か否かを検査する場合があるが、その際は図5に示すよ
うに、2枚の板状テストピース102を重ねて試し溶接
を行い、その部分を切断してナゲットNの大きさを計測
することにより溶接の合否、ひいてはその電極の良否を
判定していた。
Further, the electrode 100 for spot welding or the like is generally made of a copper alloy, and it is necessary to replace the electrode every predetermined number of weldings due to wear of the electrode itself. Then, every time the electrode is replaced, it may be inspected whether or not the welding by the electrode is properly performed. In that case, as shown in FIG. 5, two plate-shaped test pieces 102 are overlapped and tested. Welding was performed, the portion was cut, and the size of the nugget N was measured to determine whether the welding was successful or not, and thus the quality of the electrode.

【0004】一方、点溶接箇所の非破壊検査法として、
超音波による非破壊検査法がある。この方法は、図6に
示すように超音波プローブ103を溶接箇所に接触させ
て板厚を測定するもので、溶接が行われていない箇所は
1枚分の板厚T1のみが計測されるが、溶接ナゲットN
の部分は、T1+T2の2枚分の板厚Ttが測定される
ことを利用している。超音波プローブ103を任意に動
かし、溶接ナゲットNの大きさを推定してその溶接の合
否を判定する。
On the other hand, as a nondestructive inspection method for spot welding points,
There is a non-destructive inspection method using ultrasonic waves. In this method, as shown in FIG. 6, the ultrasonic probe 103 is brought into contact with a welded portion to measure the plate thickness, and only the plate thickness T1 for one sheet is measured at a portion where welding is not performed. , Welding nugget N
The part (2) utilizes the fact that the plate thickness Tt of two sheets T1 + T2 is measured. The ultrasonic probe 103 is arbitrarily moved, the size of the welding nugget N is estimated, and the pass / fail of the welding is determined.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、前述の
抜き取りによる破壊検査は、溶接製品の破壊を伴う欠点
があるとともに、全数検査ができず、また電極の交換時
におけるテストピースを用いる検査方法は切断が面倒で
あるほか、電極の良否から間接的に溶接製品の合否を推
定するに過ぎない。さらに、超音波による非破壊検査法
では、非破壊で全数の検査が可能であるが、被溶接材に
超音波プローブを一々接触させなければならず、検査が
面倒な欠点がある。
However, the above-described destructive inspection by sampling has the drawback of destroying the welded product, cannot perform 100% inspection, and the inspection method using a test piece at the time of electrode replacement is cut. In addition to being troublesome, it simply estimates pass / fail of the welded product indirectly from the quality of the electrode. Further, although the ultrasonic non-destructive inspection method allows non-destructive inspection of all products, it has a drawback that the ultrasonic probe must be brought into contact with the material to be welded one by one, which makes the inspection troublesome.

【0006】本発明は、スポット溶接、プロジェクショ
ン溶接等における点溶接部の合否を非破壊かつ非接触で
検査できるようにすることを課題とする。
An object of the present invention is to enable non-destructive and non-contact inspection of pass / fail of spot welds in spot welding, projection welding and the like.

【0007】[0007]

【課題を解決するための手段】本発明は、点溶接を行
った直後のナゲット領域の温度状態を検出する赤外線カ
メラと、その赤外線カメラの画像処理を行う画像処理
手段と、画像処理されたナゲット領域の温度状態に基
づき溶接の合否を判定する合否判定手段と、その合否
結果を出力する出力装置を備えたものである。
According to the present invention, there is provided an infrared camera for detecting the temperature condition of a nugget region immediately after spot welding, an image processing means for performing image processing of the infrared camera, and an image-processed nugget. It is provided with a pass / fail determination means for determining pass / fail of welding based on the temperature state of the region, and an output device for outputting the pass / fail result.

【0008】[0008]

【作用】このような点溶接部の検査装置においては、溶
接直後のナゲットを赤外線カメラにより赤外線画像とし
て捕え、これを画像処理してその特徴を判別することに
より溶接部の合否を判定し、その結果を出力する。赤外
線カメラは非接触かつ非破壊で溶接ナゲットの大きさを
検出することができるので、多数箇所に対する溶接が次
々と行われる場合でも、その全箇所を非接触で連続的に
検査することができる。
In such an apparatus for inspecting spot welds, the nugget immediately after welding is captured as an infrared image by an infrared camera, and image processing is performed on the nugget to determine its characteristics to determine whether the welded part is acceptable or not. Output the result. Since the infrared camera can detect the size of the welding nugget in a non-contact and non-destructive manner, even if welding is performed on a large number of points one after another, all the points can be continuously inspected in a non-contact manner.

【0009】[0009]

【実施例】以下、本発明の一実施例を図面に基づいて説
明する。図1の(a)〜(c)において溶接手順及び機
器構成を説明する。スポット溶接を例にとれば、2枚の
被溶接材S1及びS2を重ね、次に電極1a及び1bに
より溶接箇所を挟み加圧、通電することにより、電流と
加圧力を集中させて、被溶接材S1及びS2間の接触面
に溶接部であるナゲットNを形成する。被溶接材S1及
びS2の材料と板厚が決まっていれば、ナゲット径が両
者の溶接強度を支配する。また、適正な溶接が行われた
状態では、ナゲット径は電極先端径に依存し、おおよそ
ナゲット径dn=0.9〜1.1D(D:電極先端径)
の範囲となるのが一般的である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. A welding procedure and a device configuration will be described with reference to FIGS. Taking spot welding as an example, two materials to be welded S1 and S2 are superposed, and then the electrodes 1a and 1b are sandwiched between the welding points to apply pressure and energize, thereby concentrating the electric current and the applied pressure, and the welding target A nugget N that is a weld is formed on the contact surface between the materials S1 and S2. If the materials and plate thicknesses of the materials to be welded S1 and S2 are determined, the nugget diameter controls the welding strength of both. Further, in the state where proper welding is performed, the nugget diameter depends on the electrode tip diameter, and the nugget diameter dn = 0.9 to 1.1D (D: electrode tip diameter).
It is generally in the range of.

【0010】本実施例では、溶接直後のナゲットNの大
きさを検出するために、溶接電極1a及び1bの近傍に
位置して溶接跡撮影用の赤外線カメラ2が設けられてい
る。この赤外線カメラ2は、ナゲットN及びその近傍か
ら溶接熱に基づいて発生する赤外線を取り込み、温度分
布を反映する赤外線画像からナゲットNの大きさを検出
するものであり、A/Dコンバータ3を介してコンピュ
ータ4に接続されている。
In this embodiment, in order to detect the size of the nugget N immediately after welding, an infrared camera 2 for photographing a welding trace is provided near the welding electrodes 1a and 1b. The infrared camera 2 captures infrared rays generated from the nugget N and its vicinity based on welding heat, and detects the size of the nugget N from an infrared image reflecting a temperature distribution. Connected to the computer 4.

【0011】画像解像度向上のためには、溶接後できる
だけ早い段階の赤外線画像を得る必要があるため、赤外
線カメラ2は電極1a及び1bの近辺に配置される。例
えば溶接ロボットのアーム又はヘッドに赤外線カメラ2
を取り付け、その溶接ロボットのアームやヘッドととも
に赤外線カメラ2が動くように構成することもできる
し、赤外線カメラ2は位置固定に設置し、被溶接材S1
及びS2をあるポイントでの溶接が終るごとに順次移動
させるように構成することもできる。なお、赤外線カメ
ラ2には、溶接スパッタからカメラレンズを保護するた
めの保護具を設けることが望ましく、またコンピュータ
4は任意の場所に設置が可能である。
In order to improve the image resolution, it is necessary to obtain an infrared image at the earliest possible stage after welding, so the infrared camera 2 is arranged near the electrodes 1a and 1b. For example, an infrared camera 2 on the arm or head of the welding robot
The infrared camera 2 can be configured to move together with the arm or head of the welding robot.
Alternatively, S2 and S2 may be sequentially moved after each welding at a certain point. The infrared camera 2 is preferably provided with a protector for protecting the camera lens from welding spatter, and the computer 4 can be installed at any place.

【0012】次に、図2において機器の機能ブロックを
説明する。赤外線カメラ2内部には、画像センサである
IR(赤外線)/CCD2a、このCCD2aからの信
号を増幅するアンプ2b、増幅後のアナログ信号の高周
波成分をカットするローパスフィルタ2c、信号の標本
化を行うサンプルホールド回路2dなどが組み込まれて
いる。
Next, the functional blocks of the equipment will be described with reference to FIG. Inside the infrared camera 2, an IR (infrared) / CCD 2a that is an image sensor, an amplifier 2b that amplifies a signal from the CCD 2a, a low-pass filter 2c that cuts a high frequency component of the amplified analog signal, and a signal is sampled. A sample hold circuit 2d and the like are incorporated.

【0013】IR/CCD2aの各セルには、入ってく
る赤外線の量に比例した電荷が蓄えられる。IR/CC
D2aは、これらの電荷を順次移送、増幅させ、画面の
ラスターデータとなるアナログ信号2eを生成する。生
成されたアナログ信号2eは、ローパスフィルタ2cに
より高周波成分をカットされ、滑らかな信号2fとな
る。次いでサンプルホールド回路2dにより、いわゆる
PAM波2gとなる。
In each cell of the IR / CCD 2a, a charge proportional to the amount of incoming infrared rays is stored. IR / CC
The D2a sequentially transfers and amplifies these charges to generate an analog signal 2e which becomes raster data of the screen. The high-frequency component of the generated analog signal 2e is cut by the low-pass filter 2c and becomes a smooth signal 2f. Next, the so-called PAM wave 2g is generated by the sample hold circuit 2d.

【0014】なお、一般的な汎用CCDでは、検出可能
な光は可視光線から近赤外線までと幅広いが、波長が長
くなると分解能が悪くなる傾向にある。したがって、ナ
ゲットNに対応する赤外線画像の分解能を高めるために
は、IR(赤外線)/CCD2aを用いることが望まし
い。
In general general-purpose CCDs, the light that can be detected is wide from visible rays to near infrared rays, but the resolution tends to deteriorate as the wavelength increases. Therefore, in order to improve the resolution of the infrared image corresponding to the nugget N, it is desirable to use IR (infrared) / CCD 2a.

【0015】上述のA/Dコンバータ3は、赤外線カメ
ラ2からのビデオ信号をA/D変換するものであって、
コンピュータ4の入力インタフェース部4aに接続され
ている。コンピュータ4はこの入力インタフェース部4
aのほか、ワークエリアとしての画像メモリ4b、各種
の処理をプログラムに応じて実行する信号処理装置4
c、そのプログラムを記憶するプログラムメモリ4d、
そして処理結果等を出力する出力インタフェース部4e
等を含んでいる。さらに、出力インタフェース部4eに
は出力装置として表示モニタ5が接続されて、このモニ
タ5に溶接不良等の情報が表示されるようになってい
る。
The above-mentioned A / D converter 3 converts the video signal from the infrared camera 2 into A / D,
It is connected to the input interface unit 4a of the computer 4. The computer 4 uses this input interface unit 4
In addition to a, an image memory 4b as a work area, and a signal processing device 4 for executing various processes according to a program
c, a program memory 4d for storing the program,
Then, the output interface unit 4e for outputting the processing result and the like
Etc. are included. Further, a display monitor 5 is connected as an output device to the output interface section 4e, and information such as welding defects is displayed on the monitor 5.

【0016】赤外線カメラ2からのビデオ信号は、A/
Dコンバータ3によりA/D変換され、濃度を表わすデ
ジタル信号になる。すなわち、後述する判定パターンを
構成する画素の一つ一つに、例えば8ビットで表わされ
る256段階の濃度信号が当てはめられる。これらの濃
度信号は画像メモリ4bに取り込まれ、CPUをはじめ
とする信号処理装置4cによって各種の画像処理が施さ
れる。この信号処理装置4cは、プログラム(4d)に
より逐次駆動される。
The video signal from the infrared camera 2 is A /
The digital signal is A / D converted by the D converter 3 and becomes a digital signal representing the density. That is, 256-level density signals represented by, for example, 8 bits are applied to each of the pixels forming the determination pattern described later. These density signals are taken into the image memory 4b, and various image processing is performed by the signal processing device 4c including the CPU. The signal processing device 4c is sequentially driven by the program (4d).

【0017】次に、図3に基づいて画像処理の流れを説
明する。ステップS1でA/Dコンバータ3により赤外
線カメラ2からの信号がデジタル化され、その信号はス
テップS2で画像メモリ4bに赤外線画像データ、すな
わち判定パターンとして取り込まれる。そして、ステッ
プS3でノイズの除去処理が行われる。すべての画素一
つ一つに対して、その着目画素に隣接する四方の画素の
濃度を調べ、すべてがある濃度以下である場合はその着
目画素をノイズと見なし、その着目画素の濃度をゼロに
してノイズを取り除く。
Next, the flow of image processing will be described with reference to FIG. In step S1, the signal from the infrared camera 2 is digitized by the A / D converter 3, and the signal is captured in the image memory 4b as infrared image data, that is, a determination pattern in step S2. Then, in step S3, noise removal processing is performed. For each pixel, check the densities of the four adjacent pixels to the pixel of interest, and if all are below a certain density, consider that pixel of interest as noise and set the density of that pixel of interest to zero. To remove noise.

【0018】次に、ステップS4の2値化処理として、
判定パターンのすべての画素に対して濃度信号が、ある
しきい値以上であるか又はしきい値未満であるかを調
べ、しきい値以上の場合は1とし、しきい値未満の場合
は0とする1ビット信号に置き換える。この処理は赤外
線画像の輪郭を明確にして、画像の測定を行いやすくす
る目的で行われる。
Next, as the binarization processing in step S4,
It is checked whether the density signal is above or below a certain threshold value or less than the threshold value for all the pixels of the judgment pattern. If the density signal is above the threshold value, it is set to 1, and if it is below the threshold value, it is set to 0. To a 1-bit signal. This processing is performed for the purpose of clarifying the contour of the infrared image and facilitating the measurement of the image.

【0019】2値化後の判定パターン画像は、さらに画
像を明確化するために、ステップS5で穴埋め処理が行
われる。これは2値化処理後の輪郭が明瞭になったデー
タに対して、濃度信号が0であるすべての画素一つ一つ
に対して、その着目画素に隣接する四方の画素の濃度を
調べ、すべてが1である場合はその着目画素を穴と見な
し、その着目画素の濃度を1にしてパターンの穴埋めを
行う。この処理を経てステップS6で判定パターンは完
成し、次の画像判定を行うデータとする。
The binarized determination pattern image is subjected to hole filling processing in step S5 in order to further clarify the image. This is to examine the densities of four pixels adjacent to the pixel of interest for each pixel whose density signal is 0 for the data whose contour has become clear after the binarization processing. When all are 1, the pixel of interest is regarded as a hole, the density of the pixel of interest is set to 1, and the pattern is filled. After this processing, the determination pattern is completed in step S6, and the data is used for the next image determination.

【0020】以上のノイズ除去処理及び穴埋め処理につ
いては他に種々の方法があり、例えば濃度信号1の集合
体の輪郭、すなわち境界画素を検知し、輪郭を一律に縮
小した上で再び輪郭を拡張して小さなノイズを除去する
方法もある。したがって、ここでの記述は一例に過ぎな
い。
There are various other methods for the above noise removal processing and hole filling processing. For example, the contour of the aggregate of the density signals 1, that is, the boundary pixels are detected, the contour is reduced uniformly, and the contour is expanded again. There is also a method to remove small noise. Therefore, the description here is only an example.

【0021】前述の方法で明確化された判定パターン
は、電極1a、1bの通電により赤熱化されて溶接が行
われたと考えられる箇所、すなわちナゲットNに相当す
る部分である。ステップS7でこの判定パターンと上昇
温度レベルを検証し基準データRDと比較して、水準以
上であれば十分な溶接が行われたと考えることができ
る。検証する項目は、まず判定パターンの面積である。
濃度信号が1である画素の数をカウントするなどして面
積を求め、基準面積以上の場合は、十分なナゲット面積
があったと考えることができる。
The determination pattern clarified by the above-mentioned method is a portion which is considered to have been red-heated by the energization of the electrodes 1a and 1b and welded, that is, a portion corresponding to the nugget N. In step S7, the judgment pattern and the elevated temperature level are verified and compared with the reference data RD, and if it is at or above the level, it can be considered that sufficient welding has been performed. The item to be verified is the area of the determination pattern.
The area is obtained by counting the number of pixels whose density signal is 1, and when the area is equal to or larger than the reference area, it can be considered that there is a sufficient nugget area.

【0022】次に、判定パターンの周囲長を、パターン
変形度を求めるパラメータとして算出する。その後、判
定パターンの面積と周囲長から判定パターンの変形度を
算出する。例えば、実際の判定パターンの面積から、前
述の周囲長に見合った真円の面積の差の絶対値を算出
し、その面積差を基準値と比較する。この差が一定以上
であれば判定パターンは、いびつな形状と判定される。
つまり十分な溶接面積があっても、その形状がいびつな
ものであれば適正な溶接とは言えない。
Next, the perimeter of the judgment pattern is calculated as a parameter for obtaining the pattern deformation degree. Then, the deformation degree of the determination pattern is calculated from the area and the perimeter of the determination pattern. For example, the absolute value of the difference between the areas of the perfect circles corresponding to the perimeter is calculated from the area of the actual determination pattern, and the area difference is compared with the reference value. If this difference is equal to or greater than a certain value, the determination pattern is determined to be a distorted shape.
In other words, even if there is a sufficient welding area, it cannot be said to be proper welding if the shape is distorted.

【0023】一般的に電極の形状が丸型をしているので
極端なパターン変形は考えにくいが、溶接を行った際に
電極が被溶接材の表面に対して直角に当たらなかった場
合、あるいは電極が偏摩耗したような場合は、パターン
変形が起こり得るため、判定パターンの変形度を考慮す
ることは有益である。このように、溶接面積で十分な溶
接強度を確保しているかを判定し、変形度で正しい溶接
パターンが形成されているかを判定するのである。
Since the shape of the electrode is generally round, it is unlikely that an extreme pattern deformation will occur, but when the electrode does not hit the surface of the material to be welded at a right angle during welding, or When the electrode is unevenly worn, pattern deformation may occur, so it is useful to consider the degree of deformation of the determination pattern. In this way, it is determined whether sufficient welding strength is secured by the welding area, and whether the correct welding pattern is formed is determined by the degree of deformation.

【0024】このようなステップS7の判定に基づき、
ステップS8で溶接部の合否をモニタ5等の出力装置に
表示してその旨を知らしめる。溶接工程の管理者は、そ
のモニタ5を確認して、溶接の合否を知ることができ
る。また、不合格の場合は、この表示に併せて、図2に
示すコンピュータ4の出力インタフェース部4eを通じ
てスポット溶接装置6を停止させることも可能である。
さらに、溶接不良をブザー音やその他の音で警報する警
報装置を付加してもよい。
Based on the determination in step S7,
In step S8, the acceptance / rejection of the welded portion is displayed on an output device such as the monitor 5 to inform that effect. The manager of the welding process can check the monitor 5 to know the success or failure of the welding. Further, in the case of failure, it is possible to stop the spot welding apparatus 6 through the output interface section 4e of the computer 4 shown in FIG.
Further, an alarm device for alarming a welding failure with a buzzer sound or other sounds may be added.

【0025】[0025]

【発明の効果】本発明においては、溶接直後のナゲット
を赤外線カメラの赤外線画像として捕え、これに基づい
て点溶接部の合否を判定するものであるため、検査自体
を非破壊かつ非接触で、溶接工程を妨げることなく効率
的に行うことができる。また、多数の箇所に対する連続
的な点溶接において、それに対応した連続的な合否検査
も可能となる。
In the present invention, the nugget immediately after welding is captured as an infrared image of an infrared camera, and the pass / fail of the spot weld is determined based on this, so the inspection itself is nondestructive and noncontact. It can be efficiently performed without interfering with the welding process. Further, in continuous spot welding at a large number of points, continuous pass / fail inspection corresponding to the spot welding is also possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を溶接工程とともに示す説明
図。
FIG. 1 is an explanatory view showing an embodiment of the present invention together with a welding process.

【図2】その機能ブロック図。FIG. 2 is a functional block diagram thereof.

【図3】画像信号処理の流れを示すフローチャート。FIG. 3 is a flowchart showing a flow of image signal processing.

【図4】一般的なスポット溶接の説明図。FIG. 4 is an explanatory diagram of general spot welding.

【図5】従来のテストピースによる溶接部検査の断面斜
視図。
FIG. 5 is a cross-sectional perspective view of a weld portion inspection using a conventional test piece.

【図6】従来の超音波による溶接部検査の説明図。FIG. 6 is an explanatory diagram of a conventional weld inspection using ultrasonic waves.

【符号の説明】[Explanation of symbols]

1a 電極 1b 電極 2 赤外線カメラ 3 A/Dコンバータ 4 コンピュータ 4b 画像メモリ 4c 信号処理装置 4d プログラムメモリ 5 モニタ N ナゲット 1a electrode 1b electrode 2 infrared camera 3 A / D converter 4 computer 4b image memory 4c signal processing device 4d program memory 5 monitor N nugget

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 点溶接を行った直後のナゲット領域の温
度状態を検出する赤外線カメラと、 その赤外線カメラの画像処理を行う画像処理手段と、 画像処理されたナゲット領域の温度状態に基づき溶接の
合否を判定する合否判定手段と、 その合否結果を出力する出力装置と、 を含むことを特徴とする点溶接部の非破壊検査装置。
1. An infrared camera for detecting the temperature condition of a nugget region immediately after spot welding, an image processing means for performing image processing of the infrared camera, and a welding process based on the temperature condition of the image-processed nugget region. A non-destructive inspection device for spot welds, comprising: a pass / fail determination means for determining pass / fail; and an output device for outputting the pass / fail result.
JP23538193A 1993-08-27 1993-08-27 Nondestructive inspection apparatus for spot-welded part Pending JPH0763694A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23538193A JPH0763694A (en) 1993-08-27 1993-08-27 Nondestructive inspection apparatus for spot-welded part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23538193A JPH0763694A (en) 1993-08-27 1993-08-27 Nondestructive inspection apparatus for spot-welded part

Publications (1)

Publication Number Publication Date
JPH0763694A true JPH0763694A (en) 1995-03-10

Family

ID=16985243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23538193A Pending JPH0763694A (en) 1993-08-27 1993-08-27 Nondestructive inspection apparatus for spot-welded part

Country Status (1)

Country Link
JP (1) JPH0763694A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6417885A (en) * 1987-07-11 1989-01-20 Tatsuo Okazaki Electrolytic acidic water generator
US5968376A (en) * 1998-08-19 1999-10-19 Trw Inc. Method for infrared inspection of resistence welds during assembling of an inflator
JP2008504134A (en) * 2004-06-28 2008-02-14 プジョー シトロエン オートモビル エス アー Resistance welding method monitoring method and apparatus for carrying out the method
JP2008073730A (en) * 2006-09-21 2008-04-03 Tokyu Car Corp Evaluation method of laser spot weld zone
FR2923606A1 (en) * 2007-11-09 2009-05-15 Controle Des Points De Soudure Non-destructively controlling welding point, by examining welding point surface using camera, quantifying distribution of chromatic density/halo formed around crucible junction, and comparing value determined at interval of reference value
JP2010025615A (en) * 2008-07-16 2010-02-04 Central Motor Co Ltd Automatic inspection system of spot welding
US20120298870A1 (en) * 2006-12-21 2012-11-29 Roman Louban Method for automated testing of a material joint
JP2012234255A (en) * 2011-04-28 2012-11-29 Suzuki Motor Corp Image processing device and image processing method
JP2014113618A (en) * 2012-12-10 2014-06-26 Honda Motor Co Ltd Resistance welding inspection method and resistance welding device
CN104792785A (en) * 2014-01-22 2015-07-22 丰田自动车株式会社 Image-inspection apparatus and image-inspection method for welded portion

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6417885A (en) * 1987-07-11 1989-01-20 Tatsuo Okazaki Electrolytic acidic water generator
US5968376A (en) * 1998-08-19 1999-10-19 Trw Inc. Method for infrared inspection of resistence welds during assembling of an inflator
JP2008504134A (en) * 2004-06-28 2008-02-14 プジョー シトロエン オートモビル エス アー Resistance welding method monitoring method and apparatus for carrying out the method
JP2008073730A (en) * 2006-09-21 2008-04-03 Tokyu Car Corp Evaluation method of laser spot weld zone
US20120298870A1 (en) * 2006-12-21 2012-11-29 Roman Louban Method for automated testing of a material joint
FR2923606A1 (en) * 2007-11-09 2009-05-15 Controle Des Points De Soudure Non-destructively controlling welding point, by examining welding point surface using camera, quantifying distribution of chromatic density/halo formed around crucible junction, and comparing value determined at interval of reference value
JP2010025615A (en) * 2008-07-16 2010-02-04 Central Motor Co Ltd Automatic inspection system of spot welding
JP2012234255A (en) * 2011-04-28 2012-11-29 Suzuki Motor Corp Image processing device and image processing method
JP2014113618A (en) * 2012-12-10 2014-06-26 Honda Motor Co Ltd Resistance welding inspection method and resistance welding device
CN104792785A (en) * 2014-01-22 2015-07-22 丰田自动车株式会社 Image-inspection apparatus and image-inspection method for welded portion

Similar Documents

Publication Publication Date Title
JP5028494B2 (en) Automatic testing method for material joints
EP1255981B1 (en) Automated non-destructive weld evaluation method and apparatus
KR102235832B1 (en) Portable type welding inspection appatatus and inspection method
JPH0571932A (en) Quality-inspection device of welding bead
US20080237197A1 (en) System and method for welding and real time monitoring of seam welded parts
JPH0763694A (en) Nondestructive inspection apparatus for spot-welded part
JP2021058927A (en) Laser welding quality detecting method and laser welding quality detecting device
CN112461920B (en) Method and device for judging high-temperature alloy spot welding defects based on ultrasonic measurement
EP1275464A1 (en) A system for controlling the quality of a laser weld
JPH11118775A (en) Ultrasonic inspection device
JP2003065985A (en) Method for inspecting laser welding part and apparatus therefor
KR20130089353A (en) Spot welding machine able to evaluate spot welding strength
JP2725582B2 (en) Nugget diameter measurement method for spot welding
JPH1058170A (en) Method and device for judging quality of laser beam welding
JP2861649B2 (en) Steel plate weld inspection method
CN116380890A (en) Vehicle body welding spot detection method based on vision and ultrasonic detection
JPH05261564A (en) Manufacture of electric resistance welded tube
JPH04127984A (en) Method and device for laser welding
JP2967671B2 (en) Monitoring device for welding status
RU2682362C1 (en) Method of quality control of butt-welded joints by burn-off, and device for implementation thereof
KR100325353B1 (en) An apparatus and method of estimating welding quality by detecting width of the heat effective region in a flash butt welding device
JP2533153B2 (en) Laser processing state monitoring device and laser processing state monitoring method
KR102518051B1 (en) Method for detecting defect of spot welding employing sensor convolution
Reichert Pre-and postweld inspection using laser vision
KR102518045B1 (en) Method for detecting defect of spot welding employing IR camera