JPH0757825B2 - Polysulfone resin porous membrane - Google Patents

Polysulfone resin porous membrane

Info

Publication number
JPH0757825B2
JPH0757825B2 JP60080372A JP8037285A JPH0757825B2 JP H0757825 B2 JPH0757825 B2 JP H0757825B2 JP 60080372 A JP60080372 A JP 60080372A JP 8037285 A JP8037285 A JP 8037285A JP H0757825 B2 JPH0757825 B2 JP H0757825B2
Authority
JP
Japan
Prior art keywords
polysulfone
water
membrane
porous membrane
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60080372A
Other languages
Japanese (ja)
Other versions
JPS61238834A (en
Inventor
昌明 島垣
和実 田中
立男 野木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP60080372A priority Critical patent/JPH0757825B2/en
Publication of JPS61238834A publication Critical patent/JPS61238834A/en
Publication of JPH0757825B2 publication Critical patent/JPH0757825B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • B01D71/68Polysulfones; Polyethersulfones

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、新規なポリスルホン系樹脂多孔膜に関する。TECHNICAL FIELD The present invention relates to a novel polysulfone-based resin porous membrane.

〔従来の技術〕[Conventional technology]

従来、半透膜の素材としては、セルロースアセテート・
ポリアクリロニトリル・ポリメタクリル酸メチル・ポリ
アミド等多くの高分子化合物が用いられてきた。一方、
ポリスルホン系樹脂は、元来エンジニアリングプラスチ
ックスとして使用されてきたが、その耐熱安定性、耐酸
・耐アルカリ性、そして生体適合性、耐汚染性が良好で
あることから、半透膜素材として注目されている。
Conventionally, as the material of the semipermeable membrane, cellulose acetate
Many polymer compounds such as polyacrylonitrile, polymethylmethacrylate, and polyamide have been used. on the other hand,
Polysulfone resins have been originally used as engineering plastics, but because of their excellent heat resistance stability, acid / alkali resistance, biocompatibility, and stain resistance, they have attracted attention as semipermeable membrane materials. There is.

ポリスルホン系樹脂の多孔膜を得る方法として従来より
例えば、ジャーナル・オブ・アプライド・ポリマー・サ
イエンス(20巻、2377〜2394頁、1976年)及び、(同21
巻、1883〜1900頁、1977年)、特開昭58-104940号公報
等が提案されている。しかし該樹脂は、分子間凝集力が
強すぎて、表面の孔や貫通すべき内部の孔を閉塞してし
まうため孔形成の制御が困難となる。このため、分画分
子量が10万以下と小さくかつ透水性も小さいものしか、
得られていない。特に前記特開昭58-104940号公報で
は、水漏れ性が改善されているものの、表面孔径が0.00
1〜0.05μmのもの以外は、何ら示唆しておらず、高い
透水性は望み得ない。
As a method for obtaining a porous film of a polysulfone-based resin, for example, Journal of Applied Polymer Science (20, 2377-2394, 1976) and (21)
Vol., Pp. 1883 to 1900, 1977), JP-A-58-104940, and the like. However, since the intermolecular cohesive force of the resin is too strong, the pores on the surface and the internal pores to be penetrated are closed, so that the control of pore formation becomes difficult. Therefore, only those with a small molecular weight cutoff of less than 100,000 and small water permeability,
Not obtained. Particularly, in the above-mentioned JP-A-58-104940, although the water leakage property is improved, the surface pore size is 0.00
Nothing other than 1 to 0.05 μm is suggested, and high water permeability cannot be expected.

一方、近年、ポリスルホン系樹脂を用いた膜で、表面に
大きな孔をあける試みとして、次のような手段が提案さ
れている。
On the other hand, in recent years, the following means have been proposed as an attempt to open a large hole in the surface of a film using a polysulfone resin.

異種ポリマ間のミクロ相分離を利用する方法。(特
公昭48-176号公報、特開昭54-144456号公報、同57-5050
6号公報、同57-50507号公報、同57-50508号公報) 製膜後、抽出・溶出操作を有する方法。(特開昭54
-26283号公報、同57-35906号公報、同58-91822号公報) 製膜原液の準安定液体分散状態で製膜する方法。
(特開昭56-154051号公報、同59-58041号公報、同59-18
3761号公報、同59-189903号公報) 紡糸時に工夫をこらす方法(特開昭59-228016号公
報) しかし、の方法ではポリマー間の凝固速度の違いを利
用しているのみで、分画分子量10万以上の大きな孔を得
るに至っていない。その上、大量にブレンドするため、
ポリスルホン系樹脂の本来の良好な性能が失われやす
い。また、の方法は、ブレンドポリマーの抽出と無機
顆粒を溶出する大きく2つの方法に分類される。前者に
おいては、ポリエチレングリコール、ポリビニルピロリ
ドンが主たるポリマーであるが、十分な孔径を得ること
や抽出操作が困難であった。後者の例では、前記特開昭
58-91822号公報で、シリカパウダーを混入して製膜後、
アルカリを用いて溶出させ、0.05μm以上の大きな孔を
あけるのに成功しているが、水漏れ性に欠点があると記
されている。の方法は製膜原液にポリスルホン系樹脂
の非溶媒もしくは膨潤剤を大量に混合し、該製膜原液が
相分離する直前のところで製膜するものである。かかる
方法では、膜の水漏れ性に欠陥がある膜しか得ることは
できない。の方法は、製膜時に高湿度の風を吹きつけ
ることで、該表面での孔径拡大を実現しているが、該方
法では片面にしかその効果はなく、特に中空糸膜では分
画分子量は小さい範囲のものしか得られない。
A method that utilizes microphase separation between different polymers. (JP-B-48-176, JP-A-54-144456, 57-5050)
No. 6, No. 57-50507, No. 57-50508) A method having an extraction / elution operation after film formation. (JP-A-54
No. 26283, No. 57-35906, No. 58-91822) A method of forming a film in a metastable liquid dispersion state of a film forming stock solution.
(JP-A-56-154051, JP-A-59-58041, JP-A-59-18)
No. 3761, No. 59-189903) A method for improving the spinning process (Japanese Patent Laid-Open No. 59-228016) However, this method only utilizes the difference in coagulation rate between polymers, and the molecular weight cut-off is We haven't got a large hole of 100,000 or more. Moreover, because of the large amount of blending,
The original good performance of the polysulfone resin is likely to be lost. Further, the method (1) is roughly classified into two methods: extraction of blended polymer and elution of inorganic granules. In the former, polyethylene glycol and polyvinylpyrrolidone are the main polymers, but it was difficult to obtain a sufficient pore size and to perform the extraction operation. In the latter example, the above-mentioned
In JP-A 58-91822, after forming a film by mixing silica powder,
Although it has been successful in making a large hole of 0.05 μm or more by eluting with an alkali, it is described that there is a defect in water leakage. In the method (1), a large amount of a non-solvent of a polysulfone resin or a swelling agent is mixed with a stock solution for film formation, and a film is formed immediately before phase separation of the stock solution for film formation. With such a method, it is possible to obtain only a film having a defective water leak property. The method of (1) realizes the expansion of the pore size on the surface by blowing a high-humidity air at the time of film formation, but the method has the effect only on one side, and in particular, the cutoff molecular weight is small in the hollow fiber membrane. You can only get a small range.

これら従来のポリスルホン系樹脂多孔膜は、その製膜原
液が低温で相分離することを特徴とするものである。こ
のため製膜時に凝固浴中の非溶媒等と膜中の良溶媒との
交換速度を上げようとして凝固浴温度を上げても、製膜
原液が均一系の方へ平衡移動するため、表面に緻密層を
つくるという欠点を有している。またポリスルホン系樹
脂が疎水性のため、一度乾燥させると特別の処理をする
ことなしには、性能を回復させることができにくいとい
う欠点を有しており、これら2つを同時に満足させるも
のは存在しなかった。
These conventional polysulfone-based resin porous membranes are characterized in that the membrane-forming stock solution undergoes phase separation at low temperatures. Therefore, even if the temperature of the coagulation bath is increased in an attempt to increase the exchange rate of the non-solvent in the coagulation bath and the good solvent in the film during film formation, the stock solution for film formation will move in an equilibrium direction toward the homogeneous system and It has the drawback of forming a dense layer. In addition, since the polysulfone resin is hydrophobic, it has the drawback that it is difficult to recover its performance without special treatment once it has been dried, and there is one that satisfies both of these at the same time. I didn't.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

本発明者らは、上記欠点を解析し、鋭意検討した結果本
発明に到達した。特に、目づまりや汚れがおこりにく
く、乾燥しても実質的に性能低下のない、高除水性ポリ
スルホン系樹脂多孔膜を提供することを目的とする。
The present inventors arrived at the present invention as a result of analyzing the above-mentioned drawbacks and making intensive studies. In particular, it is an object of the present invention to provide a highly water-removable polysulfone-based resin porous membrane that is unlikely to cause clogging or stains and has substantially no performance deterioration even when dried.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は次の構成を有する。すなわち、膜の両表面に平
均孔径が500Å以上の細孔を有し、主たる膜素材がポリ
スルホン系樹脂であってかつ全量の3〜30重量%の架橋
親水性高分子を含有し、透水性が1000ml/m2・hr・mmHg
以上であることを特徴とするポリスルホン系樹脂多孔膜
である。
The present invention has the following configurations. That is, both surfaces of the membrane have pores with an average pore size of 500Å or more, the main membrane material is polysulfone resin, and contains 3 to 30% by weight of the total amount of crosslinked hydrophilic polymer, and the water permeability is 1000 ml / m 2・ hr ・ mmHg
It is the polysulfone-based resin porous membrane characterized by the above.

本発明のポリスルホン系樹脂多孔膜は、両表面に平均孔
径500Å以上の細孔を有する。かかる大きさの孔は、高
透水性を得るため、また大きな分画分子量を得るために
必要なものである。平均孔径は、表面の電子顕微鏡写真
から求めたものである。両表面の細孔は均一径であるこ
とが望ましいが、とくに均一である必要はなく、不均一
であってもよい。平均孔径は2μm以下であることが望
ましいが、それ以上あってもよい。しかし、2μmを越
えると膜構造が、フィブリル化し、機械的強度が弱くな
るとともに、水でのバブルポイントが、0.5気圧より低
くなる。
The polysulfone-based resin porous membrane of the present invention has pores having an average pore diameter of 500Å or more on both surfaces. The pores of such a size are necessary to obtain high water permeability and a large molecular weight cutoff. The average pore size is obtained from an electron micrograph of the surface. It is desirable that the pores on both surfaces have a uniform diameter, but it is not particularly necessary that they are uniform, and may be non-uniform. The average pore size is preferably 2 μm or less, but may be more than that. However, if it exceeds 2 μm, the membrane structure becomes fibrillated, the mechanical strength becomes weak, and the bubble point in water becomes lower than 0.5 atm.

膜の厚みは、高い透水性を得るため5〜500μmが望ま
しく、10〜300μmがさらに望ましい。
The thickness of the film is preferably 5 to 500 μm, and more preferably 10 to 300 μm in order to obtain high water permeability.

本発明のポリスルホン系樹脂多孔膜は上記のような構造
を有するとともに、透水性が1000ml/m2・hr・mmHg以上
を示す。特に平膜においては、数千ml/m2・hr・mmHg以
上のものも市販されてはいるが、同時に水漏れ性をも満
足した多孔膜というのは画期的である。特に中空糸膜形
状のもので、透水性1000ml/m2・hr・mmHg以上でかつ、
水漏れ性も良いものは見あたらない。本発明のポリスル
ホン系樹脂多孔膜では、透水性が数万ml/m2・hr・mmHg
以上のものも提供することができる。
The polysulfone-based resin porous membrane of the present invention has the above-mentioned structure and exhibits a water permeability of 1000 ml / m 2 · hr · mmHg or more. In particular, for flat membranes, several thousand ml / m 2 · hr · mmHg or more are commercially available, but it is epoch-making that a porous membrane that also satisfies the water leakage property. In particular, it has a hollow fiber membrane shape, water permeability of 1000 ml / m 2 · hr · mmHg or more, and
I can't find anything that has good water leakage. The polysulfone-based resin porous membrane of the present invention has a water permeability of tens of thousands of ml / m 2 · hr · mmHg.
The above can also be provided.

本発明のポリスルホン系樹脂多孔膜を製造するために用
いる製膜原液は、基本的にはポリスルホン系樹脂
(I)、親水性高分子(II)、溶媒(III)および添加
剤(IV)からなる4成分系で構成される。ここで言うポ
リスルホン系樹脂(I)は、通常式(1)、または
(2) の繰り返し単位からなるものであるが、官能基を含んで
いたり、アルキル系のものであってもよく、特に限定す
るものではない。
The membrane-forming stock solution used for producing the polysulfone-based resin porous membrane of the present invention basically comprises a polysulfone-based resin (I), a hydrophilic polymer (II), a solvent (III) and an additive (IV). It is composed of four components. The polysulfone-based resin (I) referred to here is usually represented by the formula (1) or (2) However, it may be a functional unit-containing or alkyl-based repeating unit and is not particularly limited.

親水性高分子(II)は、ポリスルホン系樹脂(I)と相
溶性があり、かつ親水性を持つ高分子である。ポリビニ
ルピロリドンが最も望ましいが、他に変性ポリビニルピ
ロリドン、共重合ポリビニルピロリドン、ポリエチレン
グリコール、ポリ酢酸ビニル等が挙げられるが、これら
に限定されるものではない。
The hydrophilic polymer (II) is a polymer that is compatible with the polysulfone resin (I) and has hydrophilicity. Polyvinylpyrrolidone is most preferable, but modified polyvinylpyrrolidone, copolymerized polyvinylpyrrolidone, polyethylene glycol, polyvinyl acetate and the like can be mentioned, but the polyvinylpyrrolidone is not limited thereto.

溶媒(III)は、ポリスルホン系樹脂(I)及び親水性
高分子(II)を共に溶解する溶媒である。ジメチルスル
ホキシド、ジメチルアセトアミド、ジメチルホルムアミ
ド、N−メチル−2−ピロリドン、ジオキサン等、多種
の溶媒が用いられるが、特にジメチルアセトアミド、ジ
メチルスルホキシド、ジメチルホルムアミド、N−メチ
ル−2−ピロリドンが望ましい。
The solvent (III) is a solvent that dissolves both the polysulfone resin (I) and the hydrophilic polymer (II). Various solvents such as dimethylsulfoxide, dimethylacetamide, dimethylformamide, N-methyl-2-pyrrolidone and dioxane are used, but dimethylacetamide, dimethylsulfoxide, dimethylformamide and N-methyl-2-pyrrolidone are particularly preferable.

添加剤(IV)は、溶媒(III)と相溶性を持ち、親水性
高分子(II)の良溶媒となり、かつ、ポリスルホン系樹
脂(I)の非溶媒又は膨潤剤となるものであれば何でも
良く、例えば、水、メタノールエタノール、イソプロパ
ノール、ヘキサノール、1,4−ブタンジオール等があ
る。生産コストを考えると水が最も望ましい。添加剤
(IV)は、ポリスルホン系樹脂(I)に対する凝固性を
考え合わせた上で選択すれば良い。
As long as the additive (IV) is compatible with the solvent (III), becomes a good solvent for the hydrophilic polymer (II), and becomes a non-solvent or swelling agent for the polysulfone resin (I). Well, for example, water, methanol ethanol, isopropanol, hexanol, 1,4-butanediol and the like can be used. Water is the most desirable considering the production cost. The additive (IV) may be selected after considering the coagulability with respect to the polysulfone resin (I).

これらのおのおのの組合せは任意であり、上記の性質を
もつ組合せを考えるのは、同業者にとって容易なことで
ある。また、溶媒(III)・添加剤(IV)は、2種類以
上の化合物の混合系でも良い。
Each of these combinations is arbitrary, and it is easy for those skilled in the art to consider a combination having the above properties. Further, the solvent (III) / additive (IV) may be a mixed system of two or more kinds of compounds.

かかる製膜原液は、通常の相分離挙動である低温側で相
分離するのと逆で、驚くべきことに高温側で相分離がお
こる。この原理を以下説明する。
In contrast to the normal phase separation behavior of the stock solution for film formation, that is, on the low temperature side, the phase separation is surprisingly performed on the high temperature side. This principle will be described below.

今、この製膜原液がある温度Tで均一系であるとする。
この場合、添加剤(IV)は親水性高分子(II)によって
ポリスルホン系樹脂(I)に対して遮蔽される形とな
り、直接ポリスルホン系樹脂(I)と相互作用すること
なく、それゆえ、ポリスルホン系樹脂(I)は、親水性
高分子(II)が混合されていない系においては当然凝固
し、相分離しているような濃度まで添加剤(IV)を加え
てもなお相分離することなく均一系を保っている訳であ
る。ここで、温度を上げると、分子の運動性が上がるこ
とにより、特に親水性高分子(II)と添加剤(IV)との
結合が弱くなり、水素結合が切れ、親水性高分子(II)
と結合していない添加剤(IV)の見かけ上の濃度が、温
度Tのときより上昇し、ポリスルホン系樹脂(I)と添
加剤(IV)とが相互作用することにより、ひいては、ポ
リスルホン系樹脂(I)の凝固・相分離が引きおこされ
ることになる。即ち、該製膜原液は、高温側で相分離を
おこすことになる。さらに、この系の添加剤(IV)の量
を増加させると、前記温度Tでもこの原液系において
は、もはや親水性高分子(II)の温度Tにおける添加剤
(IV)のかかえ込み量以上の添加剤(IV)が加えられた
ことで、製膜原液は相分離する。しかし、さらに温度を
下げると親水性高分子(II)の分子運動性が下がり、添
加剤(IV)との結合量が増大し、見かけの添加剤(IV)
濃度が下がることで、結果的に系は再び均一系となる。
再び温度を上げると、系は不均一になるが、こんどは親
水性高分子(II)を添加すると、親水性高分子(II)と
添加剤(IV)が結合する量が増え、再び系は均一にな
る。以上のように、この製膜原液の相分離挙動は通常の
逆であり、また相転移に可逆性を有する。
Now, it is assumed that this film-forming stock solution is a homogeneous system at a certain temperature T.
In this case, the additive (IV) is shielded from the polysulfone resin (I) by the hydrophilic polymer (II) and does not directly interact with the polysulfone resin (I). The system resin (I) naturally coagulates in a system in which the hydrophilic polymer (II) is not mixed, and even if the additive (IV) is added to such a concentration as to cause phase separation, the resin (I) does not phase separate. This is the reason why it maintains a homogeneous system. Here, when the temperature is raised, the mobility of the molecule is increased, so that the bond between the hydrophilic polymer (II) and the additive (IV) is weakened, the hydrogen bond is broken, and the hydrophilic polymer (II) is broken.
The apparent concentration of the additive (IV) that is not bound with the compound is higher than that at the temperature T, and the polysulfone resin (I) and the additive (IV) interact with each other. The solidification and phase separation of (I) will be caused. That is, the membrane-forming stock solution undergoes phase separation on the high temperature side. Furthermore, when the amount of additive (IV) in this system is increased, the addition of additive (IV) at the temperature T or more in the undiluted system at a temperature T or more of the additive (IV) is no longer present. By adding the agent (IV), the stock solution for film formation is phase-separated. However, if the temperature is further lowered, the molecular mobility of the hydrophilic polymer (II) decreases, the amount of binding with the additive (IV) increases, and the apparent additive (IV)
The lower concentration results in the system becoming homogeneous again.
When the temperature is raised again, the system becomes inhomogeneous, but this time, when hydrophilic polymer (II) is added, the amount of hydrophilic polymer (II) and additive (IV) bound increases, and the system becomes Be uniform. As described above, the phase separation behavior of this stock solution for film formation is the reverse of the usual one, and the phase transition is reversible.

該製膜原液の組成として、ポリスルホン系樹脂(I)
は、製膜可能でかつ膜としての特性を有する濃度範囲で
あれば良く、5〜50重量%である。高い透水性、大きな
分画分子量を得るためにはポリマー濃度は下げるべき
で、この場合望ましくは5〜20重量%である。5重量%
未満では、製膜原液の十分な粘度を得ることができず、
膜を形成できなくなる。また、50重量%を越えると貫通
孔を形成しにくくなる。親水性高分子(II)は、特にポ
リビニルピロリドンの場合、GAF社から分子量36万、16
万、4万、1万のものが市販されており、これを使うの
が便利であるが、もちろんそれ以外の分子量のものを使
用してもかまわない。ただし、親水性高分子(II)の添
加の理由の1つとして増粘効果もあるため、添加量は高
分子量のものを用いるほど少量で良く、かつまた相分離
現象の温度依存性の逆転も顕著になるため透水性の高い
膜を得るためには有利である。ポリビニルピロリドンの
添加量は、1〜20重量%、特に3〜10重量%が望ましい
が、用いるポリビニルピロリドンの分子量に左右され
る。一般に添加量が少なすぎる場合、分子量が低すぎる
場合は相分離の逆転現象は得難く、ポリマー濃度が高
く、ポリマー分子量が大きすぎると、製膜後の洗浄が困
難となる。それ故、分子量の異なるものを混合して役割
分担し用いるのも一つの方法となる。以上(I)、(I
I)の高分子を溶媒(III)に混合溶解する。ここへ、添
加剤(IV)を添加するが、特に水の場合、ポリスルホン
系樹脂にとって凝固性が高いため、7重量%以下、特に
1〜5重量%が望ましい。凝固性が小さな添加剤を用い
るときは添加量が多くなることは容易に推測される。添
加剤(IV)の濃度が高くなるにつれ、製膜原液の相分離
温度は低下してくる。相分離温度の設定は、求める膜の
透水性や分画分子量により随意にすればよく、例えば、
高い透水性・分画分子量を得るためには製膜時に相分離
を強力に促進するため低い相分離温度を設定すれば良
い。また、凝固浴の温度を高くしても同様の効果は得ら
れる。
As the composition of the film-forming stock solution, polysulfone resin (I) is used.
Is in a concentration range capable of forming a film and having characteristics as a film, and is 5 to 50% by weight. In order to obtain high water permeability and a large molecular weight cutoff, the polymer concentration should be lowered, and in this case, it is preferably 5 to 20% by weight. 5% by weight
If it is less than, it is not possible to obtain a sufficient viscosity of the stock solution for film formation,
A film cannot be formed. If it exceeds 50% by weight, it becomes difficult to form through holes. The hydrophilic polymer (II) has a molecular weight of 360,000, 16
It is convenient to use the ones of 10,000, 40,000 and 10,000 are commercially available, but of course other molecular weights may be used. However, one of the reasons for the addition of hydrophilic polymer (II) is that it has a thickening effect. Therefore, the higher the amount of the polymer added, the smaller the amount, and the reversal of the temperature dependence of the phase separation phenomenon. Since it becomes remarkable, it is advantageous for obtaining a film having high water permeability. The addition amount of polyvinylpyrrolidone is preferably 1 to 20% by weight, particularly 3 to 10% by weight, but it depends on the molecular weight of polyvinylpyrrolidone to be used. In general, if the amount added is too small or the molecular weight is too low, the phase separation reversal phenomenon is difficult to obtain, and if the polymer concentration is high and the polymer molecular weight is too large, washing after film formation becomes difficult. Therefore, it is also one method to mix and use those having different molecular weights by sharing the roles. Above (I), (I
The polymer of I) is mixed and dissolved in the solvent (III). The additive (IV) is added to this, and particularly in the case of water, the polysulfone-based resin has high coagulability, so 7% by weight or less, particularly 1 to 5% by weight is desirable. It is easily presumed that the amount of addition increases when an additive having a small solidification property is used. As the concentration of the additive (IV) increases, the phase separation temperature of the stock solution for film formation decreases. The phase separation temperature may be set arbitrarily depending on the water permeability and the molecular weight cutoff of the membrane to be sought.
In order to obtain high water permeability and molecular weight cutoff, a low phase separation temperature may be set to strongly promote phase separation during film formation. Further, the same effect can be obtained by increasing the temperature of the coagulation bath.

以上の条件のもとでポリスルホン系樹脂多孔膜を得る。
製膜操作は、公知技術を用いれば良い。平膜について
は、該製膜原液を平坦な基板上に流展し、その後凝固浴
中に浸漬する。中空糸膜については、中空形態を保つた
め、注入液を用いる。注入液は、製膜原液に対して凝固
性の高いものより、低いものを用いた方が紡糸安定性は
良いが、凝固浴温度・相分離温度・口金温度との相関で
中空糸膜内壁の平滑性が変化するので、適宜最良組成を
決めれば良い。ポリスルホン系樹脂に不活性なデカン・
オクタン・ウンデカン等の炭化水素を用いても良い。ま
た、気体を注入して中空形態を保持させてもよい。乾式
長は0.1〜20cmであり、特に0.5〜5cmが紡糸安定性も良
く、さらに望ましい。
A polysulfone-based resin porous membrane is obtained under the above conditions.
A known technique may be used for the film forming operation. For a flat film, the stock solution for film formation is spread on a flat substrate and then immersed in a coagulation bath. An injection liquid is used for the hollow fiber membrane in order to maintain the hollow shape. As for the injection liquid, spinning stability is better if it is lower than that having high coagulability with respect to the membrane-forming stock solution, but the correlation between the coagulation bath temperature, phase separation temperature and spinneret temperature causes Since the smoothness changes, the best composition may be determined appropriately. Decane inert to polysulfone resin
Hydrocarbons such as octane and undecane may be used. Alternatively, a hollow form may be maintained by injecting gas. The dry length is 0.1 to 20 cm, and particularly 0.5 to 5 cm is preferable because the spinning stability is good.

かかる方法で得たポリスルホン系樹脂多孔膜は、膜中の
水溶性成分について余分な量は除去し、必要量残存させ
ることが好ましい。
In the polysulfone-based resin porous membrane obtained by such a method, it is preferable to remove an excessive amount of water-soluble components in the membrane and leave the necessary amount of the water-soluble component.

残存量は総重量に対して、3〜30重量%であり、好まし
くは5〜25重量%、特に10〜20重量%が最も望ましい。
残存した水溶性高分子の量は、元素分析、液体クロマト
グラフィーにより定量することで確認できる。低分子量
の水溶性成分についてはただ水洗するだけで余分な量は
除去されるが、分子量の高い水溶性成分については、特
別に、エタノール、メタノール・水等の水溶性成分の良
溶媒で抽出操作をすることが好ましい。特に沸水で抽出
する方法が効率的であり、膜への熱処理効果も同時に付
与することができる。熱処理効果とは、経時的に孔径拡
大からさらに長時間処理すると、逆に孔径が収縮する一
連の効果を指す。孔径は、熱処理一時間程度で極大値を
とり、処理時間をコントロールすることで透水性、分画
分子量も制御しうる利点を有する。余分な水溶性高分子
を除去した膜は、極くわずかではあるが、水溶性高分子
を溶出する。このことは、メディカル用途、食品工業用
途においては望ましくない。不溶化のための架橋反応と
しては、ビニル系の水溶性高分子ではγ線照射が有効で
ある。特にポリビニルピロリドンの場合は、加熱するこ
とでも架橋をさせることができる。特に熱処理する方法
が好ましい。製膜状態での熱処理は、170℃では5時間
程度、180℃では2.5時間程度、190℃でも1.5時間程度す
ることが好ましい。さらに温度を上げるとそれだけ処理
時間は短縮されるが、ポリスルホン系樹脂により制御さ
れる。150℃以下においては、処理時間が長すぎ、実用
的ではない。
The residual amount is 3 to 30% by weight, preferably 5 to 25% by weight, and most preferably 10 to 20% by weight, based on the total weight.
The amount of the remaining water-soluble polymer can be confirmed by quantifying it by elemental analysis and liquid chromatography. Excessive amounts of low-molecular-weight water-soluble components can be removed by simply washing with water, but high-molecular-weight water-soluble components can be extracted with a good solvent for water-soluble components such as ethanol, methanol and water. Is preferred. Particularly, the method of extracting with boiling water is efficient, and the heat treatment effect on the film can be imparted at the same time. The term "heat treatment effect" refers to a series of effects in which, when the pore diameter is expanded with time and the treatment is further continued for a long time, the pore diameter is contracted. The pore size has a maximum value in about 1 hour of heat treatment, and has an advantage that the water permeability and the molecular weight cutoff can be controlled by controlling the treatment time. The membrane from which the excess water-soluble polymer is removed elutes the water-soluble polymer, although it is very small. This is not desirable in medical applications and food industry applications. As a crosslinking reaction for insolubilization, γ-ray irradiation is effective for vinyl-based water-soluble polymers. Particularly in the case of polyvinylpyrrolidone, it can be crosslinked by heating. A heat treatment method is particularly preferable. It is preferable that the heat treatment in the film forming state is carried out at 170 ° C. for about 5 hours, at 180 ° C. for about 2.5 hours, and at 190 ° C. for about 1.5 hours. When the temperature is further increased, the treatment time is shortened by that amount, but it is controlled by the polysulfone resin. Below 150 ° C, the treatment time is too long and not practical.

なお、本発明のポリスルホン系樹脂多孔膜について、人
口臓器基準溶出物試験法に基づき、以下の評価を行なっ
た。
The polysulfone-based resin porous membrane of the present invention was evaluated as follows based on the artificial organ standard eluate test method.

膜0.5gを70℃温水50ccで1時間加熱した溶液は、波長35
0〜220μmにおけるUV吸収が0.2以下、0.01N KMnO4水溶
液の消費量1.0ml以下を示し、該試験に合格することが
できる。
A solution obtained by heating 0.5 g of membrane with 50 cc of hot water at 70 ° C for 1 hour has a wavelength of 35
The UV absorption at 0 to 220 μm is 0.2 or less, the consumption of 0.01N KMnO 4 aqueous solution is 1.0 ml or less, and the test can be passed.

〔実施例〕〔Example〕

以下の実施例によって本発明をさらに詳細な説明する。 The present invention will be described in more detail by the following examples.

以下、用いた測定法は次のとおりである。The measuring methods used are as follows.

(1)透水性 中空糸膜の場合は、両端に還流液用の孔を備えたガラス
製のケースに該中空糸膜を挿入し、市販のポッティング
剤を用いて小型モジュールを作製し、37℃に保って中空
糸内側に水圧をかけ膜を通して外側へ透過する一定時間
の水の量と有効膜面積および膜間圧力差から算出する方
法で透水性能を測定した。
(1) Water permeability In the case of a hollow fiber membrane, the hollow fiber membrane is inserted into a glass case equipped with holes for reflux liquid at both ends, and a small module is prepared using a commercially available potting agent, and the temperature is 37 ° C. The water permeation performance was measured by a method in which water pressure was applied to the inside of the hollow fiber and the water was permeated to the outside through the membrane for a certain period of time, and calculated from the effective membrane area and the transmembrane pressure difference.

平膜の場合は、攪拌円筒セルを用いて同様にして測定し
た。
In the case of a flat membrane, the same measurement was performed using a stirring cylindrical cell.

(2)牛血透水性および牛血漿透水性 牛血及び牛血漿の透水性は牛血液(ヘマトクリット35
%)及び遠心法により得た牛血漿(共にヘパリン含有)
を用いて上記中空糸膜の場合の透水性と同様の方法で測
定した。この場合、膜間圧力差50mmHgを基準に測定し
た。
(2) Bovine blood permeability and bovine plasma permeability Permeability of bovine blood and bovine plasma is shown in cow blood (hematocrit 35
%) And bovine plasma obtained by centrifugation (both containing heparin)
Was measured in the same manner as the water permeability of the above hollow fiber membrane. In this case, the transmembrane pressure difference was measured on the basis of 50 mmHg.

(3)蛋白透過率 蛋白透過率についてはビュレット法により測定した。(3) Protein permeability The protein permeability was measured by the Burette method.

実施例1 ポリスルホン(ユーデルP-3500)15部、ポリビニルピロ
リドン(K90)8部、1,4−ブタンジオール7部をジメチ
ルアセトアミド70部に加え、加熱溶解した。この製膜原
液は、70℃で相分離するように1,4−ブタンジオールを
微量加え調製した。ベーカー式アプリケーターを用い、
60℃保温でガラス板上に流展後、50℃の水凝固浴で凝固
させた。平均孔径約1μm、透水性50000ml/m2・hr・mm
Hgの膜を得た。
Example 1 15 parts of polysulfone (Udel P-3500), 8 parts of polyvinylpyrrolidone (K90) and 7 parts of 1,4-butanediol were added to 70 parts of dimethylacetamide and dissolved by heating. This stock solution for film formation was prepared by adding a trace amount of 1,4-butanediol so as to cause phase separation at 70 ° C. Using a baker type applicator,
After being spread on a glass plate while keeping the temperature at 60 ° C, it was solidified in a water coagulation bath at 50 ° C. Average pore size about 1μm, water permeability 50000ml / m 2 · hr · mm
A film of Hg was obtained.

実施例2 実施例1と同じ原液を用いて、原液を30℃に保って同様
に製膜した。平均孔径は、約0.7μmで、透水性は36000
ml/m2・hr・mmHgであった。
Example 2 The same stock solution as in Example 1 was used, and the stock solution was kept at 30 ° C. to form a film in the same manner. The average pore size is about 0.7 μm and the water permeability is 36000.
It was ml / m 2 · hr · mmHg.

実施例3 実施例1と同じ組成の原液を外径1.0mm、内径0.7mmの環
状オリフィスからなる口金孔内から注入液としてジメチ
ルアセトアミド/水=85/15を注入しつつ、吐出させ、
口金面から1.0cm下方に設置した51℃に保温した水を有
する凝固浴に通過させ、通常の方法で水洗後カセにまき
取り、中空糸条膜を得た。口金は60℃に保温した。得ら
れた中空糸膜は、平均孔径0.2μmで透水性1320ml/m2
hr・mmHgの性能を得たポリビニルピロリドンは25重量%
残存していた。
Example 3 An undiluted solution having the same composition as in Example 1 was discharged while injecting dimethylacetamide / water = 85/15 as an injecting solution from the inside of a mouth hole composed of an annular orifice having an outer diameter of 1.0 mm and an inner diameter of 0.7 mm,
The hollow fiber membrane was obtained by passing it through a coagulating bath having water kept at 51 ° C., which was installed 1.0 cm below the surface of the spinneret, washing it with water by a conventional method, and then winding it on a cassette. The base was kept warm at 60 ° C. The resulting hollow fiber membrane had an average pore size of 0.2 μm and a water permeability of 1320 ml / m 2 ·
25% by weight of polyvinylpyrrolidone that has achieved the performance of hr · mmHg
It remained.

実施例4 ポリスルホン15部、ポリビニルピロリドン(K90)8
部、水2部をジメチルアセトアミド75部に加熱溶解し、
65℃で相分離がおこるように水を微量加えて調製した。
注入液に、ジメチルアセトアミド/水=85/15を用い
て、実施例3と同様にして中空糸膜を得た。凝固浴の水
温は70℃、口金は60℃に保温して行なった。この中空糸
膜を沸水中で洗浄し、そのまま170℃の乾熱処理をして
熱架橋させた。平均孔径0.8μm、ポリビニルピロリド
ンは15重量%残存していた。透水性11000ml/m2・hr・mm
Hg、牛血漿透水性1010ml/m2・hr・mmHg、牛血透水性420
ml/m2・hr・mmHg、蛋白透過率97%の性能を得た。溶血
・血球リークは認められなかった。実施例5〜7 実施例4の製膜原液を用いて紡糸した中空糸膜の乾燥後
の水透過性能の変化を調べた。結果を表にまとめた。乾
燥は、室温真空乾燥である。第1表に示したとおり、絶
乾しても、水に浸漬するだけで性能回復している。
Example 4 Polysulfone 15 parts, polyvinylpyrrolidone (K90) 8
Parts, 2 parts of water are dissolved by heating in 75 parts of dimethylacetamide,
It was prepared by adding a small amount of water so that phase separation would occur at 65 ° C.
A hollow fiber membrane was obtained in the same manner as in Example 3 except that dimethylacetamide / water = 85/15 was used as the injection liquid. The coagulation bath was maintained at a water temperature of 70 ° C and the spinneret at 60 ° C. This hollow fiber membrane was washed in boiling water, and then subjected to a dry heat treatment at 170 ° C to thermally crosslink. The average pore diameter was 0.8 μm, and polyvinylpyrrolidone remained at 15% by weight. Water permeability 11000ml / m 2・ hr ・ mm
Hg, Bovine Plasma Permeability 1010 ml / m 2 · hr · mmHg, Bovine Blood Permeability 420
Performance of ml / m 2 · hr · mmHg and protein permeability of 97% was obtained. No hemolysis or blood cell leak was observed. Examples 5 to 7 Changes in water permeation performance after drying of hollow fiber membranes spun using the membrane forming stock solution of Example 4 were investigated. The results are summarized in the table. Drying is vacuum drying at room temperature. As shown in Table 1, the performance is recovered just by immersing it in water even if it is absolutely dried.

比較例1 ポリスルホン12部、ポリビニルピロリドン6部をN−メ
チルピロリドン82部に加え、加熱溶解した。この原液を
50℃に保温し、実施例1と同様にして製膜した。(凝固
浴50℃)この膜の透水性は600ml/m2・hr・mmHgであり、
実施例4と同じ後処理を施した後、水漏れ性は良いもの
の透水性は実質上0となった。
Comparative Example 1 12 parts of polysulfone and 6 parts of polyvinylpyrrolidone were added to 82 parts of N-methylpyrrolidone and dissolved by heating. This stock solution
A film was formed in the same manner as in Example 1 while keeping the temperature at 50 ° C. (Coagulation bath 50 ° C) The water permeability of this membrane is 600 ml / m 2 · hr · mmHg,
After the same post-treatment as in Example 4, the water permeability was good but the water permeability was substantially zero.

〔発明の効果〕〔The invention's effect〕

本発明のポリスルホン系樹脂多孔膜は、機械的強度を保
持し、かつ高い透水性、大きな分画分子量を有してい
る。さらに、目づまりや耐汚染性に優れる。また必ずし
も乾燥する必要性はないが、乾燥しても性能変化がない
ためハンドリングも楽である。複合膜の支持体としても
また十分な性能を有したものとなる。
The polysulfone-based resin porous membrane of the present invention retains mechanical strength, has high water permeability, and has a large molecular weight cutoff. Further, it has excellent resistance to clogging and stains. Further, although it is not always necessary to dry, handling is easy because there is no change in performance even if it is dried. It also has sufficient performance as a support for the composite membrane.

本発明のポリスルホン系樹脂多孔膜は、高性能限外濾過
膜(あるいは精密濾過膜)として、一般産業用途及びメ
ディカル分野の血液成分分離膜などに使用することがで
きる。
INDUSTRIAL APPLICABILITY The polysulfone-based resin porous membrane of the present invention can be used as a high performance ultrafiltration membrane (or microfiltration membrane) in blood component separation membranes in general industrial applications and medical fields.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭58−8516(JP,A) 特開 昭56−126407(JP,A) 特開 昭58−104940(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-58-8516 (JP, A) JP-A-56-126407 (JP, A) JP-A-58-104940 (JP, A)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】膜の両表面に平均孔径が500Å以上の細孔
を有し、主たる膜素材がポリスルホン系樹脂であってか
つ全量の3〜30重量%の架橋親水性高分子を含有し、透
水性が1000ml/m2・hr・mmHg以上であることを特徴とす
るポリスルホン系樹脂多孔膜。
1. A membrane having pores with an average pore size of 500Å or more on both surfaces, the main membrane material being a polysulfone resin and containing 3 to 30% by weight of a cross-linked hydrophilic polymer, A polysulfone-based resin porous membrane having a water permeability of 1000 ml / m 2 · hr · mmHg or more.
【請求項2】該親水性高分子が、ポリビニルピロリドン
であることを特徴とする特許請求の範囲第(1)項記載
のポリスルホン系樹脂多孔膜。
2. The polysulfone-based resin porous membrane according to claim 1, wherein the hydrophilic polymer is polyvinylpyrrolidone.
【請求項3】該ポリスルホン系樹脂多孔膜が、中空糸膜
であることを特徴とする特許請求の範囲第(1)項記載
のポリスルホン系樹脂多孔膜。
3. The polysulfone resin porous membrane according to claim 1, wherein the polysulfone resin porous membrane is a hollow fiber membrane.
JP60080372A 1985-04-17 1985-04-17 Polysulfone resin porous membrane Expired - Lifetime JPH0757825B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60080372A JPH0757825B2 (en) 1985-04-17 1985-04-17 Polysulfone resin porous membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60080372A JPH0757825B2 (en) 1985-04-17 1985-04-17 Polysulfone resin porous membrane

Publications (2)

Publication Number Publication Date
JPS61238834A JPS61238834A (en) 1986-10-24
JPH0757825B2 true JPH0757825B2 (en) 1995-06-21

Family

ID=13716445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60080372A Expired - Lifetime JPH0757825B2 (en) 1985-04-17 1985-04-17 Polysulfone resin porous membrane

Country Status (1)

Country Link
JP (1) JPH0757825B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4970034A (en) * 1988-09-23 1990-11-13 W. R. Grace & Co.-Conn. Process for preparing isotropic microporous polysulfone membranes
NL8901090A (en) * 1989-04-28 1990-11-16 X Flow Bv METHOD FOR MANUFACTURING A MICROPOROUS MEMBRANE AND SUCH MEMBRANE
US5151227A (en) * 1991-03-18 1992-09-29 W. R. Grace & Co.-Conn. Process for continuous spinning of hollow-fiber membranes using a solvent mixture as a precipitation medium
EP0750938B1 (en) * 1995-06-30 2005-02-16 Toray Industries, Inc. Manufacture of a polysulfone hollow fiber semipermeable membrane
JP4808499B2 (en) * 2006-01-17 2011-11-02 日機装株式会社 Method for producing porous beads
US20120305238A1 (en) * 2011-05-31 2012-12-06 Baker Hughes Incorporated High Temperature Crosslinked Polysulfones Used for Downhole Devices
TWI549744B (en) 2012-03-28 2016-09-21 東麗股份有限公司 Hollow fiber membrane of polysulfone and hollow fiber membrane module for purification of blood product
US9446074B2 (en) 2012-11-30 2016-09-20 Toray Industries, Inc. Method of preparing platelet solution replaced with artificial preservation solution
JP6155908B2 (en) * 2013-07-03 2017-07-05 東レ株式会社 Method for producing hollow fiber membrane
CN109803748A (en) 2016-09-30 2019-05-24 东丽株式会社 Cultivate the manufacturing method of blood platelet thickening apparatus and the platelet transfusion using it
WO2020111211A1 (en) * 2018-11-30 2020-06-04 富士フイルム株式会社 Method for producing porous membrane and porous membrane
EP4119587A4 (en) 2020-03-12 2024-03-20 Toray Industries Coating agent and medical material using same
CN114917774B (en) * 2022-05-07 2023-03-14 大连理工大学 Preparation method of polyacrylonitrile-based thermally crosslinked membrane
CN114984767B (en) * 2022-06-06 2023-10-13 浙江大学 Intelligent shrinkage cavity method for polymer porous membrane surface and organic solvent nanofiltration membrane product thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56126407A (en) * 1980-03-10 1981-10-03 Nitto Electric Ind Co Ltd Production of semipermeable membrane
JPS588516A (en) * 1981-07-08 1983-01-18 Toyobo Co Ltd Preparation of polysulfone separation membrane
DE3149976A1 (en) * 1981-12-17 1983-06-30 Hoechst Ag, 6230 Frankfurt MACROPOROUS ASYMMETRIC HYDROPHILE MEMBRANE MADE OF SYNTHETIC POLYMER

Also Published As

Publication number Publication date
JPS61238834A (en) 1986-10-24

Similar Documents

Publication Publication Date Title
US5009824A (en) Process for preparing an asymmetrical macroporous membrane polymer
US4220543A (en) Ethylene-vinyl alcohol membranes having improved properties and a method of producing the same
JP3200095B2 (en) Hydrophilic heat-resistant film and method for producing the same
JPH03293023A (en) Unsymmetrical semi-permeable membrane, and making thereof
JPH0757825B2 (en) Polysulfone resin porous membrane
JPH0711019A (en) Semipermeable membrane of homogeneously miscible polymer alloy
US6258272B1 (en) Internal hydrophilic membranes from blended anionic copolymers
US6355730B1 (en) Permselective membranes and methods for their production
CN105521715B (en) A kind of blending polyvinylidene fluoride hollow fiber membrane and preparation method thereof
EP0750936B1 (en) Permselective membranes and methods for their production
US5082565A (en) Semipermeable membrane made from polyether ketones
JP3617194B2 (en) Permselective separation membrane and method for producing the same
JPH0675667B2 (en) Method for producing semi-permeable membrane of polysulfone resin
JPH053331B2 (en)
JPS6238205A (en) Semi-permeable membrane for separation
JPS6397202A (en) Polyether sulfone resin semipermeable membrane and its production
JPH10230148A (en) Semipermeable membrane
JP2713294B2 (en) Method for producing polysulfone-based resin semipermeable membrane
JP2505428B2 (en) Low-temperature dissolving stock solution and method for producing the same
US7517482B2 (en) Method for producing polymeric membranes with high-recovery rate
JPH06339620A (en) Method for treating polysulfone resin semipermeable membrane
JPH0122009B2 (en)
JPH11501251A (en) Improved membrane
JP3770145B2 (en) Method for producing semipermeable membrane and dialyzer using the semipermeable membrane
JP4689790B2 (en) Internal hydrophilic membrane of anionic copolymer blend

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term