JPH0763527A - Form measuring device - Google Patents

Form measuring device

Info

Publication number
JPH0763527A
JPH0763527A JP5162497A JP16249793A JPH0763527A JP H0763527 A JPH0763527 A JP H0763527A JP 5162497 A JP5162497 A JP 5162497A JP 16249793 A JP16249793 A JP 16249793A JP H0763527 A JPH0763527 A JP H0763527A
Authority
JP
Japan
Prior art keywords
reference plane
television camera
stripe pattern
image
stripe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5162497A
Other languages
Japanese (ja)
Inventor
Toshiro Matsubara
俊郎 松原
Hideyuki Hamamura
秀行 浜村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP5162497A priority Critical patent/JPH0763527A/en
Publication of JPH0763527A publication Critical patent/JPH0763527A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To calculate the three-dimensional coordinate of a measuring surface from the slippage between respective stripes of stripe pattern images on a standard plane and the measuring surface and the position (x), (y) of the picture element of the measuring surface, and precisely perform a form measurement at high speed. CONSTITUTION:A standard plane is preliminarily set instead of a subject 9 to be measured, and a change-over switch 4 is connected to (a)-side to store 5 a stripe pattern image. The standard plane is vertical to the optical axis of a television camera 2, and the distances to respective lens centers of the camera 2 and a projecting device 1 are equally set. At a measurement, the subject 9 is placed instead of the standard plane, and the switch 4 is connected to (b)-side to photograph 2 the stripe pattern image. The stripe pattern 11a of the subject 9 and the stored 5 stripe pattern 1b of the standard plane show thick stripe images, and the two images are compared to each other by a slippage measuring circuit 6 to measure the x-directional slippage between the strips. The x, y-coordinate of the picture element of the pattern image of the subject 9 is also measured 7. A form arithmetic circuit 8 calculates and outputs the space coordinate of a measuring point by use of the slippage and the x,y-coordinate of the picture element.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、鋼管、形鋼のような工
業製品の3次元形状や、鋼板のような板状の製品を平坦
度を計測する装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for measuring the flatness of a three-dimensional shape of an industrial product such as a steel pipe or a shaped steel or a plate-like product such as a steel plate.

【0002】[0002]

【従来の技術】3次元形状の測定方法として、いわゆる
光切断法が良く知られているが、一回の撮像で一断面の
形状測定しかできず、また計算式が複雑で演算時間がか
かるという問題がある。また、対象物の凹凸量は光源や
テレビカメラから対象物までの距離に比べてずっと小さ
いが、光切断法では光源やテレビカメラを基準として測
定点までの距離を計測するため凹凸量即ち形状の測定精
度はあまり良くないという問題もある。一つの改良法と
して多数の縞からなる縞パターンを投影する方法があ
り、この方法では一回の撮像で多数の断面の形状を計測
することができるが、計算時間の長さや測定精度の低さ
の問題は残されている。特願平2−77606号公報に
は測定精度の向上及び計算時間の短縮を実現できる装置
が開示されており、以下図4によりこの装置について簡
単に説明する。
2. Description of the Related Art The so-called light-section method is well known as a method for measuring a three-dimensional shape, but it is only possible to measure the shape of one cross section by one image pickup, and the calculation formula is complicated and it takes a long calculation time. There's a problem. Further, the unevenness amount of the object is much smaller than the distance from the light source or the TV camera to the object, but in the light-section method, the unevenness amount or shape of the There is also a problem that the measurement accuracy is not very good. As one of the improved methods, there is a method of projecting a stripe pattern consisting of many stripes. With this method, the shape of many cross sections can be measured with one image capture, but the calculation time is long and the measurement accuracy is low. The problem of remains. Japanese Patent Application No. 2-77606 discloses an apparatus capable of improving the measurement accuracy and shortening the calculation time, and this apparatus will be briefly described below with reference to FIG.

【0003】図4(a)において、平行な光束を投光す
るコリメータ光源13及び液晶シャッター14の組み合
わせにより基準面16及び物体17には明暗パターンが
基準面16に対しθの角度で斜めから投影され、投影さ
れた明暗パターンはテレビカメラ15により撮像され
る。液晶シャッター14は液晶電極への電圧印加パター
ンを変えることにより投影する明暗パターンを変えられ
るようになっており、単一スリット光投影や複数スリッ
ト光投影あるいは符号化帯状照明を行うことができるよ
うになっている。符号化帯状照明はN回の撮像で効率よ
く2N の切断断面の形状計測を行うことのできる照明法
で、IEEE,1984「RANGE-IMAGING SYSTEM FOR 3-D O
BJECT RECOGNITION by S. INOKUCHI, K. SATO and F. M
ATSUDA」に公開されている。複数スリット光を投影した
場合、物体17がなく基準面16だけの時はテレビカメ
ラ15により撮像される画像は図4(b)のようにな
り、基準面16上に物体17が置かれている時の画像は
図4(c)のようになる。図4(c)の18は物体17
により投光が遮られてできる物体の影で、図4(b),
図4(c)の2枚の画像を比較して物体の影18の部分
に相当するスリットの数を数えることにより、図4
(a)における物体の影の長さsを求めることができ
る。光はどこでも基準面に対しθの角度で投影されてい
るので、物体の高さzは次式(1)
In FIG. 4A, a bright and dark pattern is projected obliquely on the reference plane 16 and the object 17 at an angle of θ with respect to the reference plane 16 by a combination of a collimator light source 13 for projecting a parallel light beam and a liquid crystal shutter 14. The projected and projected light and dark patterns are picked up by the television camera 15. The liquid crystal shutter 14 can change the bright and dark pattern to be projected by changing the voltage application pattern to the liquid crystal electrode, and can perform single slit light projection, multiple slit light projection, or coded band illumination. Has become. Coded strip illumination is an illumination method that can efficiently measure the shape of 2 N cross-sections by N times of imaging. IEEE, 1984 “RANGE-IMAGING SYSTEM FOR 3-DO
BJECT RECOGNITION by S. INOKUCHI, K. SATO and F. M
It has been published on "ATSUDA". When a plurality of slit lights are projected and the object 17 is not present and only the reference plane 16 is present, the image captured by the television camera 15 is as shown in FIG. 4B, and the object 17 is placed on the reference plane 16. The image at that time is as shown in FIG. 18 in FIG. 4C is an object 17
The shadow of the object formed by the projection being blocked by
By comparing the two images in FIG. 4C and counting the number of slits corresponding to the shadow 18 of the object,
The shadow length s of the object in (a) can be obtained. Since light is projected everywhere on the reference plane at an angle of θ, the height z of the object is calculated by the following equation (1).

【数1】 により簡単に計算できる。[Equation 1] Can be calculated easily.

【0004】このように特願平2−77606号公報に
開示されている装置は、基準面と物体という距離的に近
いものどうしを比較して物体の高さを求めるため従来の
光切断法に比べて精度が良く、また計算式が上記(1)
式のように簡単なため計算時間も短くなっている。さら
に、符号化帯状照明を用いれば、少ない撮像回数で効率
良く多数の断面について形状を求めることができるため
計算時間の短さと相俟って短時間での3次元形状計測を
行うことができる。
As described above, the apparatus disclosed in Japanese Patent Application No. 2-77606 uses the conventional optical cutting method in order to obtain the height of the object by comparing the reference plane and the object which are close to each other in distance. Compared with the above, the calculation formula is (1)
The calculation time is short because it is as simple as the formula. Furthermore, if the coded strip illumination is used, the shapes of a large number of cross sections can be efficiently obtained with a small number of times of imaging, so that the three-dimensional shape measurement can be performed in a short time in combination with the short calculation time.

【0005】[0005]

【発明が解決しようとする課題】しかしながら上記の装
置では符号化帯状照明を用いた場合でも、複数回の撮像
が必要であり、1回の撮像で多数断面の計測を行うこと
はできなかった。また、平行ビームを用いるため大面積
の計測が困難であること、液晶シャッターで明暗パター
ンを切り換えるため照明装置が高価であるといった問題
もあった。さらに図4(c)の、物体の影18に対応す
るスリットの数は、厳密に言えば図4(a)における物
体の影の長さsに対応するものではなく、テレビカメラ
と物体の角Uを結ぶ直線が基準面16と交わる点Vに対
応する長さs′に対応しているため上記(1)式で得ら
れる値は正確でないという問題もあった。このように従
来技術の装置では撮像回数、計算時間、測定精度、測定
面積、装置価格のいずれかに欠点があり、全てを満足で
きる装置はなかった。
However, even when the coded strip illumination is used in the above apparatus, it is necessary to take a plurality of times of imaging, and it is not possible to measure a large number of cross sections by a single imaging. There are also problems that it is difficult to measure a large area because a parallel beam is used, and the lighting device is expensive because the bright and dark patterns are switched by the liquid crystal shutter. Furthermore, the number of slits corresponding to the shadow 18 of the object in FIG. 4C does not strictly correspond to the length s of the shadow of the object in FIG. Since the straight line connecting U corresponds to the length s'corresponding to the point V intersecting with the reference plane 16, there is a problem that the value obtained by the above equation (1) is not accurate. As described above, the conventional apparatus has a defect in any of the number of times of imaging, calculation time, measurement accuracy, measurement area, and apparatus price, and no apparatus can satisfy all of them.

【0006】本発明はかかる問題点を解決するためにな
されたもので、大面積の計測も容易に行え、液晶シャッ
ターのような高価な部品も必要とせず、しかも一回だけ
の撮像で多数断面の形状を計測でき、また計算式は簡単
で高速に実行可能で、測定精度も高い3次元形状の計測
装置を提供することを目的とする。
The present invention has been made in order to solve the above problems, and can easily measure a large area, does not require expensive parts such as a liquid crystal shutter, and has a large number of cross-sections by one-time imaging. It is an object of the present invention to provide a three-dimensional shape measuring device which can measure the shape of the object, can be executed at high speed with a simple calculation formula, and has high measurement accuracy.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に本発明の形状測定装置では、縞の次数が判別可能なよ
うに特徴づけられた縞パターンを基準平面及び測定面に
投影する投影装置と、投影された縞パターンを投影方向
とは異なる方向から撮像するテレビカメラと、該テレビ
カメラによって撮像された基準平面の縞パターン画像を
記憶しておく画像メモリーと、該画像メモリーに記憶さ
れている基準平面の縞パターン画像と前記テレビカメラ
によって撮像される測定面の縞パターン画像とを比較し
同一次数の縞間のずれ量を計測するずれ量計測回路と、
該ずれ量及び測定面の縞パターン画像の画素のx,y位
置とから測定面の3次元座標を計算する形状演算回路と
を設け、さらに3次元座標の計算が簡単な数式で高速に
実行できるようにするため、テレビカメラの光軸は基準
平面に対し垂直になるように、また投影装置のレンズ中
心とテレビカメラのレンズ中心はともに基準平面から等
距離になるように配置している。
In order to solve the above problems, the shape measuring apparatus of the present invention is a projection apparatus for projecting a fringe pattern characterized so that the order of fringes can be discriminated on a reference plane and a measurement plane. A television camera that captures the projected fringe pattern from a direction different from the projection direction; an image memory that stores the fringe pattern image of the reference plane captured by the television camera; and an image memory that stores the image. A displacement amount measuring circuit that compares the striped pattern image of the reference plane with the striped pattern image of the measurement surface captured by the television camera to measure the displacement amount between the stripes of the same order,
A shape calculation circuit that calculates the three-dimensional coordinates of the measurement surface from the displacement amount and the x and y positions of the pixels of the striped pattern image of the measurement surface is provided, and the calculation of the three-dimensional coordinates can be performed at high speed with a simple mathematical expression. In order to do so, the optical axis of the television camera is arranged to be perpendicular to the reference plane, and the lens center of the projection device and the lens center of the television camera are both arranged equidistant from the reference plane.

【0008】[0008]

【作用】以下本発明の装置により形状を測定する原理を
図3により説明する。図3においてPは投影装置のレン
ズ中心、Qはテレビカメラのレンズ中心で共に基準平面
10からhだけ離れている。12はテレビカメラの受光
面、O′はその中心である。O′Qはテレビカメラの光
軸であってその延長線が基準平面10と交わる点をOと
するとOO′は基準平面10に垂直になっている。ま
た、受光面12、PQ、基準平面10は互いに平行であ
る。受光面12の両端A′,B′に対応する基準平面1
0上の点をそれぞれA,Bとする。以下、座標系はOを
原点、OA方向をx方向、OQ方向をz方向、紙面に垂
直な方向をy方向にとり、テレビカメラの走査は主走査
がx方向、副走査がy方向になるようにする。また、投
影される縞パターンはx方向に明暗を繰り返すパターン
となっているものとする。いまある縞の光がPから出て
基準平面10上の点Cに到達し、受光面12上のC′点
に結像するとする。基準平面10の代わりに測定対象物
9がある場合、光線PCは測定対象物9上のDを照射
し、Dは受光面12のD′に結像する。D′Dまたはそ
の延長線が基準平面10と交わる点をEとする。Dの座
標を(x,y,z)とすれば簡単な幾何学により次式
(2)
The principle of measuring the shape by the apparatus of the present invention will be described below with reference to FIG. In FIG. 3, P is the lens center of the projection device, and Q is the lens center of the television camera, both of which are separated from the reference plane 10 by h. 12 is the light receiving surface of the television camera, and O'is its center. O'Q is the optical axis of the television camera, and OO 'is perpendicular to the reference plane 10 where O is the point where the extension line intersects the reference plane 10. The light receiving surface 12, PQ, and the reference plane 10 are parallel to each other. Reference plane 1 corresponding to both ends A'and B'of the light-receiving surface 12
The points on 0 are A and B, respectively. In the following, the coordinate system is based on O as the origin, the OA direction is the x direction, the OQ direction is the z direction, and the direction perpendicular to the paper surface is the y direction. To Further, the projected stripe pattern is assumed to be a pattern in which light and dark are repeated in the x direction. It is assumed that the existing striped light exits from P, reaches the point C on the reference plane 10, and forms an image at the point C ′ on the light receiving surface 12. When the measuring object 9 is present instead of the reference plane 10, the light beam PC illuminates D on the measuring object 9, and D is imaged on D ′ of the light receiving surface 12. Let E be the point where D'D or its extension intersects the reference plane 10. If the coordinates of D are (x, y, z), the following equation (2)

【数2】 が成りたち、これよりzは[Equation 2] From which z is

【数3】 となり、さらに次式[Equation 3] And the following equation

【数4】 が得られる。(4)式において、ABは基準平面10の
うちテレビカメラにより撮像される範囲のx方向長さな
ので事前に正確に把握でき、h,QPも事前に計測して
おくことができる。C′D′/A′B′は画像上でのx
方向の縞ずれの画素数と受光面のx方向全画素数の比で
ある。受光面のx方向全画素数は既知であるから、結局
x方向の縞のずれ量を画素単位で計測すればD点の高さ
zが計算できる。またx座標については、
[Equation 4] Is obtained. In the equation (4), AB is the length in the x direction of the range of the reference plane 10 captured by the television camera, so that it can be accurately grasped in advance, and h and QP can also be measured in advance. C'D '/ A'B' is x on the image
It is the ratio of the number of pixels of stripe deviation in the direction to the total number of pixels in the x direction on the light receiving surface. Since the total number of pixels in the x-direction on the light-receiving surface is known, the height z of point D can be calculated by measuring the amount of fringe shift in the x-direction in pixel units. For the x coordinate,

【数5】 であるから[Equation 5] Because

【数6】 が得られる。ここでO′D′/A′B′はD′点のx方
向画素位置により決まるので、(6)式はx方向の縞の
ずれ量と画素のx位置から計算できる。y座標を求める
には(6)式で分母はそのままで、分子のABをwで置
き換え、O′D′/A′B′をm/nで置き換えた次式
(7)
[Equation 6] Is obtained. Here, since O'D '/ A'B' is determined by the pixel position in the x direction at the point D ', equation (6) can be calculated from the stripe shift amount in the x direction and the x position of the pixel. In order to obtain the y-coordinate, the following formula (7) in which AB of the numerator is replaced by w and O′D ′ / A′B ′ is replaced by m / n in the formula (6) while keeping the denominator

【数7】 により計算できる。ここで、wは基準平面10のうちテ
レビカメラにより撮像される範囲のy方向長さで、mは
計測している点の画像上でのy方向位置を表すもので画
像中心から測った走査線数であり、nは全走査線の数で
ある。この式から分かるように、y座標はx方向の縞の
ずれ量と画素のy位置から計算できる。
[Equation 7] Can be calculated by Here, w is the length of the reference plane 10 in the y direction of the range imaged by the television camera, m is the y position on the image of the point being measured, and the scanning line measured from the center of the image. Is a number and n is the number of all scan lines. As can be seen from this equation, the y coordinate can be calculated from the amount of fringe shift in the x direction and the y position of the pixel.

【0009】以上説明したように測定物体画像の縞の画
素のx,y位置と、この縞を同一次数の基準平面画像の
縞と比較した時のx方向のずれ量とを計測すれば、対象
物の3次元座標を計算することができる。このようにし
て縞に沿って断面の形状が計測できるが、縞は多数ある
ので1枚の測定物体画像から多数の断面についての形状
データを得ることができる。(4)式、(6)式、
(7)式は近似式ではなく厳密な計算式であるが、いず
れも簡単な四則演算だけであるので極めて高速に実行可
能である。あるいは、予めいろいろなずれ量、画素のx
位置、y位置に対応した空間座標計算を行っておきその
計算結果をテーブル化しておく方式にすればより高速に
実行することもできる。また、この方式は基準平面と測
定対象物という距離的に近いものどうしの比較で、基準
平面を基準として計測するため測定精度が良い。さらに
明らかなように、投影装置は平行光ではなく距離と共に
広がる照明を行うので大面積の計測も容易であり、また
縞パターンを投影するだけなので安価に実現できる。
As described above, if the x and y positions of the pixels of the stripe of the measurement object image and the amount of deviation in the x direction when this stripe is compared with the stripe of the reference plane image of the same order, It is possible to calculate the three-dimensional coordinates of an object. In this way, the shape of the cross section can be measured along the stripe, but since there are many stripes, it is possible to obtain shape data for multiple cross sections from one measurement object image. Formula (4), Formula (6),
The expression (7) is not an approximate expression but a strict calculation expression, but since all of them are simple arithmetic operations, they can be executed at extremely high speed. Alternatively, various deviation amounts and pixel x
The spatial coordinate calculation corresponding to the position and the y position is performed and the calculation result is tabulated, so that it can be executed at a higher speed. Further, this method is good in measurement accuracy because the reference plane and the measurement object are compared with each other in terms of distance, and measurement is performed with the reference plane as a reference. Further, as is apparent, since the projection device does not illuminate parallel light but spreads with distance, it is easy to measure a large area, and since it only projects a stripe pattern, it can be realized at low cost.

【0010】[0010]

【実施例】図1は本発明の一実施例の装置構成を示す概
略図である。図において、1は縞パターンを投影する投
影装置で例えばスライドプロジェクターのようなものを
用いることができる。本実施例では、投影される縞の次
数を判別可能とするために縞の一本が太くなっており、
11がその太い縞である。2は投影された縞パターンを
撮像するテレビカメラ、3はテレビモニターである。測
定に先だって予め測定対象物9の代わりに基準平面(図
示せず)をセットし、その時の縞パターン画像を画像メ
モリー5に記憶させる。この時には切り換えスイッチ4
はaの方に接続される。また、基準平面はテレビカメラ
2の光軸に対して垂直で、テレビカメラ2のレンズ中心
までの距離と投影装置1のレンズ中心までの距離が等し
くなるようにセットされる。測定を行う場合には基準平
面の代わりに測定対象物9が置かれ、その時の縞パター
ン画像がテレビカメラ2により撮像されるが、この時切
り換えスイッチはbの方に接続される。
FIG. 1 is a schematic view showing the apparatus configuration of an embodiment of the present invention. In the figure, reference numeral 1 is a projection device for projecting a stripe pattern, and a device such as a slide projector can be used. In this embodiment, one stripe is thick in order to be able to determine the order of the projected stripe,
11 is the thick stripe. Reference numeral 2 is a television camera for capturing the projected stripe pattern, and 3 is a television monitor. Prior to the measurement, a reference plane (not shown) is set in advance in place of the measuring object 9 and the stripe pattern image at that time is stored in the image memory 5. At this time, changeover switch 4
Is connected to a. The reference plane is perpendicular to the optical axis of the television camera 2 and is set so that the distance to the lens center of the television camera 2 and the lens center of the projection device 1 are equal. When performing the measurement, the measuring object 9 is placed instead of the reference plane, and the stripe pattern image at that time is captured by the television camera 2. At this time, the changeover switch is connected to the side b.

【0011】図2(a)はこの時の測定対象物9の縞パ
ターン画像、図2(b)は画像メモリー5に記憶されて
いる基準平面の縞パターン画像であり、11a,11b
は太い縞の画像を表している。この2枚の画像はずれ量
計測回路6により比較され、同一次数の縞のx方向のず
れ量が計測される。また、同時に測定対象物のパターン
画像については、その画素のx,y座標がx,y位置計
測回路7により計測される。本実施例では太い縞11に
より縞の次数判別が可能になっているので、基準平面の
縞と測定対象物の縞と同一次数の縞どうしを間違いなく
比較することが可能である。8は形状演算回路で、ずれ
量計測回路6により計測されたずれ量と、x,y位置計
測回路7により計測された画素のx,y座標を用いて
(4)式、(6)式、(7)式にしたがって測定点の空
間座標を計算し出力する。
FIG. 2 (a) is a striped pattern image of the measuring object 9 at this time, and FIG. 2 (b) is a striped pattern image of the reference plane stored in the image memory 5, 11a and 11b.
Indicates a thick striped image. The two images are compared by the shift amount measuring circuit 6 and the shift amount of the stripes of the same order in the x direction is measured. At the same time, with respect to the pattern image of the measurement object, the x, y coordinates of the pixel are measured by the x, y position measuring circuit 7. In this embodiment, since the order of the stripes can be discriminated by the thick stripe 11, it is possible to definitely compare the stripes of the reference plane and the stripes of the measurement object with the same order. Reference numeral 8 denotes a shape calculation circuit, which uses the displacement amount measured by the displacement amount measuring circuit 6 and the x, y coordinates of the pixel measured by the x, y position measuring circuit 7 to obtain formulas (4) and (6). The spatial coordinates of the measurement point are calculated and output according to the equation (7).

【0012】尚、本実施例では縞の次数を判別可能とす
るために一本の太い縞を用いたが、必ずしもこの方法に
限定されるものではない。例えば、縞パターンに色づけ
を行いカラーカメラを用いるようにしても良い。
In the present embodiment, one thick stripe is used in order to distinguish the order of stripes, but the method is not necessarily limited to this. For example, the stripe pattern may be colored and a color camera may be used.

【0013】[0013]

【発明の効果】以上の説明で明らかなように、本発明の
装置によれば一回の撮像で多数の断面の形状を求めるこ
とができ、計算も高速に実行できるので極めて高速な形
状計測が可能となる。また、基準平面と測定対象物とい
う距離的に近いものどうしを比較する方式であるととも
に計算式も厳密なものであるので測定精度が高い。さら
に液晶シャッターのような高価な部品を必要とせず、ま
た平行光を用いないため大面積の計測も容易に行うこと
ができる。このように、本発明の装置は測定精度、測定
時間、装置価格、対象物サイズなどの面で従来装置が適
用できなかった用途に適用可能であり、その効果は極め
て多大である。
As is clear from the above description, according to the apparatus of the present invention, it is possible to obtain the shapes of a large number of cross sections by one image pickup, and the calculation can be executed at a high speed. It will be possible. Further, since the reference plane and the object to be measured, which are close to each other in terms of distance, are compared with each other and the calculation formula is strict, the measurement accuracy is high. Furthermore, since expensive parts such as a liquid crystal shutter are not required and parallel light is not used, it is possible to easily measure a large area. As described above, the device of the present invention can be applied to applications where the conventional device cannot be applied in terms of measurement accuracy, measurement time, device price, object size, and the like, and the effect is extremely great.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の装置構成を示す概略図であ
る。
FIG. 1 is a schematic diagram showing a device configuration of an embodiment of the present invention.

【図2】図1の構成でテレビカメラにより撮像された測
定対象物上の縞パターン画像と基準平面上の縞パターン
画像を示す図である。
FIG. 2 is a diagram showing a striped pattern image on a measurement object and a striped pattern image on a reference plane, which are imaged by a television camera with the configuration of FIG.

【図3】本発明の測定原理を説明するための説明図であ
る。
FIG. 3 is an explanatory diagram for explaining the measurement principle of the present invention.

【図4】従来の測定装置の一例を示す説明図である。FIG. 4 is an explanatory diagram showing an example of a conventional measuring device.

【符号の説明】[Explanation of symbols]

1 投影装置 2 テレビカメラ 3 テレビモニター 4 切り換えスイッチ 5 画像メモリー 6 ずれ量計測回路 7 x,y位置計測回路 8 形状演算回路 9 測定対象物 10 基準平面 11 太い縞 11a,11b 太い縞の画像 12 受光面 13 コリメータ光源 14 液晶シャッター 15 テレビカメラ 16 基準面 17 物体 18 物体の影 DESCRIPTION OF SYMBOLS 1 Projection device 2 Television camera 3 Television monitor 4 Changeover switch 5 Image memory 6 Deviation amount measuring circuit 7 x, y position measuring circuit 8 Shape calculation circuit 9 Measurement object 10 Reference plane 11 Thick stripes 11a, 11b Thick stripe image 12 Light reception Surface 13 Collimator light source 14 Liquid crystal shutter 15 Television camera 16 Reference plane 17 Object 18 Shadow of object

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成6年6月15日[Submission date] June 15, 1994

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0008[Correction target item name] 0008

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0008】[0008]

【作用】以下本発明の装置により形状を測定する原理を
図3により説明する。図3においてPは投影装置のレン
ズ中心、Qはテレビカメラのレンズ中心で共に基準平面
10からhだけ離れている。12はテレビカメラの受光
面、O′はその中心である。O′Qはテレビカメラの光
軸であってその延長線が基準平面10と交わる点をOと
するとOO′は基準平面10に垂直になっている。ま
た、受光面12、PQ、基準平面10は互いに平行であ
る。受光面12の両端A′,B′に対応する基準平面1
0上の点をそれぞれA,Bとする。以下、座標系はOを
原点、OA方向をx方向、OQ方向をz方向、紙面に垂
直な方向をy方向にとり、テレビカメラの走査は主走査
がx方向、副走査がy方向になるようにする。また、投
影される縞パターンはx方向に明暗を繰り返すパターン
となっているものとする。いまある縞の光がPから出て
基準平面10上の点Cに到達し、受光面12上のC′点
に結像するとする。基準平面10の代わりに測定対象物
9がある場合、光線PCは測定対象物9上のDを照射
し、Dは受光面12のD′に結像する。D′Dまたはそ
の延長線が基準平面10と交わる点をEとする。Dの座
標を(x,y,z)とすれば簡単な幾何学により次式
(2)
The principle of measuring the shape by the apparatus of the present invention will be described below with reference to FIG. In FIG. 3, P is the lens center of the projection device, and Q is the lens center of the television camera, both of which are separated from the reference plane 10 by h. 12 is the light receiving surface of the television camera, and O'is its center. O'Q is the optical axis of the television camera, and OO 'is perpendicular to the reference plane 10 where O is the point where the extension line intersects the reference plane 10. The light receiving surface 12, PQ, and the reference plane 10 are parallel to each other. Reference plane 1 corresponding to both ends A'and B'of the light-receiving surface 12
The points on 0 are A and B, respectively. In the following, the coordinate system is based on O as the origin, the OA direction is the x direction, the OQ direction is the z direction, and the direction perpendicular to the paper surface is the y direction. To Further, the projected stripe pattern is assumed to be a pattern in which light and dark are repeated in the x direction. It is assumed that the existing striped light exits from P, reaches the point C on the reference plane 10, and forms an image at the point C ′ on the light receiving surface 12. When the measuring object 9 is present instead of the reference plane 10, the light beam PC illuminates D on the measuring object 9, and D is imaged on D ′ of the light receiving surface 12. Let E be the point where D'D or its extension intersects the reference plane 10. If the coordinates of D are (x, y, z), the following equation (2)

【数2】 が成りたち、これよりzは[Equation 2] From which z is

【数3】 となり、さらに次式[Equation 3] And the following equation

【数4】 が得られる。(4)式において、ABは基準平面10の
うちテレビカメラにより撮像される範囲のx方向長さな
ので事前に正確に把握でき、h,QPも事前に計測して
おくことができる。C′D′/A′B′は画像上でのx
方向の縞ずれの画素数と受光面のx方向全画素数の比で
ある。受光面のx方向全画素数は既知であるから、結局
x方向の縞のずれ量を画素単位で計測すればD点の高さ
zが計算できる。またx座標については、
[Equation 4] Is obtained. In the equation (4), AB is the length in the x direction of the range of the reference plane 10 captured by the television camera, so that it can be accurately grasped in advance, and h and QP can also be measured in advance. C'D '/ A'B' is x on the image
It is the ratio of the number of pixels of stripe deviation in the direction to the total number of pixels in the x direction on the light receiving surface. Since the total number of pixels in the x-direction on the light-receiving surface is known, the height z of point D can be calculated by measuring the amount of fringe shift in the x-direction in pixel units. For the x coordinate,

【数5】 であるから[Equation 5] Because

【数6】 が得られる。ここでO′D′/A′B′はD′点のx方
向画素位置により決まるので、(6)式はx方向の縞の
ずれ量と画素のx位置から計算できる。y座標を求める
には(6)式で分母はそのままで、分子のABをwで置
き換え、O′D′/A′B′をm/nで置き換えた次式
(7)
[Equation 6] Is obtained. Here, since O'D '/ A'B' is determined by the pixel position in the x direction at the point D ', equation (6) can be calculated from the stripe shift amount in the x direction and the x position of the pixel. In order to obtain the y-coordinate, the following formula (7) in which AB of the numerator is replaced by w and O′D ′ / A′B ′ is replaced by m / n in the formula (6) while keeping the denominator

【数7】 により計算できる。ここで、wは基準平面10のうちテ
レビカメラにより撮像される範囲のy方向長さで、mは
計測している点の画像上でのy方向位置を表すもので画
像中心から測った走査線数であり、nは全走査線の数で
ある。この式から分かるように、y座標はx方向の縞の
ずれ量と画素のy位置から計算できる。
[Equation 7] Can be calculated by Here, w is the length of the reference plane 10 in the y direction of the range imaged by the television camera, m is the y position on the image of the point being measured, and the scanning line measured from the center of the image. Is a number and n is the number of all scan lines. As can be seen from this equation, the y coordinate can be calculated from the amount of fringe shift in the x direction and the y position of the pixel.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 縞の次数が判別可能なように特徴づけら
れた縞パターンを基準平面及び測定面に投影する投影装
置と、投影された縞パターンを投影方向とは異なる方向
から撮像するテレビカメラと、該テレビカメラによって
撮像された基準平面の縞パターン画像を記憶しておく画
像メモリーと、該画像メモリーに記憶されている基準平
面の縞パターン画像と前記テレビカメラによって撮像さ
れる測定面の縞パターン画像とを比較し同一次数の縞間
のずれ量を計測するずれ量計測回路と、該ずれ量及び測
定面の縞パターン画像の画素のx,y位置とから測定面
の3次元座標を計算する形状演算回路とを具備し、テレ
ビカメラは光軸が基準平面に対し垂直であり、投影装置
のレンズ中心とテレビカメラのレンズ中心はともに基準
平面から等距離になるように配置されることを特徴とす
る形状測定装置。
1. A projection device for projecting a striped pattern characterized so that the order of the striped lines can be discriminated on a reference plane and a measurement surface, and a television camera for imaging the projected striped pattern from a direction different from the projection direction. And an image memory for storing the stripe pattern image of the reference plane imaged by the television camera, the stripe pattern image of the reference plane stored in the image memory, and the stripes on the measurement surface imaged by the television camera. A three-dimensional coordinate of the measurement surface is calculated from a deviation amount measurement circuit that compares the pattern image and measures the deviation amount between stripes of the same order, and the deviation amount and the x and y positions of the pixels of the stripe pattern image on the measurement surface. The television camera has an optical axis perpendicular to the reference plane, and the lens center of the projection device and the lens center of the television camera are both equidistant from the reference plane. A shape measuring device characterized in that the shape measuring device is arranged as follows.
JP5162497A 1993-06-30 1993-06-30 Form measuring device Pending JPH0763527A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5162497A JPH0763527A (en) 1993-06-30 1993-06-30 Form measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5162497A JPH0763527A (en) 1993-06-30 1993-06-30 Form measuring device

Publications (1)

Publication Number Publication Date
JPH0763527A true JPH0763527A (en) 1995-03-10

Family

ID=15755751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5162497A Pending JPH0763527A (en) 1993-06-30 1993-06-30 Form measuring device

Country Status (1)

Country Link
JP (1) JPH0763527A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH112511A (en) * 1997-03-11 1999-01-06 Betrieps Forsch Vdeh Inst Angew Forsch Gmbh Flatness measuring system for metal strip
KR100740031B1 (en) * 2000-11-24 2007-07-18 가부시키가이샤 히타치세이사쿠쇼 Image processing method and contactless image input apparatus utilizing the method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH112511A (en) * 1997-03-11 1999-01-06 Betrieps Forsch Vdeh Inst Angew Forsch Gmbh Flatness measuring system for metal strip
KR100740031B1 (en) * 2000-11-24 2007-07-18 가부시키가이샤 히타치세이사쿠쇼 Image processing method and contactless image input apparatus utilizing the method

Similar Documents

Publication Publication Date Title
US5135308A (en) Method and apparatus for non-contact measuring of object surfaces
JP3878033B2 (en) 3D measuring device
JP3525964B2 (en) 3D shape measurement method for objects
US6611344B1 (en) Apparatus and method to measure three dimensional data
JP3937024B2 (en) Detection of misalignment, pattern rotation, distortion, and misalignment using moiré fringes
TWI414749B (en) Apparatus for measurement of surface profile
US20150015701A1 (en) Triangulation scanner having motorized elements
CN106989695A (en) A kind of projector calibrating method
US20070085849A1 (en) Color edge based system and method for determination of 3d surface topology
US20030123707A1 (en) Imaging-based distance measurement and three-dimensional profiling system
EP3306266A1 (en) Three-dimensional shape measurement apparatus
TWI512263B (en) Shape measuring device and shape measuring method
WO2014074003A1 (en) Method for monitoring linear dimensions of three-dimensional objects
CN104567724B (en) Measure the position of product and the method for 3D shape and scanner in a non-contact manner on face in operation
JP2007322162A (en) Three-dimensional shape measuring apparatus and three-dimensional shape measuring method
CN101476882B (en) Structured light three-dimensional detection method based on homography matrix
JP6645140B2 (en) Image calibration apparatus and calibration method
US20120056999A1 (en) Image measuring device and image measuring method
JPS62501165A (en) Method and equipment used for measurement
JPH0763527A (en) Form measuring device
RU125335U1 (en) DEVICE FOR MONITORING LINEAR SIZES OF THREE-DIMENSIONAL OBJECTS
CN115082538A (en) System and method for three-dimensional reconstruction of surface of multi-view vision balance ring part based on line structure light projection
JP6864911B2 (en) Surface shape strain measuring device
EP1676238B1 (en) A method for measuring dimensions by means of a digital camera
JP3868860B2 (en) 3D measuring device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020402