JPH0762540A - Wear resistant member - Google Patents

Wear resistant member

Info

Publication number
JPH0762540A
JPH0762540A JP5211485A JP21148593A JPH0762540A JP H0762540 A JPH0762540 A JP H0762540A JP 5211485 A JP5211485 A JP 5211485A JP 21148593 A JP21148593 A JP 21148593A JP H0762540 A JPH0762540 A JP H0762540A
Authority
JP
Japan
Prior art keywords
hard carbon
film
substrate
gas
carbon film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5211485A
Other languages
Japanese (ja)
Inventor
Shigeo Atsunushi
成生 厚主
Akitoshi Tomiyama
明俊 富山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP5211485A priority Critical patent/JPH0762540A/en
Publication of JPH0762540A publication Critical patent/JPH0762540A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Chemical Vapour Deposition (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PURPOSE:To provide a member excellent in adhesion to the substrate, capable of withstanding sliding over a long time and having superior wear resistance. CONSTITUTION:When the surface of a substrate made of a silicon nitride-based sintered compact is coated with a hard carbon film having 1-20mum thickness to obtain a wear resistant member, a layer of a mixture of hard carbon with silicon or a silicon compd. is formed in the hard carbon film at a part adjacent to the substrate especially in 0.1-5mum thickness corresponding to <=4S% of the total thickness of the hard carbon film.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高強度で基体との密着
性に優れたダイヤモンド膜またはダイヤモンド状炭素膜
などの硬質炭素膜を被覆した耐摩耗性部材に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wear resistant member coated with a hard carbon film such as a diamond film or a diamond-like carbon film having high strength and excellent adhesion to a substrate.

【0002】[0002]

【従来の技術】ダイヤモンドは、硬度、耐摩耗性、固体
潤滑性、電気絶縁性、熱伝導性などに優れていることか
ら、例えば切削工具類、研磨材、耐摩耗性機械部品、光
学部品などの各種部材のハードコート材や電気、電子材
料に利用されつつある。
2. Description of the Related Art Since diamond is excellent in hardness, wear resistance, solid lubricity, electric insulation, thermal conductivity, etc., for example, cutting tools, abrasives, wear resistant mechanical parts, optical parts, etc. It is being used as a hard coat material for various members, as well as electrical and electronic materials.

【0003】また近年、低圧下での気相成長法によるダ
イヤモンド等の硬質炭素膜の合成が可能となり、このよ
うな硬質炭素膜は、例えば摺動部材、切削工具類、研磨
材、などあらゆる分野に利用されつつある。
In recent years, it has become possible to synthesize a hard carbon film such as diamond by a vapor phase growth method under a low pressure, and such a hard carbon film can be used in various fields such as sliding members, cutting tools, and abrasives. Is being used by.

【0004】一方、これらダイヤモンド膜等の硬質炭素
膜の特性を発揮させるためには膜と基体との密着性が優
れていなければならない。しかしながら、これらの気相
合成法において形成した硬質炭素膜は基体との密着性の
点で必ずしも充分なものが得られないという問題があっ
た。
On the other hand, in order to exhibit the characteristics of the hard carbon film such as the diamond film, the adhesion between the film and the substrate must be excellent. However, there has been a problem that the hard carbon film formed by these vapor phase synthesis methods is not always sufficient in terms of adhesion to the substrate.

【0005】このような硬質炭素膜と基体との密着性は
両者の熱膨張係数差によりある程度評価でき、その差が
小さいほど密着性が強いと考えられている。これは膜と
基板との熱膨張の差により生じる応力により膜が基板か
ら剥離するためである。したがって、膜と基体との密着
性を高める手段の一つとして膜と基板の熱膨張係数の差
を小さくするという方法がある。この考えに基づき、例
えば基体にSiCからなる中間膜を形成し、次いでダイ
ヤモンド膜を形成する方法が特開昭63−286576
号にて提案されている。また、超硬合金からなる基体と
ダイヤモンド膜との間にダイヤモンドと金属化合物から
なる中間層を形成することが特開平5−5179号にて
提案されている。
The adhesion between such a hard carbon film and the substrate can be evaluated to some extent by the difference in thermal expansion coefficient between the two, and the smaller the difference, the stronger the adhesion. This is because the film peels from the substrate due to the stress generated by the difference in thermal expansion between the film and the substrate. Therefore, there is a method of reducing the difference in thermal expansion coefficient between the film and the substrate as one of means for improving the adhesion between the film and the substrate. Based on this idea, a method of forming an intermediate film made of SiC, for example, on a substrate and then forming a diamond film is disclosed in JP-A-63-286576.
It is proposed in the issue. Further, JP-A-5-5179 proposes to form an intermediate layer made of diamond and a metal compound between a base made of cemented carbide and a diamond film.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、基体と
の密着性に関し、基体と炭素膜との間にSiCの中間層
を形成する方法によれば、中間層を形成しない場合より
は両者の熱膨張差が緩和されるために密着性をある程度
高めることができ、耐摩耗性部材としての寿命を延ばす
ことができるが、耐摩耗性部材としての摺動性や耐摩耗
性の点では未だ満足すべき特性が得られていない。しか
も、硬質炭素膜を形成する工程前に、中間膜を形成する
作業工程が必要となるために工程数が増え、生産性が低
い。
However, regarding the adhesion to the substrate, according to the method of forming the intermediate layer of SiC between the substrate and the carbon film, the thermal expansion of both is higher than that in the case where the intermediate layer is not formed. Since the difference is relaxed, the adhesion can be increased to some extent and the life as a wear resistant member can be extended, but it is still satisfactory in terms of slidability and wear resistance as a wear resistant member. Characteristics are not obtained. Moreover, since a work process for forming the intermediate film is required before the process for forming the hard carbon film, the number of processes is increased and the productivity is low.

【0007】また、特開平5−5179号によれば、ダ
イヤモンドと超硬合金との熱膨張差が大きいことから、
両者の密着性を高めるための層構成について検討されて
いるにすぎず、耐摩耗性部材としての特性の点からは十
分に検討されていない。
Further, according to JP-A-5-5179, since the difference in thermal expansion between diamond and cemented carbide is large,
Only the layer structure for increasing the adhesiveness between the two has been studied, but not enough from the viewpoint of the characteristics as a wear resistant member.

【0008】よって、本発明は上記問題点を解決し、耐
摩耗部材として低摩擦係数を有するとともに長期摺動に
耐えることのできる耐摩耗部材を得ることを目的とする
ものである。
Therefore, the present invention is intended to solve the above problems and to provide a wear resistant member having a low coefficient of friction and capable of withstanding long-term sliding as a wear resistant member.

【0009】[0009]

【問題点を解決するための手段】本発明者らは、上記問
題点に対して検討を重ねた結果、硬質炭素膜を形成する
母材として窒化珪素質焼結体を選択すること、また硬質
炭素膜中の基体側に隣接して硬質炭素と珪素あるいは珪
素化合物との混合層を存在させることにより、前記目的
が達成されることをを突き止めた。特に、前記混合層の
厚みを0.1〜5μmとし、混合層の厚みが硬質炭素膜
全体の厚みの45%以下となるように制御することを特
徴とするものである。
As a result of repeated studies on the above problems, the present inventors have selected a silicon nitride sintered body as a base material for forming a hard carbon film, and It has been found that the above object can be achieved by providing a mixed layer of hard carbon and silicon or a silicon compound adjacent to the substrate side in the carbon film. In particular, the thickness of the mixed layer is set to 0.1 to 5 μm, and the thickness of the mixed layer is controlled to be 45% or less of the total thickness of the hard carbon film.

【0010】以下、本発明を詳述する。本発明の耐摩耗
性部材によれば、上記硬質炭素膜を形成する基体として
窒化珪素質焼結体を用いることを大きな特徴とするもの
である。窒化珪素自体の熱膨張係数がおよそ2〜5×1
-6/℃であり、硬質炭素膜の熱膨張係数がおよそ2〜
4×10-6/℃であり、互いに近似している。特に窒化
珪素質焼結体中には窒化珪素以外に各種の焼結助剤を含
んでいるために、熱膨張係数が添加する焼結助剤により
多少変化し、硬質炭素膜もダイヤモンド結晶、アモルフ
ァス炭素、ダイヤモンドライクカーボン、グラファイト
など硬質炭素膜を構成する成分により熱膨張係数が変化
する。そのため、基体と硬質炭素膜との熱膨張差が2×
10- 6 /℃以下になるように組み合わせることが望ま
しい。
The present invention will be described in detail below. The wear resistant member of the present invention is characterized in that a silicon nitride sintered body is used as a substrate for forming the hard carbon film. The coefficient of thermal expansion of silicon nitride itself is about 2 to 5 × 1
A 0 -6 / ℃, 2~ thermal expansion coefficient of the hard carbon film is approximately
4 × 10 −6 / ° C., which are close to each other. In particular, since the silicon nitride-based sintered body contains various sintering aids in addition to silicon nitride, the coefficient of thermal expansion will change somewhat depending on the sintering aid to be added, and the hard carbon film will also have a diamond crystal or amorphous structure. The coefficient of thermal expansion changes depending on the constituents of the hard carbon film such as carbon, diamond-like carbon and graphite. Therefore, the difference in thermal expansion between the substrate and the hard carbon film is 2 ×
It is desirable to combine them so as to be 10 -6 / ° C or less.

【0011】また、基体として使用される窒化珪素質焼
結体は、窒化珪素に対して焼結助剤としてY、Yb、E
r、Sc、Laなどの周期律表第3a族元素酸化物や、
Al2 3 、MgOなどを1〜20重量%の割合で含有
されるもので、相対密度が95%以上、室温における抗
折強度(4点曲げによる)が50kg/mm2 以上、靱
性(K1c)が5MPa・m1/2 以上のものが望ましい。
Further, the silicon nitride-based sintered body used as the substrate is Y, Yb, E as a sintering aid for silicon nitride.
an oxide of a Group 3a element of the periodic table such as r, Sc, La, or the like,
Al 2 O 3 , MgO, etc. are contained at a ratio of 1 to 20% by weight, the relative density is 95% or more, the bending strength at room temperature (by four-point bending) is 50 kg / mm 2 or more, and the toughness (K It is desirable that 1 c) is 5 MPa · m 1/2 or more.

【0012】また、本発明によれば、基体と硬質炭素膜
との熱膨張を近似させたとしても耐摩耗性部材として優
れた特性は得られない。そこで、本発明によれば、硬質
炭素膜中の基体側に隣接して硬質炭素と珪素あるいは珪
素化合物との混合層を存在させることが大きな特徴であ
る。この混合層の存在により硬質炭素膜と基体との間に
熱膨張上の大きな変曲点がなく、基体と硬質炭素膜との
密着性をより高めるとともに硬質炭素膜の靱性を高める
ことができる。この混合層は、硬質炭素からなる相と、
珪素あるいは珪素化合物、例えばSiC、Si3 4
どの化合物相が混在した層である。
Further, according to the present invention, even if the thermal expansion of the substrate and the hard carbon film are approximated, excellent characteristics as a wear resistant member cannot be obtained. Therefore, according to the present invention, a major feature is that a mixed layer of hard carbon and silicon or a silicon compound is present adjacent to the substrate side in the hard carbon film. Due to the existence of this mixed layer, there is no large inflection point on the thermal expansion between the hard carbon film and the substrate, and the adhesion between the substrate and the hard carbon film can be further enhanced and the toughness of the hard carbon film can be enhanced. This mixed layer, a phase made of hard carbon,
It is a layer in which silicon or a silicon compound, for example, a compound phase such as SiC or Si 3 N 4 is mixed.

【0013】この混合層は膜中の基体側に隣接して0.
1〜5μmの厚みで形成することが望ましく、また、硬
質炭素膜の最表面は実質的に硬質炭素のみから構成され
ることが望ましい。そのため、混合層の厚みは、硬質炭
素膜全体の厚みの45%以下となるように制御すること
が望ましい。これは、混合層の厚みが0.1μmより薄
いと、混合層の存在による密着性の向上および硬質炭素
膜の靱性向上効果が小さく、5μmより厚いと、硬質炭
素膜全体の硬度が低くなったり、膜中に歪みなどが生じ
やすくなり、耐久性が低下するなどの問題が発生するた
めである。さらに、混合層の厚みが硬質炭素膜全体の厚
みの45%を越えると、硬質炭素膜の優れた特性が膜表
面で十分に発揮されず、耐摩耗性部材としての耐摩耗性
や摺動特性が低下するためである。
This mixed layer is adjacent to the side of the substrate in the film.
The hard carbon film is preferably formed with a thickness of 1 to 5 μm, and the outermost surface of the hard carbon film is preferably substantially composed of hard carbon. Therefore, it is desirable to control the thickness of the mixed layer to be 45% or less of the total thickness of the hard carbon film. This is because when the thickness of the mixed layer is less than 0.1 μm, the effect of improving the adhesion and the toughness of the hard carbon film due to the presence of the mixed layer is small, and when the thickness is more than 5 μm, the hardness of the entire hard carbon film becomes low. This is because distortion or the like is likely to occur in the film, resulting in problems such as deterioration in durability. Furthermore, when the thickness of the mixed layer exceeds 45% of the total thickness of the hard carbon film, the excellent properties of the hard carbon film are not fully exhibited on the film surface, and the wear resistance and sliding characteristics of the wear resistant member are reduced. This is because the

【0014】本発明の耐摩耗性部材を製造するには、前
記窒化珪素質焼結体を基体として、その表面に一般的な
気相成長法に基づき硬質炭素膜を成膜するものである
が、硬質炭素膜を成膜する手法としては、炭素を含有す
る炭素源ガスを原料ガスとして用いて、これをマイクロ
波や高周波等により励起させて基体に接触させることに
より、基体表面に硬質炭素膜を析出させることができ
る。かかる硬質炭素膜の具体的な製法については、例え
ば、特開昭53−10394号、特開昭56−2261
6号、特開昭58−91100号に記載されている。
In order to manufacture the wear resistant member of the present invention, a hard carbon film is formed on the surface of the above-mentioned silicon nitride sintered body as a substrate by a general vapor phase growth method. As a method for forming a hard carbon film, a carbon source gas containing carbon is used as a raw material gas, which is excited by microwaves or high frequency waves and brought into contact with the base to form a hard carbon film on the surface of the base. Can be deposited. Specific methods for producing such a hard carbon film are described in, for example, JP-A-53-10394 and JP-A-56-2261.
6 and JP-A-58-91100.

【0015】また、本発明に基づき硬質炭素と珪素ある
いは珪素化合物との混合層を形成するには、原料ガスと
して前記炭素源ガス以外に珪素元素を含有するガスを混
合すると同時に、N2 ガスなどを導入することにより硬
質炭素と珪素あるいは珪素化合物を同時に析出させるこ
とができる。
In order to form a mixed layer of hard carbon and silicon or a silicon compound according to the present invention, a gas containing silicon element is mixed as a raw material gas in addition to the carbon source gas, and at the same time N 2 gas or the like is mixed. By introducing the above, hard carbon and silicon or a silicon compound can be simultaneously deposited.

【0016】この時に原料ガス中に混合される珪素元素
含有ガスは、その量が炭素源ガスに対して0.5乃至1
0%、特に0.5乃至5%の割合で混合されることが望
ましい。これは、0.5%より少ないと混合層の形成が
難しく、10%を越えると、化合物相が多く形成され、
硬質炭素膜としての性能を低下させてしまうためであ
る。
The silicon element-containing gas mixed in the raw material gas at this time has an amount of 0.5 to 1 with respect to the carbon source gas.
It is desirable to mix them in a proportion of 0%, particularly 0.5 to 5%. If it is less than 0.5%, it is difficult to form a mixed layer, and if it exceeds 10%, a large amount of compound phase is formed.
This is because the performance as a hard carbon film is deteriorated.

【0017】なお、硬質炭素膜を生成するのに用いられ
る炭素源ガスとしては、例えば、メタン、エタン、プロ
パン、ブタン、ペンタン、ヘキサンなどのアルカン類、
エチレン、プロピレン、ブテン、ペンテン、ブタジエン
などのアルケン類、アセチレンなどのアルキン類、ベン
ゼン、トルエン、キシレン、インデン、ナフタリン、フ
ェナントレンなどの芳香族炭化水素類、シクロプロパ
ン、シクロヘキサンなどのシクロパラフィン類、シクロ
ペンテン、シクロヘキセンなどのシクロオレフィン類な
どが挙げられる。また一酸化炭素、二酸化炭素、メチル
アルコール、エチルアルコール、アセトンなどの含酸素
炭素化合物、モノ(ジ、トリ)メチルアミン、モノ
(ジ、トリ)エチルアミンなどの含窒素炭素化合物など
も炭素源ガスとして使用することができる。これらの中
でも好ましいのは、メタン、エタン、プロパンなどのパ
ラフィン系炭化水素、一酸化炭素、二酸化炭素、メチル
アルコール、アセトンなどの含酸素炭素化合物、及びト
リメチルアミンなどの含窒素炭素化合物である。これら
は一種単独で用いることもできるし、二種以上で併用す
ることもできる。
The carbon source gas used to form the hard carbon film includes, for example, alkanes such as methane, ethane, propane, butane, pentane and hexane,
Alkenes such as ethylene, propylene, butene, pentene and butadiene, alkynes such as acetylene, aromatic hydrocarbons such as benzene, toluene, xylene, indene, naphthalene and phenanthrene, cycloparaffins such as cyclopropane and cyclohexane, cyclopentene And cycloolefins such as cyclohexene. In addition, carbon monoxide, carbon dioxide, oxygen-containing carbon compounds such as methyl alcohol, ethyl alcohol and acetone, and nitrogen-containing carbon compounds such as mono (di, tri) methylamine and mono (di, tri) ethylamine are also used as carbon source gases. Can be used. Among these, paraffin hydrocarbons such as methane, ethane and propane, oxygen-containing carbon compounds such as carbon monoxide, carbon dioxide, methyl alcohol and acetone, and nitrogen-containing carbon compounds such as trimethylamine are preferable. These may be used alone or in combination of two or more.

【0018】また、用いる珪素含有ガスとしては、四フ
ッ化ケイ素、四塩化ケイ素、四臭化ケイ素等のハロゲン
化物、二酸化ケイ素などの酸化物の他に、モノ(ジ、ト
リ、テトラ、ペンタ)シラン、モノ(ジ、トリ、テト
ラ)メチルシラン、メチルクロルシラン、フェニルクロ
ルシランなどのシラン化合物、トリメチルシラノール、
トリエチルシラノール、トリフェニルシラノールなどの
シラノール化合物なども挙げられ、この場合好ましいの
は、モノシラン、モノ(ジ、トリ、テトラ)メチルシラ
ンである。これらは単独で用いることもできるし、2種
以上で併用することもできる。
As the silicon-containing gas to be used, in addition to halides such as silicon tetrafluoride, silicon tetrachloride and silicon tetrabromide, oxides such as silicon dioxide, mono (di, tri, tetra, penta) is also used. Silane compounds such as silane, mono (di, tri, tetra) methylsilane, methylchlorosilane, phenylchlorosilane, trimethylsilanol,
Examples thereof include silanol compounds such as triethylsilanol and triphenylsilanol. In this case, monosilane and mono (di, tri, tetra) methylsilane are preferable. These may be used alone or in combination of two or more.

【0019】また原料ガスとして、上記以外に水素ガス
や希釈用ガス、例えばアルゴンガス、ヘリウムガスなど
を含んでも良い。
In addition to the above, the raw material gas may contain hydrogen gas or a diluting gas such as argon gas or helium gas.

【0020】望ましくは、まず、上記方法により硬質炭
素と珪素あるいは珪素化合物との混合層を形成した後、
珪素含有ガスの導入を中止して、硬質炭素のみを形成す
ることに混合層上に硬質炭素層が形成された膜を得るこ
とができる。さらには、混合層形成時に初期から徐々に
珪素含有ガスの量を減少させることにより混合層におけ
る珪素あるいは珪素化合物の析出量が基体側から膜表面
側に向けて徐々に少なくなるように珪素あるいは珪素化
合物の濃度が変化した混合層を形成することにより、基
体と硬質炭素膜との熱膨張差を変曲点がなく連続して変
化させることができる。
Preferably, first, a mixed layer of hard carbon and silicon or a silicon compound is formed by the above method, and then,
A film having a hard carbon layer formed on the mixed layer can be obtained by stopping the introduction of the silicon-containing gas and forming only hard carbon. Further, the amount of silicon-containing gas in the mixed layer is gradually decreased from the initial stage when the mixed layer is formed so that the amount of silicon or silicon compound deposited in the mixed layer gradually decreases from the substrate side toward the film surface side. By forming the mixed layer in which the concentration of the compound is changed, the thermal expansion difference between the substrate and the hard carbon film can be continuously changed without an inflection point.

【0021】[0021]

【作用】本発明によれば、耐摩耗性部材としての摺動
性、摩擦係数、比摩耗量などの特評価項目に対して、硬
質炭素膜を形成した部材において基体の種類、膜質など
を変えて検討したところ、基体として一般に用いられる
超硬合金よりも窒化珪素質焼結体を用いた方が摺動性に
おいて優れることがわかった。
According to the present invention, the type of the substrate, the film quality, etc. of the member having the hard carbon film formed can be changed with respect to the special evaluation items such as slidability, friction coefficient and specific wear amount as the wear resistant member. As a result, it was found that the silicon nitride sintered body was superior in slidability to the cemented carbide generally used as the substrate.

【0022】また、硬質炭素膜と基体との密着性を向上
させるための方法として、基体と硬質炭素膜との間に熱
膨張係数がおよび基体と硬質炭素膜との中間的な物質を
介在させたり、硬質炭素と基体成分を含む化合物との混
合層を形成するなどの方法があるが、中間層を形成する
方法よりも混合層を形成する方が摺動性において優れる
ものであった。
As a method for improving the adhesion between the hard carbon film and the substrate, a substance having a coefficient of thermal expansion and an intermediate substance between the substrate and the hard carbon film is interposed between the substrate and the hard carbon film. Alternatively, there are methods such as forming a mixed layer of hard carbon and a compound containing a base component. However, forming the mixed layer was superior in slidability to the method of forming the intermediate layer.

【0023】しかも、上記知見に基づき、母材として窒
化珪素質焼結体を用いるとともに、形成する硬質炭素膜
中に硬質炭素と珪素あるいは珪素化合物との混合層を形
成したところ、摺動特性などが大きく向上した。これ
は、密着性を向上させるために中間層や混合層を形成す
ることで、基体と硬質炭素膜との熱膨張による剥離等を
抑制することができるものの、基体として超硬合金を用
いた場合には、そもそも超硬合金と硬質炭素膜との熱膨
張差が大きいために窒化珪素質焼結体基体の場合に比較
して熱膨張特性が基体と硬質炭素膜との界面で急激に変
化することとなる。このような熱膨張特性の急激な変化
が存在すると、耐摩耗性部材として使用した場合に発生
する摩擦熱による応力の発生を緩和することができず、
応力が蓄積されて部材としての寿命が短くなってしま
う。
Moreover, based on the above knowledge, when a silicon nitride sintered body was used as a base material and a mixed layer of hard carbon and silicon or a silicon compound was formed in the hard carbon film to be formed, sliding characteristics, etc. Is greatly improved. This is because when an intermediate layer or a mixed layer is formed in order to improve adhesion, peeling due to thermal expansion between the base and the hard carbon film can be suppressed, but when a cemented carbide is used as the base. In the first place, since the difference in thermal expansion between the cemented carbide and the hard carbon film is large in the first place, the thermal expansion characteristics change drastically at the interface between the base and the hard carbon film as compared with the case of the silicon nitride sintered body base. It will be. If there is such a rapid change in thermal expansion characteristics, it is not possible to alleviate the generation of stress due to frictional heat generated when used as a wear resistant member,
Stress accumulates and the life of the member is shortened.

【0024】これに対して、窒化珪素質焼結体を基体と
して用いると、硬質炭素膜との熱膨張係数が非常に近似
していることから相互の界面における熱膨張特性の急激
な変化がほとんどないために応力が蓄積されることな
く、部材の長寿命化を達成することができる。
On the other hand, when the silicon nitride sintered body is used as the substrate, the coefficient of thermal expansion with the hard carbon film is very close to each other. Since no stress is accumulated, the life of the member can be extended.

【0025】また、本発明によれば、基体として窒化珪
素質焼結体を選択し、且つ硬質炭素膜中に所定の混合層
を形成すると、基体や硬質炭素膜とは異質の中間層を形
成する場合に比較して物質的な相違による界面が存在し
ないため、特に摺動を伴う部材においては、膜と基体と
の界面に剪断応力が加わるが、この応力に対する耐久性
が向上する。また、混合層では、硬質炭素成分の析出時
の粒成長を抑制し、微細な結晶構造の膜を形成すること
ができるため硬質炭素膜の靱性を高めることができる。
よって基体自体が高靱性であることに加え、混合層の存
在により硬質炭素膜の基体との界面における靱性を高め
ることができるために、外部からの応力に対する耐久性
を高めるとともに、膜の耐摩耗性を向上することができ
る。
Further, according to the present invention, when a silicon nitride sintered body is selected as the base and a predetermined mixed layer is formed in the hard carbon film, an intermediate layer different from the base and the hard carbon film is formed. Since there is no interface due to a material difference as compared with the above case, shear stress is applied to the interface between the film and the substrate, especially in a member involving sliding, but the durability against this stress is improved. Further, in the mixed layer, grain growth during precipitation of the hard carbon component can be suppressed and a film having a fine crystal structure can be formed, so that the toughness of the hard carbon film can be enhanced.
Therefore, in addition to the toughness of the substrate itself, the toughness at the interface of the hard carbon film with the substrate can be increased due to the presence of the mixed layer, so that the durability against external stress is increased and the abrasion resistance of the film is improved. It is possible to improve the property.

【0026】[0026]

【実施例】【Example】

実施例1 反応室内にSi(CH3 4 を500ppmの濃度で含
むのSi(CH3 4−H2 混合ガスを20SCCMの
流量で、N2 −H2 混合ガス(N2 濃度1%)を10S
CCM、CH4 ガスを1.0SCCM、H2 ガス170
SCCMの流量でそれぞれ導入し(CH4 ガス濃度は
0.5%)、反応室内圧力を0.30kPaに設定し
た。次いで、2450MHzのマイクロ波電源から出力
400Wを投入し、マイクロ波プラズマCVD法により
Si3 4 を主成分としY2 3 を2重量%、Al2
3 を5重量%含有する焼結体( 熱膨張係数4×10-6
℃)からなる基板に膜内にSi3 4 およびSiCを含
むダイヤモンド膜(第1層)を得、その後、Si(CH
3 4 −H2 混合ガスの供給を止め、CH4 ガスを1.
0SCCM、H2 ガス200SCCMを導入してダイヤ
モンド膜(第2層)を成膜した。なお、第1層および第
2層の成膜時間を変えて表1中の試料No.1および試料
No.2の試料を作製した。
Example 1 Si (CH 3 ) 4 -H 2 mixed gas containing Si (CH 3 ) 4 at a concentration of 500 ppm in a reaction chamber at a flow rate of 20 SCCM and N 2 —H 2 mixed gas (N 2 concentration 1%). To 10S
CCM, CH 4 gas 1.0 SCCM, H 2 gas 170
Each was introduced at a flow rate of SCCM (CH 4 gas concentration was 0.5%), and the reaction chamber pressure was set to 0.30 kPa. Then, an output of 400 W was input from a microwave power source of 2450 MHz, and Si 3 N 4 was used as a main component and 2% by weight of Y 2 O 3 and Al 2 O were supplied by a microwave plasma CVD method.
Sintered body containing 5% by weight of 3 (coefficient of thermal expansion 4 × 10 -6 /
The film on the substrate made of ° C.) to obtain a diamond film containing Si 3 N 4 and SiC (first layer), then, Si (CH
3 ) Stop the supply of 4- H 2 mixed gas, and add CH 4 gas to 1.
A diamond film (second layer) was formed by introducing 0 SCCM and H 2 gas 200 SCCM. Samples No. 1 and No. 2 in Table 1 were prepared by changing the film forming times of the first layer and the second layer.

【0027】得られた各被覆部材に対して、ピンオンデ
ィスク法に基づき摺動特性を評価した。摺動試験の条件
は、室温、大気中、無潤滑において、荷重39.2N、
摺動速度2m/sec、24時間で行った。ピンはアル
ミニウム製のものを用いた。
The sliding characteristics of each of the obtained coated members were evaluated based on the pin-on-disk method. The sliding test conditions were room temperature, air, and no lubrication under a load of 39.2N,
The sliding speed was 2 m / sec and the time was 24 hours. The pins used were made of aluminum.

【0028】測定では、膜が剥離するまでの摺動距離、
摩擦係数およびディスク面の比摩耗量を測定した。な
お、比摩耗量は、24時間摺動試験においても膜剥離が
生じなかったものについてのみ表示した。それぞれの測
定結果は表1に示した。
In the measurement, the sliding distance until the film peels off,
The friction coefficient and the specific wear amount of the disk surface were measured. In addition, the specific wear amount is shown only when the film peeling did not occur even in the 24-hour sliding test. The respective measurement results are shown in Table 1.

【0029】実施例2 原料ガスとして、Si(CH3 4 を500ppmの濃
度で含むのSi(CH3 4 −H2 混合ガスを20SC
CMの流量で、CH4 ガスを1.0SCCM、H2 ガス
を180SCCM、H2 ガス170SCCMの流量でそ
れぞれ導入して(CH4 濃度は0.5%)、実施例1で
用いた基板と同じSi3 4 質焼結体の表面にSiCを
含むダイヤモンド膜(第1層)を成膜し、さらに、CH
4 ガス1.0SCCM、H2 ガス200SCCMを導入
してダイヤモンド膜(第2層)を成膜した。なお、第1
層を0.1〜6μm、第2層の厚みを2〜8μmの厚み
で表1の試料No.3〜8のように成膜し、得られた被覆
部材に対して実施例1と同様な方法で摺動特性を評価
し、結果を表1に示した。
Example 2 As a source gas, 20 SC of Si (CH 3 ) 4 -H 2 mixed gas containing Si (CH 3 ) 4 at a concentration of 500 ppm was used.
At a flow rate of CM, 1.0 sccm of CH 4 gas, H 2 gas 180 sccm, and introduced respectively at flow rates of H 2 gas 170 sccm (CH 4 concentration is 0.5%), identical to the substrate used in Example 1 A diamond film (first layer) containing SiC is formed on the surface of the Si 3 N 4 sintered body, and CH
4 gas 1.0 SCCM and H 2 gas 200 SCCM were introduced to form a diamond film (second layer). The first
A layer having a thickness of 0.1 to 6 μm and a second layer having a thickness of 2 to 8 μm was formed as in Sample Nos. 3 to 8 in Table 1, and the obtained covering member was formed in the same manner as in Example 1. The sliding characteristics were evaluated by the method, and the results are shown in Table 1.

【0030】実施例3 実施例1において、成膜初期にSi(CH3 4 濃度5
00ppmのSi(CH3 4 −H2 混合ガス20sc
cm、CH4 ガス1.0sccm、N2 −H2ガス10
SCCM、H2 ガス170SCCMの割合から、5時間
時点でH2 200SCCM、CH4 1.0SCCMの流
量になるように徐々にガスの流量を変化させて、Si
C、Si3 4 およびダイヤモンドからなり、SiC、
Si3 4の量が基板から膜表面に向かい徐々に少なく
なるような混合層(第1層)を形成した後、引き続き1
5時間ダイヤモンド膜(第2層)を成膜した(試料No.
14)。得られた被覆部材に対して、実施例1と同様に
摺動特性を評価し、その結果を表1に示した。
Example 3 In Example 1, the Si (CH 3 ) 4 concentration was set to 5 at the initial stage of film formation.
00ppm of Si (CH 3) 4 -H 2 mixed gas 20sc
cm, CH 4 gas 1.0sccm, N 2 -H 2 gas 10
From the ratio of SCCM and H 2 gas 170 SCCM, the gas flow rate is gradually changed so that the flow rate becomes H 2 200 SCCM and CH 4 1.0 SCCM at 5 hours.
C, Si 3 N 4 and diamond, SiC,
After forming a mixed layer (first layer) in which the amount of Si 3 N 4 gradually decreases from the substrate toward the film surface, 1
A diamond film (second layer) was formed for 5 hours (Sample No.
14). The obtained covering member was evaluated for sliding characteristics in the same manner as in Example 1, and the results are shown in Table 1.

【0031】比較例1 原料ガスとしてH2 ガスに対してCH4 ガスをCH4
度0.5%となる流量で反応室内に導入し、実施例1で
用いた基板と同じSi3 4 質焼結体の表面にダイヤモ
ンド膜のみを成膜した(試料No.9)。
Comparative Example 1 CH 4 gas was introduced as a source gas into the reaction chamber at a flow rate such that CH 4 concentration was 0.5% with respect to H 2 gas, and the same Si 3 N 4 quality as the substrate used in Example 1 was used. Only the diamond film was formed on the surface of the sintered body (Sample No. 9).

【0032】また、原料ガスとしてSi(CH3 4
1000ppmの濃度で含むSi(CH3 4 −H2
合ガスを200SCCMの流量で導入して実施例1のS
34 質焼結体の基体表面にSiC膜(第1層)を成
膜した後、H2 ガスに対してCH4 ガスをCH4 濃度
0.5%で導入してダイヤモンド膜(第2層)を成膜し
た(試料No.10)。そして、上記各試料について実施
例1と同様に摺動特性を評価し、その結果を表1に示し
た。
Further, the raw material gas as Si (CH 3) 4 Si ( CH 3) at a concentration of 1000ppm of by introducing 4 -H 2 mixed gas at a flow rate of 200SCCM of Example 1 S
After the SiC film (first layer) is formed on the surface of the base body of the i 3 N 4 -based sintered body, CH 4 gas is introduced into H 2 gas at a CH 4 concentration of 0.5% to form a diamond film (first layer). Two layers) were deposited (Sample No. 10). Then, the sliding characteristics of each of the above samples were evaluated in the same manner as in Example 1, and the results are shown in Table 1.

【0033】比較例2 硬質炭素膜を形成する基体として、窒化珪素質焼結体に
代わり、WC94%、TiC1%、Co5%からなる超
硬合金基体(熱膨張係数5×10-6/℃)およびTiC
N50%、NbC9%、WC9%、Mo2 C16%、N
i16%からなる超硬合金およびサーメットに対して、
実施例2における最適な硬質炭素膜の構成である試料N
o.4と同一の膜構成で硬質炭素膜を形成した。得られた
被覆部材(試料No.12,13)に対して実施例1と同
様な方法で摺動特性を評価し、その結果を表1に示し
た。
Comparative Example 2 As a substrate for forming a hard carbon film, a cemented carbide substrate made of WC94%, TiC1% and Co5% (coefficient of thermal expansion 5 × 10 −6 / ° C.) was used instead of the silicon nitride sintered body. And TiC
N50%, NbC9%, WC9% , Mo 2 C16%, N
For cemented carbide and cermet consisting of i16%,
Sample N, which is the optimum hard carbon film configuration in Example 2
A hard carbon film was formed with the same film configuration as in o.4. The obtained coated members (Sample Nos. 12 and 13) were evaluated for sliding properties in the same manner as in Example 1, and the results are shown in Table 1.

【0034】[0034]

【表1】 [Table 1]

【0035】表1によれば、基体として窒化珪素質焼結
体を用いた試料No.4と、基体として超硬合金やサーメ
ットを用いた試料No.12、13とを比較すると、摩擦
係数については大きな差異はないが、摺動距離におい
て、基体として窒化珪素質焼結体を用いた方が優れてい
ることがわかる。
According to Table 1, when comparing the sample No. 4 using the silicon nitride sintered body as the base and the samples No. 12 and 13 using the cemented carbide or cermet as the base, the friction coefficient is Although there is no big difference, it is understood that it is better to use the silicon nitride sintered body as the base in the sliding distance.

【0036】また、窒化珪素質焼結体を基体とした場合
においても、基体単体、ダイヤモンド膜のみ、ダイヤモ
ンド膜と基体の間にSiC層を形成した試料No.9、1
0、11は、いずれも本発明品に比較していずれも摺動
特性は低いものであった。さらに、試料No.1〜8によ
れば、硬質炭素膜の厚みが20μmを越える試料No.8
では、摩耗試験において膜の剥離が観察された。また、
混合層である第1層の厚みが全体膜の45%を越える試
料No.6、7と45%以下の試料No.1乃至5との比較
によれば、試料No.1乃至5の方が摩擦係数や比摩耗量
が小さく、摺動特性に優れていることがわかる。
Further, even when the silicon nitride sintered body is used as the substrate, Sample Nos. 9 and 1 in which the substrate alone, the diamond film only, and the SiC layer formed between the diamond film and the substrate are formed.
Both 0 and 11 had low sliding characteristics as compared with the product of the present invention. Furthermore, according to the samples No. 1 to 8, the hard carbon film has a thickness of more than 20 μm.
In the abrasion test, peeling of the film was observed. Also,
According to a comparison between Sample Nos. 6 and 7 in which the thickness of the first layer, which is a mixed layer, exceeds 45% of the total film, and Samples No. 1 to 5 in which the thickness of the first layer is 45% or less, Sample Nos. 1 to 5 are It can be seen that the friction coefficient and the specific wear amount are small and the sliding characteristics are excellent.

【0037】[0037]

【発明の効果】以上詳述したように、本発明によれば、
基体との密着性に優れるとともに、長時間の摺動に耐え
ることができ、優れた耐摩耗性を有する部材を提供する
ことができる。これにより、硬質炭素膜を被覆した部材
としての用途を更に拡大することができる。
As described in detail above, according to the present invention,
It is possible to provide a member that has excellent adhesion to a substrate and can withstand long-term sliding, and that has excellent wear resistance. Thereby, the application as a member coated with the hard carbon film can be further expanded.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年10月7日[Submission date] October 7, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0022[Name of item to be corrected] 0022

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0022】また、硬質炭素膜と基体との密着性を向上
させるための方法として、基体と硬質炭素膜との間に熱
膨張係数が小さくなるように基体と硬質炭素膜との中間
的な物質を介在させたり、硬質炭素と基体成分を含む化
合物との混合層を形成するなどの方法があるが、中間層
を形成する方法よりも混合層を形成する方が摺動性にお
いて優れるものであった。
Further, as a method for improving the adhesion between the hard carbon film and the substrate, an intermediate material between the substrate and the hard carbon film is used so that the thermal expansion coefficient between the substrate and the hard carbon film becomes small. Intervening or forming a mixed layer of hard carbon and a compound containing a substrate component. However, the mixed layer is superior in slidability to the intermediate layer. It was

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0026[Correction target item name] 0026

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0026】[0026]

【実施例】 実施例1 反応室内にSi(CH3 4 を500ppmの濃度で含
むSi(CH3 4 −H2 混合ガスを20SCCMの流
量で、N2 −H2 混合ガス(N2 濃度1%)を10SC
CM、CH4 ガスを1.0SCCM、H2 ガス170S
CCMの流量でそれぞれ導入し(CH4 ガス濃度は0.
5%)、反応室内圧力を0.30kPaに設定した。次
いで、2450MHzのマイクロ波電源から出力400
Wを投入し、マイクロ波プラズマCVD法によりSi3
4 を主成分としY2 3 を2重量%、Al2 3 を5
重量%含有する焼結体(熱膨張係数4×10-6/ ℃)か
らなる基板表面に、膜内にSi3 4 およびSiCを含
むダイヤモンド膜(第1層)を成膜し、その後、Si
(CH3 4 −H2 混合ガスの供給を止め、CH4 ガス
を1.0SCCM、H2 ガス200SCCMを導入して
ダイヤモンド膜(第2層)を成膜した。なお、第1層お
よび第2層の成膜時間を変えて表1中の試料No.1およ
び試料No.2の試料を作製した。
EXAMPLES Si (CH 3) 4 -H 2 mixed gas at a concentration of 500ppm of Si (CH 3) 4 in Example 1 reaction chamber at a flow rate of 20SCCM, N 2 -H 2 mixed gas (N 2 concentration 1%) to 10 SC
CM, CH 4 gas 1.0 SCCM, H 2 gas 170S
Each of them was introduced at a flow rate of CCM (CH 4 gas concentration was 0.
5%), and the reaction chamber pressure was set to 0.30 kPa. Next, output 400 from the microwave source of 2450 MHz
Charge W and apply Si 3 by microwave plasma CVD
N 4 was used as a main component Y 2 O 3 2% by weight, the Al 2 O 3 5
A diamond film (first layer) containing Si 3 N 4 and SiC in the film is formed on the surface of the substrate made of a sintered body (coefficient of thermal expansion 4 × 10 −6 / ° C.) containing wt%, and thereafter, Si
(CH 3) stopping the supply of 4 -H 2 mixed gas was deposited diamond film (second layer) of CH 4 gas 1.0 sccm, by introducing H 2 gas 200 SCCM. Samples No. 1 and No. 2 in Table 1 were prepared by changing the film forming times of the first layer and the second layer.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0029[Name of item to be corrected] 0029

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0029】実施例2 原料ガスとして、Si(CH3 4 を500ppmの濃
度で含むSi(CH34 −H2 混合ガスを20SCC
Mの流量で、CH4 ガスを1.0SCCM、H2 ガスを
180SCCMの流量でそれぞれ導入して(CH4 濃度
は0.5%)、実施例1で用いた基板と同じSi3 4
質焼結体の表面にSiCを含むダイヤモンド膜(第1
層)を成膜し、さらに、CH4 ガス1.0SCCM、H
2 ガス200SCCMを導入してダイヤモンド膜(第2
層)を成膜した。なお、第1層を0.1〜6μm 、第2
層の厚みを2〜20μm の厚みで表1の試料No.3〜8
のように成膜し、得られた被覆部材に対して実施例1と
同様な方法で摺動特性を評価し、結果を表1に示した。
[0029] As Example 2 source gas, the Si (CH 3) 4 -H 2 mixed gas containing Si and (CH 3) 4 in a concentration of 500 ppm 20SCC
CH 4 gas was introduced at a flow rate of 1.0 SCCM and H 2 gas was introduced at a flow rate of 180 SCCM (CH 4 concentration was 0.5%) to obtain the same Si 3 N 4 as the substrate used in Example 1.
Diamond film containing SiC on the surface of the porous sintered body (first
Layer) and CH 4 gas 1.0 SCCM, H
2 gas 200SCCM was introduced to the diamond film (second
Layer) was deposited. The first layer is 0.1 to 6 μm and the second layer is
The thickness of the layer is 2 to 20 μm, and the sample No. 3 to 8 in Table 1 is used.
The coated member thus obtained was evaluated for sliding characteristics in the same manner as in Example 1 and the results are shown in Table 1.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0030[Name of item to be corrected] 0030

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0030】実施例3 実施例1において、成膜初期にSi(CH3 4 濃度5
00ppmのSi(CH3 4 −H2 混合ガス20sc
cm、CH4 ガス1.0sccm、H2 ガス180SC
CMの割合から、5時間時点でH2 200SCCM、C
4 1.0SCCMの流量になるように徐々にガスの流
量を変化させて、SiCの量が基板から膜表面に向かい
徐々に少なくなるような混合層(第1層)を形成した
後、引き続き15時間ダイヤモンド膜(第2層)を成膜
した(試料No.14)。得られた被覆部材に対して、実
施例1と同様に摺動特性を評価し、その結果を表1に示
した。
Example 3 In Example 1, the Si (CH 3 ) 4 concentration was set to 5 at the initial stage of film formation.
00ppm of Si (CH 3) 4 -H 2 mixed gas 20sc
cm, CH 4 gas 1.0 sccm, H 2 gas 180 SC
From the ratio of CM, H 2 200SCCM, C at 5 hours
After gradually changing the flow rate of the gas so that the flow rate of H 4 becomes 1.0 SCCM, the mixed layer (first layer) is formed so that the amount of SiC gradually decreases from the substrate toward the film surface, and then continues. A diamond film (second layer) was formed for 15 hours (Sample No. 14). The obtained covering member was evaluated for sliding characteristics in the same manner as in Example 1, and the results are shown in Table 1.

【手続補正5】[Procedure Amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0034[Correction target item name] 0034

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0034】[0034]

【表1】 [Table 1]

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C23C 28/04 // B23B 27/14 A 9326−3C ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location C23C 28/04 // B23B 27/14 A 9326-3C

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】窒化珪素を主成分とする焼結体からなる基
体表面に1〜20μmの厚みの硬質炭素膜を被覆してな
る耐摩耗性部材において、前記硬質炭素膜中の基体側に
隣接して硬質炭素と珪素あるいは珪素化合物との混合層
が存在することを特徴とする耐摩耗性部材。
1. A wear-resistant member comprising a hard carbon film having a thickness of 1 to 20 .mu.m coated on the surface of a base body made of a sintered body containing silicon nitride as a main component, and adjacent to the base side of the hard carbon film. A wear resistant member, characterized in that a mixed layer of hard carbon and silicon or a silicon compound is present.
【請求項2】前記混合層の厚みが0.1〜5μmである
請求項1記載の耐摩耗性部材。
2. The wear resistant member according to claim 1, wherein the thickness of the mixed layer is 0.1 to 5 μm.
【請求項3】前記混合層の厚みが、硬質炭素膜全体の厚
みの45%以下である請求項1記載の請求項1記載の耐
摩耗性部材。
3. The wear resistant member according to claim 1, wherein the thickness of the mixed layer is 45% or less of the total thickness of the hard carbon film.
JP5211485A 1993-08-26 1993-08-26 Wear resistant member Pending JPH0762540A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5211485A JPH0762540A (en) 1993-08-26 1993-08-26 Wear resistant member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5211485A JPH0762540A (en) 1993-08-26 1993-08-26 Wear resistant member

Publications (1)

Publication Number Publication Date
JPH0762540A true JPH0762540A (en) 1995-03-07

Family

ID=16606739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5211485A Pending JPH0762540A (en) 1993-08-26 1993-08-26 Wear resistant member

Country Status (1)

Country Link
JP (1) JPH0762540A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001328006A (en) * 2000-05-19 2001-11-27 Mitsubishi Materials Corp Surface-covered tungsten carbide group cemented carbide throw-away cutting tip with hard covering layer having excellent interlayer adhesion
JP2001328005A (en) * 2000-05-19 2001-11-27 Mitsubishi Materials Corp Surface-covered tungsten carbide group cemented carbide throw-away cutting tip with hard covering layer having excellent interlayer adhesion
JP2003522415A (en) * 2000-02-01 2003-07-22 アナログ デバイシーズ インコーポレイテッド Method for wafer-level processing to reduce traction and passivate micromachined surfaces and compounds used therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003522415A (en) * 2000-02-01 2003-07-22 アナログ デバイシーズ インコーポレイテッド Method for wafer-level processing to reduce traction and passivate micromachined surfaces and compounds used therefor
JP2001328006A (en) * 2000-05-19 2001-11-27 Mitsubishi Materials Corp Surface-covered tungsten carbide group cemented carbide throw-away cutting tip with hard covering layer having excellent interlayer adhesion
JP2001328005A (en) * 2000-05-19 2001-11-27 Mitsubishi Materials Corp Surface-covered tungsten carbide group cemented carbide throw-away cutting tip with hard covering layer having excellent interlayer adhesion

Similar Documents

Publication Publication Date Title
US5227196A (en) Method of forming a carbon film on a substrate made of an oxide material
EP0413834B1 (en) Diamond-covered member and process for producing the same
EP0379220A1 (en) Diamond coated sintered body
JPH1192934A (en) Hard carbon thick coating and its production
JPH0762540A (en) Wear resistant member
US4869929A (en) Process for preparing sic protective films on metallic or metal impregnated substrates
JPH09124394A (en) Wear-resistant member
JPS61210179A (en) Coating blade for microtome and its production
JPH01201095A (en) Diamond carbon film and production thereof
JPH0762541A (en) Wear resistant member
JP3273106B2 (en) Hard carbon film coated member and method of manufacturing the same
Ivashchenko et al. Characteristics of thin plasmachemical silicon carbon nitride films deposited using hexamethyldisilane
JPH03115572A (en) Improvement of adhesive property of synthetic diamond film on a base
JPH06306610A (en) Rigid carbon coating member and its production
JPH0517231A (en) Composite sintered body, cutting tool and diamond coated member using same
JP3199127B2 (en) Diamond-containing composite coated member and method for producing the same
JPH04301084A (en) Wear-resistant member and its manufacture
Tóth et al. Surface and nanomechanical properties of Si: C: H films prepared by RF plasma beam CVD
JPH05209276A (en) Manufacture of diamond coated member
JPH0776775A (en) Diamond-coated cemented carbide tool
JPH06346239A (en) Production of ceramic coated metallic material
KR930010199B1 (en) Diamond coated sintered body
JPS63150926A (en) Film formation of diamond-shaped carbon film
JPH05230655A (en) Manufacture of diamond coated member
JPH0394062A (en) Diamond-coated sintered hard alloy

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term